
© 2009 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics 1 (2009) 1-13 

Bending Analysis of Laminated Composite Plates with Arbitrary  
Boundary Conditions 

A.M. Naserian Nik, M. Tahani* 
Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran  

Received 11 December 2008; accepted 10 February 2009  

 ABSTRACT 

 It is well known that for laminated composite plates a Levy-type solution exists only for cross-ply 
and antisymmetric angle-ply laminates. Numerous investigators have used the Levy method to 
solve the governing equations of various equivalent single-layer plate theories. It is the intension 
of the present study to introduce a method for analytical solutions of laminated composite plates 
with arbitrary lamination and boundary conditions subjected to transverse loads. The method is 
based on separation of spatial variables of displacement field components. Within the 
displacement field of a first-order shear deformation theory (FSDT), a laminated plate theory is 
developed. Two systems of coupled ordinary differential equations with constant coefficients are 
obtained by using the principle of minimum total potential energy. Since the procedure used is 
simple and straightforward it can, therefore, be adopted in developing higher-order shear 
deformation and layerwise laminated plate theories. The obtained equations are solved analytically 
using the state-space approach. The results obtained from the present method are compared with 
the Levy-type solutions of cross-ply and antisymmetric angle-ply laminates with various 
admissible boundary conditions to verify the validity and accuracy of the present theory. Also for 
other laminations and boundary conditions that there exist no Levy-type solutions the present 
results may be compared with those obtained from finite element method. It is seen that the 
present results have excellent agreements with those obtained by Levy-type method. 
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1    INTRODUCTION 

UPERIOR mechanical properties of composite materials such as high stiffness and strength to weight ratios, 
corrosive resistance and low coefficients of thermal expansion, caused it to be used increasingly in many areas 

of technology including marine [1], aerospace [2], automotive [3], civil [4], medicine [5] and others. Numerous 
investigators have employed analytical methods for bending analysis of laminated composite plates (for example, 
see [6-19]). However, the number of papers in which laminated plates with non-simply supported edges are studied, 
is not considerable. It can be said that the most popular analytical method for analysis of non-simply supported 
laminated plates is the Levy-type solution which is able to analyze cross-ply and antisymmetric angle-ply laminates 
with two simply supported opposite edges. Furthermore, nearly all of the previous works are restricted to special 
laminations such as cross-ply or antisymmetric angle-ply.  

Only few theories are presented that can analyze plates with more general laminations or boundary conditions. 
Taking the idea of Timoshenko [20], Bhaskar and Kaushik [21] presented an exact solution for symmetric cross-ply 
thin plates with any combination of simply supported and clamped edges. Their methodology was based on 
superposition of the Navier solution corresponding to the applied transverse load and a number of double sine series 
solutions, equal to the number of clamped edges, each corresponding to the appropriate edge moment. Khalili et al. 
‒‒‒‒‒‒ 
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[22] conducted an analytical method for static and dynamic analysis of symmetric cross-ply laminated plates with 
different boundary conditions. They assumed that the functions describing the plate displacement in the z direction 
and shear rotations in the x and y directions are in the form of double Fourier series and then exploited Stokes’s 
transformation [23] to legitimize the derivatives of this Fourier series for different sets of boundary conditions. They 
had to fulfill an elaborate mathematical procedure to obtain the unknown due to the every set of boundary conditions 
on the edges of the plate. Kabir and Chaudhuri [24] reported a minor variant of Green’s approach [23] wherein the 
assumed displacement functions satisfy the clamped boundary conditions a priori; expansion of cosine functions in a 
sine series, or vice versa, as suggested by Green and Hearmon [25]. Chaudhuri and Kabir [26] extended their earlier 
work to derive a boundary-continuous-displacement solution for an arbitrarily laminated clamped plate. They used 
the first-order shear deformation theory (FSDT) and illustrated their results for a general laminate of [0°/60°] 
construction. A disadvantage with Green’s approach, besides the uncertain nature of convergence of the series 
employed, is the larger number of unknown variables that one has to solve for – namely, the Fourier coefficients of 
the double series assumed for the displacements as against the coefficients of the single series assumed for the edge 
moments in the superposition approach. Vel and Batra [27] generalized the Eshelby–Stroh formalism [28] to study 
the three-dimensional deformations of anisotropic laminated rectangular plates subjected to arbitrary boundary 
conditions at the edges. They satisfied the interface continuity and the boundary conditions in the sense of Fourier 
series which results in an infinite system of equations in infinite unknowns. The truncation of this set of equations 
inevitably involves some errors which can be minimized by increasing the number of terms in the series. However, 
Vel and Batra [ 27] presented the numerical results, only, for a cross-ply plate simply supported on two opposite 
edges and subjected to different sets of boundary conditions on the other edges and a clamped plate with [0°/90°/0°] 
and [45°/-45°/45°] laminations. 

The purpose of the present work is to develop an analytical method for bending analysis of laminated composite 
plates with arbitrary lamination and boundary conditions. Also in order to demonstrate the accuracy of the proposed 
method, a Levy-type solution is employed. As the numerical result, two problems are examined: the first, contains 
an anisymmetric angle-ply plate that there is Levy’s solution for it and the latter contains a laminated plate with 
boundary conditions and lamination that there exist no Levy-type solutions. The comparison of the results with those 
obtained from the Levy-type solution shows an excellent agreement. 

2    FORMULATION 

2.1 Displacement field and strains 

Consider a generally laminated plate as shown in Fig. 1 with a total thickness h, width b in the lateral (y-) direction, 
and length a in the longitudinal (x-) direction. It is also assumed that the middle plane of plate lies on the xy plane of 
a Cartesian coordinate system. Here, the theory will be developed within the framework of the FSDT [29]. To this 
end, it is assumed that the displacement field of the plate may be presented as: 
 

ψ ψ= +( , , ) ( ) ( ) ( ) ( )i i i iu x y z u x u y z x y  

φ φ= + =( , , ) ( ) ( ) ( ) ( ), 1, 2,...,i i i iv x y z v x v y z x y i n                                                                                     (1) 
=( , ) ( ) ( )i iw x y w x w y  

 
where for the sake of brevity, the Einstein summation convention has been introduced –a repeated  index indicates 
summation over all values of that index. In Eqs. (1), u(x,y,z), v(x,y,z), and w(x,y,z) are, respectively, the 
displacements in x, y, and z directions, and ( )iu x , ( )iu y , ( )iv x , ( )iv y , ψ ( )i x , ψ ( )i y , φ ( )i x , φ ( )i y , ( )iw x , 
and ( )iw y  are unknown functions. Also n is the total number of terms considered in the summation. 
 

 
 
 
 
 
Fig. 1 
The plate geometry and coordinate system. 
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Upon substitution of the displacement field (1) into the linear strain-displacement relations of elasticity the 
following strain-displacement relations will be obtained: 
 

0

0
x i i i i x x

y i i i i y y

u u z z

v v z z

ε ψ ψ ε κ

ε φ φ ε κ

′ ′= + = +

′ ′= + = +
 

0

0

0( )

0

yz i i i i yz

xz i i i i xz

xy i i i i i i i i xy xy

z

w w

w w

u u v v z z

γ ϕ ϕ γ

γ ψ ψ γ

γ ψ ψ φ φ γ κ

ε

′= + =

′= + =

′ ′ ′ ′= + + + = +

=

                                                                                                 (2) 

2.2 Equilibrium equations 

Next, using the principle of minimum total potential energy [30], two sets of equilibrium equations and boundary 
conditions corresponding to the independent variables can be shown to be: 
 

δ − =1: 0
i

ix
i xy

dN
u N

dx
 

δ − =2: 0
i
xy i

i y

dN
v N

dx
 

δψ − − =1 1: 0
i

i ix
i xy x

dM
M Q

dx
                                                                                                                              (3) 

δϕ − − =2
1: 0

i
xy i i

i y y

dM
M Q

dx
 

δ − + =2
2: ( ) 0

i
ix

i y i
dQ

w Q q x
dx

 

 
and 
 

δ − =1: 0
i
xy i

i x

dN
u N

dy
 

δ − =2: 0
i
y i

i xy

dN
v N

dy
 

δψ − − =1
1: 0

i
xy i i

i x x

dM
M Q

dy
                                                                                                                              (4) 

δϕ − − =2 1: 0
i
y i i

i xy y

dM
M Q

dy
 

δ − + =2
2: ( ) 0

i
y i

i x i

dQ
w Q q y

dy
                                                                                                                     

 
In the above equations the generalized stress resultants, ( )iq x , and ( )iq y  are defined as 
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Ν

Μ ψ φ ψ φ

φ ψΘ

⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ′ ′= =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

∫
1 2

1 2
0

1 2 1 2

{ }

{ }  d

{ }

i i i ii T
x y xy xy x i y i xy i xy i

b
i T i i i i

x y xy xy x i y i xy i xy i

i T i i i i
y i y i x i x iy y x x

N N N N N u N v N u N v

M M M M M M M M y

Q Q w Q Q wQ Q Q Q

                                 (5) 

Ν

Μ ψ φ ψ φ

φ ψΘ

⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ′ ′= =⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

∫
1 2

1 2
0

1 2 1 2

{ }

{ }  d

{ }

i i i ii T
x y xy xy x i y i xy i xy i

a
i T i i i i

x y xy xy x i y i xy i xy i

i T i i i i
y i y i x i x iy y x x

N N N N N u N v N u N v

M M M M M M M M x

Q Q w Q Q wQ Q Q Q

                                 (6) 

= ∫0
( ) ( , ) d

b

i iq x q x y w y                                                                                                                                       (7) 

= ∫0
( ) ( , ) d

a

i iq y q x y w x                                                                                                                                       (8) 

 
Also the stress resultants are 

  

σ σ σ σ σ
−

=∫
/2

/2
( , , , , ) ( , , , , ) d

h

x y xy y x x y xy yz xz
h

N N N Q Q z  
                              (9) 

σ σ σ
−

= ∫
/2

/2
( , , ) ( , , ) d

h

x y xy x y xy
h

M M M z z  

 
The boundary conditions consist of specifying the following quantities at the edges of the plate. For edges 

parallel to y-axis (i.e., x=0,a): 
 

Geometric (essential)  Force (natural)  
iu  or                    

i
xN    

iv  or 2
i
xyN    

ψ i  or                   
i
xM  i=1,2,…,n          (10) 

ϕi  or                   2
i
xyM    

iw  or                    2
i
xQ    

 
and for edges parallel to x-axis (i.e., y=0,b): 
 

Geometric (essential)  Force (natural)   

iu  or 1
i
xyN    

iv  or                    
i
yN    

ψ i  or                   1
i
xyM  i=1,2,…,n          (11) 

 ϕi  or                   
i
yM    

iw  or                    2
i
yQ    

2.3 Laminate constitutive relations 

The linear constitutive relations for the kth orthotropic lamina in the laminate coordinates (x,y,z) are given 
 

σ ε=( ) ( ) ( ){ } [ ] { }k k kQ                                                                                                                                            (12) 
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where ( )[ ] kQ  denotes the transformed reduced plane-stress stiffness matrix of the kth lamina. Upon substitution of 
Eqs. (2) into Eqs. (12) and the subsequent results into Eqs. (9), the stress resultants are obtained which can be 
presented as follows: 
 

ε

ε

γ

κ
κ

κ

⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

11 12 16 11 12 16

22 26 12 22 26

66 16 26 66

11 12 16

22 26

66symm.

o
xx
o

y y

oxy xy

x x

y y

xy xy

N A A A B B B
N A A B B B
N A B B B

D D DM

D DM

DM

,        
γ

γ

⎧ ⎫⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎣ ⎦⎩ ⎭ ⎪ ⎪⎩ ⎭

0
44 452

045 55

y yz

x xz

Q A A
k

A AQ
                             (13) 

 
Here, k2 (=5/6) is the shear correction factor of FSDT. Also Aij, Bij, and Dij denote the extensional stiffnesses, the 
bending-extensional coupling stiffnesses, and the bending stiffnesses, respectively. 
 

+

=

=∑∫
1 ( ) 2

1

( , , ) (1, , ) d
k

k

N z
k

ij ij ij ij
z

k

A B D Q z z z                                                                                                          (14) 

 
where N is the total number of layers. Upon substitution of Eqs. (2) into (13) and the subsequent results into Eqs. (5) 
and (6) the generalized stress resultants are obtained which can be represented as follows: 
 

{ }Ν
Α ξ

Μ

⎧ ⎫⎪ ⎪ ⎡ ⎤=⎨ ⎬ ⎣ ⎦⎪ ⎪⎩ ⎭

{ }

{ }

i
ij

ji
,      { } { }Θ η⎡ ⎤= ⎣ ⎦

i ij
jB                                 (15) 

{ }Ν
Α ξ

Μ

⎧ ⎫⎪ ⎪ ⎡ ⎤=⎨ ⎬ ⎣ ⎦⎪ ⎪⎩ ⎭

{ }

{ }

i
ij

ji
,      { } { }Θ η⎡ ⎤= ⎣ ⎦

i ij
jB                                 (16) 

 
where 
 

{ }ξ ψ ϕ ψ ϕ⎡ ⎤′ ′ ′ ′= ⎣ ⎦
T

j j j j j j j j ju v u v ,      { }η ϕ ψ⎡ ⎤′= ⎣ ⎦
T

j j j j jw w              (17) 

{ }ξ ψ ϕ ψ ϕ⎡ ⎤′ ′ ′ ′= ⎣ ⎦
T

j j j j j j j j ju v u v ,       { }η ϕ ψ⎡ ⎤′= ⎣ ⎦
T

j j j j jw w              (18) 

 
and the stiffness coefficients ij

mnA ,  ij
mnB , ij

mnA , and ij
mnB  are defined by 

 

[ ] { }{ }Α α ξ ξ⊗⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦∫0
d ,

b Tij
i j y     [ ] { }{ }β η η⊗⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦∫0

d
b Tij

i jB y    
(19) 

[ ] { }{ }Α α ξ ξ⊗⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦∫0
d ,

a Tij
i j x     [ ] { }{ }β η η⊗⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦∫0

d
a Tij

i jB x    
(20) 

 
where [ ]α  and [ ]β  are 
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[ ]α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 12 16 16 11 12 16 16

22 26 26 12 22 26 26

66 66 16 26 66 66

66 16 26 66 66

11 12 16 16

22 26 26

66 66

66symm.

A A A A B B B B

A A A B B B B

A A B B B B

A B B B B

D D D D

D D D

D D

D

                                                                                (21) 

[ ]β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

44 44 45 45

44 45 452

55 55

55symm.

A A A A

A A A
k

A A

A

                                                                                                                       (22) 

 
It must be noted that the sign ⊗ used in Eqs. (19) and (20) is referred to array multiplication of two matrices. 

2.4 Governing equations of equilibrium 

The equilibrium Eqs. (3) and (4) can be expressed in terms of displacements by substituting the generalized stress 
resultants from (15) and (16). Hence, two sets of ordinary differential equations will be obtained as follows: 
 

11 13 31 33 14 12 34 32 15 17 35 37

18 16 38 36

: ( ) ( ) ( )

( ) 0

ij ij ij ij ij ij ij ij ij ij ij ij
i j j j j j j j j j

ij ij ij ij
j j j

u A u A A u A u A v A A v A v A A A A

A A A A

δ ψ ψ ψ

ϕ ϕ ϕ

′′ ′ ′′ ′ ′′ ′+ − − + + − − + + − −

′′ ′+ + − − =
  

δ ψ ψ ψ

ϕ ϕ ϕ

′′ ′ ′′ ′ ′′ ′+ − − + + − − + + − −

′′ ′+ + − − =

41 43 21 23 44 42 24 22 45 47 25 27

48 46 28 26

: ( ) ( ) ( )

( ) 0

ij ij ij ij ij ij ij ij ij ij ij ij
i j j j j j j j j j

ij ij ij ij
j j j

v A u A A u A u A v A A v A v A A A A

A A A A
  

55 57 7551 53 71 73 54 52 74 72

77 33 58 56 78 76 31 34 32

: ( ) ( ) ( )

( ) ( ) ( ) 0

ij ij ij ij ij ij ij ij ij ij ij
i j j j j j j j j

ij ij ij ij ij ij ij ij ij
j j j j j j

A u A A u A u A v A A v A v A A A

A B A A A A B B w B w

δψ ψ ψ

ψ ϕ ϕ ϕ

′′ ′ ′′ ′ ′′ ′+ − − + + − − + + −

′′ ′ ′− + + + − − + − − =
  

81 83 61 63 84 82 64 62 85 87 65

67 13 88 86 68 66 11 14 12

: ( ) ( ) ( )

( ) ( ) ( ) 0

ij ij ij ij ij ij ij ij ij ij ij
i j j j j j j j j

ij ij ij ij ij ij ij ij ij
j j j j j j

A u A A u A u A v A A v A v A A A

A B A A A A B B w B w

δϕ ψ ψ

ψ ϕ ϕ ϕ

′′ ′ ′′ ′ ′′ ′+ − − + + − − + + −

′′ ′ ′− + + + − − + − − =
  

δ ψ ψ ϕ ϕ′ ′ ′′ ′− + − + + − − = −43 23 41 21 44 42 24 22: ( ) ( )ij ij ij ij ij ij ij ij
i j j j j j j j iw B B B B B w B B w B w q x  (23) 

 
and 
 

δ ψ ψ ψ ϕ

ϕ ϕ

′′ ′ ′′ ′ ′′ ′ ′′+ − − + + − − + + − − +

′+ − − =

33 31 13 11 32 34 12 14 37 35 17 15 36

38 16 18

: ( ) ( ) ( )

( ) 0

ij ij ij ij ij ij ij ij ij ij ij ij ij
i j j j j j j j j j j

ij ij ij
j j

u A u A A u A u A v A A v A v A A A A A

A A A
 

δ ψ ψ ψ ϕ

ϕ ϕ

′′ ′ ′′ ′ ′′ ′ ′′+ − − + + − − + + − − +

′+ − − =

23 21 43 41 22 24 42 44 27 25 47 45 26

28 46 48

: ( ) ( ) ( )

( ) 0

ij ij ij ij ij ij ij ij ij ij ij ij ij
i j j j j j j j j j j

ij ij ij
j j

v A u A A u A u A v A A v A v A A A A A

A A A
 

δψ ψ ψ ψ

ϕ ϕ ϕ

′′ ′ ′′ ′ ′′ ′+ − − + + − − + + − − +

′′ ′ ′+ + − − + − − =

77 75 57 5573 71 53 51 72 74 52 54 33

76 78 56 58 31 32 34

: ( ) ( ) ( ) ( )

( ) ( ) 0

ij ij ij ij ij ij ij ij ij ij ij ij ij
i j j j j j j j j j

ij ij ij ij ij ij ij
j j j j j

A u A A u A u A v A A v A v A A A A B

A A A A B B w B w
 

δϕ ψ ψ ψ

ϕ ϕ ϕ

′′ ′ ′′ ′ ′′ ′+ − − + + − − + + − − +

′′ ′ ′+ + − − + − − =

63 61 83 81 62 64 82 84 67 65 87 85 13

66 68 86 88 11 12 14

: ( ) ( ) ( ) ( )

( ) ( ) 0

ij ij ij ij ij ij ij ij ij ij ij ij ij
i j j j j j j j j j

ij ij ij ij ij ij ij
j j j j j

A u A A u A u A v A A v A v A A A A B

A A A A B B w B w
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δ ψ ψ ϕ ϕ′ ′ ′′ ′− + − + + − − = −23 43 21 41 22 24 42 44: ( ) ( )ij ij ij ij ij ij ij ij
i j j j j j j iw B B B B B w B B w B w q y       (24) 

3    ANALYTICAL SOLUTIONS 

Here, we employ the state-space approach [31] to solve the equilibrium equations obtained in the previous section. 
The linear system of ordinary differential equations in (23) can be expressed in the form of single, first-order, matrix 
differential equation 
 

′ = +{ } [ ]{ } { }X C X F                                                                                                                                             (25) 
 
where the state vector {X} is defined as 
 

ψ φ

ψ φ

′ ′ ′= = = = = =

′ ′= = = =
1 2 3 4 5 6

7 8 9 10

{ } { }, { } { }, { } { }, { } { }, { } { }, { } { }

{ } { }, { } { }, { } { }, { } { }.
j j j j j j

j j j j

X u X v X u X v X X

X X X w X w
   

(26)     

 
In order to solve Eq. (25), let us assume that ( )iu y , ′ ( )iu y ,…, ′ ( )iw y  are chosen so that the boundary 

conditions at y=0,b are identically satisfied. Next, the coefficients ij
mnA  and ij

mnB  are found. Since these 
coefficients are constant, Eq. (25) will be five linear ordinary differential equations with constant coefficients. The 
general solution of Eq. (25) is given by [32]: 
 

1 1− −= + ∫{ } [ ][ ]{ } [ ][ ] [ ] [ ] { } d
x

X U Q K U Q Q U F x                                                                                                 (27) 

 
where [U] is the matrix of  distinct eigenvectors of matrix [C] and {K} is a vector of unknown constants to be found 
by imposing the boundary conditions at edges x=0,a. Also the diagonal matrix [Q] is defined as 
 

λλ λ= … 101 2[ ] ( , , , )n xx xQ diag e e e                                                                                                                           (28) 
 
where λ =( 1,2,...,10 )k k n  are the eigenvalues associated with matrix [C]. Next, we can substitute the general 

solution of ( )iu y , ′ ( )iu y ,…, ′ ( )iw y  into Eqs. (20) to find ij
mnA  and ij

mnB  which, here, will be constant. The 
solution procedure for Eqs. (24) is analogous to the one presented for Eqs. (23) and therefore, for the sake of brevity 
will not be taken up here. This procedure (solving the coupled systems of ordinary differential equations) will be 
continued until the solution is converged. 

4    NUMERICAL RESULTS 

Two numerical examples including various sets of boundary conditions are studied in this section. The aim of the 
first example is to demonstrate the accuracy and validity of the present method while the second, attempts to show 
the capability of the method to analyze laminated plates for which there exist no Levy-type solutions. To this end, a 
Levy-type solution based on FSDT is also developed. In the first example, results are compared with those obtained 
by the Levy solution. It is worth to recall that Levy’s solution exists only for cross-ply and antisymmetric angle-ply 
laminates with two opposite simply supported edges. In the both examples, each lamina is assumed to be of the same 
thickness and has the following orthotropic material properties in the principal material coordinate system [29]: 
 

E1=25E2, G12= G13=0.5E2 , G23=0.2E2 , 25.012 =υ                                                                                              (29) 
 
where 1,2, and 3 indicate the on-axis material coordinate. Denoting simply supported, clamped, and free boundary 
conditions by S, C, and F, a 4-word notation such as SFSC is employed to show the boundary conditions on the four 
edges of the plate. The 1-4th word indicates the boundary conditions on edges x=0, y=0, x=a, and y=b, respectively. 
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Example 1 

Consider an eight-layer antisymmetric angle-ply square laminate [-45°/30°/-45°/0°/0°/45°/-30°/45°] with width-to-
thickness ratio b/h=10. The plate is subjected to a uniform distributed transverse load of magnitude q0 or a sinusoidal 
one: 
 

π π
= 0 sin sinx y

q q
a b

                                                                                                                                          (30) 

 
It is to be noted that the boundary conditions used in this example are restricted to Levy’s admissible boundary 

conditions, therefore, the simple support applied at the edge of the laminate is defined as: 
S2: 

 
ϕ= = = = = 0i i

i i i xy xu w N M
     

at     x=0,a                                                                                                 (31a) 

ψ= = = = = 0i i
i i i xy yv w N M

     
at     y=0,b                                                                                                  (31b)  

 
All the numerical results for deflections and stresses shown in what follows are nondimensionalized as below: 

 
3

22
4

0
10

E h
w w

b q

⎛ ⎞
= ×⎜ ⎟⎜ ⎟

⎝ ⎠
  

2

2
0

( , , ) ( , , )x y xy x y xy

h

b q
σ σ σ σ σ σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                                                                                                   (32) 

0
( , ) ( , )xz xz xz xz

h

bq
σ σ σ σ

⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠
 

 
The results achieved from the present method and the Levy method are compared by Figs. 2-4. The variation of 

nondimensionalized deflection versus x/a at y=b/2 is shown in Fig. 2 corresponding to three sets of SSSS, SCSC, 
and SFSC boundary conditions. 

Also Figs. 3 and 4 illustrate the through-thickness distributions of normal stress σ ( / 2, / 2, / )y a b z h  and 

transverse shear stress ( / 4, / 4, / )xz a b z hσ  of described laminated plate under various boundary conditions. It is to 
be noted that the numerical values of interlaminar stresses are obtained by integrating the local equilibrium 
equations of elasticity. 

 
 

⎯x

⎯w
(x

/a
,0

)

-0.5 -0.25 0 0.25 0.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
SSSS, Present
SSSS, Levy
SCSC, Present
SCSC, Levy
SFSC, Present
SFSC, Levy

Fig. 2 
Variations of deflection versus x/a for [-45°/30°/-
45°/0°/0°/45°/-30°/45°] square laminate subjected to the 
uniform transverse load.
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Above mentioned figures indicate that there is an excellent agreement between the present results and those 
obtained by Levy’s solution. However, it can be said that the magnitude of errors depends on the type of boundary 
conditions imposed on the edges of the plate and the maximum error has occurred in stress values for SCSF 
boundary conditions. The through-thickness variations of shear stresses σ ( / 2, / 2, / )xy a b z h  and 

σ ( / 4, / 4, / )yz a b z h  due to the sinusoidal loading are shown, respectively, in Figs. 5 and 6. In this case there is no 
difference between Levy’s solution and the solution presented here. 

Example 2  

The applicability of the proposed method to analyze laminated plates with arbitrary lamination and boundary 
conditions is demonstrated, using [45°/90°/0°/45°] laminated plate under several sets of boundary conditions. The 
plate has length-to-width ratio a/b=2 and width-to-thickness ratio b/h=10 and is subjected to sinusoidally distributed 
transverse load as defined in Eq. (30). It should be noted that the types of simple supports used in this example, is 
defined as follows: 
 
 
 

⎯σy(a/2,b/2,z/h)

⎯z

-0.5 -0.25 0 0.25 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
SCSC, Present
SCSC, Levy
SFSF, Present
SFSF, Levy

Fig. 3 
Variations of normal stress ( / 2, / 2, / )y a b z hσ  through the 

thickness of [-45°/30°/-45°/0°/0°/45°/-30°/45°] square 
laminate subjected to the uniform transverse load. 

 
 
 

⎯σxz(a/4,b/4,z/h)

⎯z

-0.05 0 0.05 0.1 0.15 0.2 0.25
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

SCSC, Present
SCSC, Levy
SCSF, Present
SCSF, Levy

Fig. 4 
Distributions of transverse shear stress ( / 4, / 4, / )xz a b z hσ  
through the thickness of [-45°/30°/-45°/0°/0°/45°/-30°/45°] 
laminate subjected to the uniform transverse load. 
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S1: 
 

0===== i
x

i
xiii MNwv φ           at          x=0,a                                                         (33a)  

0===== i
y

i
yiii MNwu ψ        at          y=0,b                                   (33b) 

 
The variation of deflection at y=0, along the length of the plate with four sets of boundary conditions: CCFF, 

SSSS, CCCC, and FSCS, is presented in Fig. 7. As expected, the curve corresponding to boundary conditions CCCC 
is located above the other curves. 

Figs. 8 and 9 depict through the thickness distributions of normal stress σ (0,0, )x z  and transverse shear stress 
σ ( / 4, / 4, / )yz a b z h  for different sets of boundary conditions. 

 
 

⎯σxy(a/2,b/2,z/h)

⎯z

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

SCSC, Present
SCSC, Levy
SFSS, Pesent
SFSS, Levy
SCSF, Present
SCSF, Levy

Fig. 5 
Variations of shear stress ( / 2, / 2, / )xy a b z hσ  through the 

thickness of [-45°/30°/-45°/0°/0°/45°/-30°/45°] square 
laminate subjected to the sinusoidal transverse load. 

 
 
 

⎯σyz(a/4,b/4,z/h)

⎯z

0 0.02 0.04 0.06 0.08 0.1 0.12
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

SCSC, Present
SCSC, Levy
SFSF, Present
SFSF, Levy

Fig. 6 
Distributions of transverse shear stress ( / 4, / 4, / )yz a b z hσ  

through the thickness of [-45°/30°/-45°/0°/0°/45°/-30°/45°] 
laminate subjected to the sinusoidal transverse load. 
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⎯x

⎯w
(x

/a
,0

)

-0.5 -0.25 0 0.25 0.5

-3

-2

-1

0

CCFF
SSSS
CCCC
FSCS

 
 
 
 
 
 

 

 
 
 
 

Fig. 7 
Variations of deflection versus x/a for [45°/90°/0°/45°] 
laminate subjected to the sinusoidal load. 

 
  
 

⎯σx(a/2,b/2,z/h)

⎯z

-0.4 -0.2 0 0.2 0.4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

CCCC
CSCF

Fig. 8 
Variations of normal stress (0,0, )x zσ  through the thickness of 
[45°/90°/0°/45°] laminated plate subjected to the sinusoidal 
transverse load.

 
 

⎯σyz(a/4,b/4,z/h)

⎯z

0 0.05 0.1 0.15 0.2 0.25
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

CCCC
CFCF
FSCS

Fig. 9 
Distributions of transverse shear stress ( / 4, / 4, / )yz a b z hσ  

through the thickness of [45°/90°/0°/45°] laminated plate 
subjected to the sinusoidal transverse load. 
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5    CONCLUSION 

In this study an analytical method based on an idea is developed to study the bending behavior of laminated 
composite plates. The method is capable to analyze laminated plates with arbitrary lamination and boundary 
conditions. A Levy-type solution based on FSDT is used as a benchmark. The numerical results are compared with 
the Levy-type solutions. All the numerical results, especially those for plates subjected to double-sinusoid transverse 
loading, have excellent agreements between the present method and the exact Levy-type method. Finally, several 
numerical results are presented for laminated plates which have no Levy-type solutions.  
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