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ABSTRACT 
In this research, thermal buckling of thin rectangular plate made of Functionally Graded Materials 
(FGMs) with linear varying thickness is considered. Material properties are assumed to be graded 
in the thickness direction according to a simple power law distribution in terms of the volume 
fractions of the constituents. The supporting condition of all edges of such a plate is simply 
supported. The equilibrium and stability equations of a FGM rectangular plate (FGRP) under 
thermal loads derived based on classical plate theory (CPT) via variational formulation, and are 
used to determine the pre-buckling forces and the governing differential equation of the plate. The 
buckling analysis of a functionally graded plate is conducted using; the uniform temperature rise, 
having temperature gradient through-the-thickness, and linear temperature variation in the 
thickness and closed-form solutions are obtained. The buckling load is defined in a weighted 
residual approach. In a special case the obtained results are compared by the results of functionally 
graded plates with uniform thickness. The influences of the plate thickness variation and the edge 
ratio on the critical loads are investigated. Finally, different plots indicating the variation of 
buckling load vs. different gradient exponent k, different geometries and loading conditions were 
obtained. 

© 2009 IAU, Arak Branch. All rights reserved. 

Keywords: Thermal buckling; FGM plates; Thin rectangular Plate; Classical plate theory; 
Variable thickness plate; Galerkin method 

1    INTRODUCTION 

UNCTIONALLY graded materials (FGMs) have received considerable attention in many engineering 
applications since they were first reported in 1984 in Japan [1]. Functionally graded material (FGMs) is a 

mixture in which material properties vary smoothly or continuously from one surface to the other. This continuous 
change in composition takes advantage of the attractive features of each of its constituents. Typically, these 
materials are made from a blend of ceramic and metal, or a combination of different metals. The advantage to use 
these materials bears on this idea that they are able to withstand high-temperature gradient environments while their 
structural integrity remains intact. For example, the ceramic constituent of the material provides the high- 
temperature resistance due to its low thermal conductivity. While the ductile metal component prevents the mixture 
from fracture due to thermal stresses. Furthermore, a mixture of ceramic and metal with a continuously varying 
volume fraction can be easily manufactured. Due to these advantages, FGMs have been introduced, applied and used 
in many engineering parts. The non-uniform matter can help the designer to reduce the weight of the structure. 
Hence, for cases where reduction of weight is of high importance, such as space structures, plates made of FGM 
material are the best choice however, the buckling load for these plates is a key factor in the design procedure. 
Moreover, while the problem of the influence of thickness variation on the buckling load has received sufficient 
attention, still remains open for further debate. Fuchiyama and Noda [2] developed computer programs that analyzed 
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the transient heat transfer and the transient thermal stress of a FGM plate, composed of ZrO2 and Ti-6AI-4v, by the 
finite element method. Tanigawa et al. [3] derived a one-dimensional temperature solution for a non-homogeneous 
plate in transient state and also optimized the material composition by introducing a laminated composite model. 
Analytical formulation and numerical solution of the thermal stress and deformations for axisymmetrical shells of 
FGM subjected to thermal loading due to fluid was obtained by Takezono et al. [4]. Aboudi et al. developed a new 
kind of higher order shear deformation theory for functionally graded materials that explicitly couples the micro-
structural and macro-structural effects [5]. Reddy and Chin [6] analyzed the dynamic thermoelastic response of 
functionally graded cylinders and plates. In this work the thermo-mechanical coupling was included in the 
formulation and a finite element model was used for the formulation. Reddy and Cheng [7] studied three-
dimensional thermo-mechanical deformations of a simply supported Monel-zirconia functionally graded rectangular 
plate by using an asymptotic method. The local effective material properties were estimated by the Mori-Tanaka 
scheme. Cheng and Batra [8] obtained a new closed form solution for the thermo-mechanical deformations of an 
isotropic linear thermo-elastic functionally graded elliptic plate rigidly clamped at the edges. The method of 
asymptotic expansion was used to study three-dimensional mechanical deformations and the deformations due to 
thermal loads were found in a straightforward manner. Javaheri and Eslami [9, 10] presented the thermal buckling of 
uniform thickness rectangular FGM plates based on first and higher order plate theories subjested to four types of 
thermal loads. Najafizadeh and Eslami [11] discussed the thermal buckling of FGM circular plates. The thermal 
buckling load of the circular plate under uniform temperature rise, thermal gradient across the thickness, and thermal 
gradient across the radius are derived. Najafizadeh and Heydari [12] presented the thermal buckling of circular FGM 
plates based on higher order plate theories subjected to two types of thermal loads. 

   To date and based on conducted literature searches, it became obvious that no studies have been performed on 
any types of FGM plates with variable thickness. Therefore, in the present article, a thin rectangular FGM plate with 
linearly varying thickness under three types of thermal loads is considered. Based on the classical plate theory, 
equilibrium and stability equations are obtained using energy method. Thermal properties are given by a power law, 
function of z coordinate. To formulate the thermal buckling load, the Galerkin method has been employed. The 
analysis is based on the governing differential equation of the thin rectangular plate with linear varying thickness 
and the critical thermal buckling load is derived by the Galerkin method. Resulting equation are used to obtain the 
closed-form solution for the critical buckling temperature. The influence of the thickness non-uniformly parameter 
and the edge ratio to the critical load is investigated.  

2    FGM PLATE AND ITS PROPERTIES 

Consider a FGM thin rectangular plate made from a mixture of ceramics and metals and subjected to a kind of 
thermal load. The plate coordinate system ),,( zyx  is chosen such that; x and y are in-plane coordinates and z  is in 
the direction of the inward normal to the middle surface, the corresponding displacement designated by vu,  and ,w  
respectively. The origin of the coordinate system is located at the corner of the plate on the middle plate. The plate 
side length in the −x direction is designated as a, and b is the length in the −y direction. The thickness of the plate, 
h, varies in the x, y directions such that (see Fig. 1) 
 

 
 
 

Fig. 1. 
Geometry and coordinate system of rectangular plate  
(a × b).

21)( cxcxhh +=== ξ ,     21)( cycyhh +=== ξ  (1) 

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Thermal Stability of Thin Rectangular Plates with Variable Thickness …                   173  

 

© 2009 IAU, Arak Branch 

in which ξ is a general parameter indicating the thickness change in either of x or y directions, 2c  is the nominal 
thickness of the plate at the origin and c1 is a variable parameter called the non-dimensional parameter. When c1 = 0, 
that means the plate has a constant thickness. When x=0, one has ξ(0) =c2 =h and for the case of x=a, ξ(a) =c1a+c2. 
We assume that the plate composition is varied from the outer to the inner surface, i.e. the outer surface of the plate 
is ceramic-rich whereas the inner surface is metal-rich. The material properties of the FGM plate, such as coefficient 
of thermal expansion α, modulus elasticity E, and coefficient of thermal conduction K are assumed to be function of 
the constituent materials [13]. While the Poisson’s ratio ν is assumed to be constant across the plate thickness [14] 
such that 
 

)1()( cmcc VEVEzE −+=  (2a) 
)1()( cmcc VVz −+= ααα  (2b) 
)1()( cmcc VKVKzK −+=  (2c) 

νν =)(z  (2d) 
 
where subscripts m and c refer to the metal and ceramic constituents, respectively; the volume fractions of ceramic 
Vc and metal Vm are related by [15] 
 

k
c hzV )2/1/( += ,  0≥k ,   (3a) 

1)()( =+ zVzV cm  (3b) 
 
where volume fraction exponent k  dictates the material variation profile through the plate thickness which takes 
values greater than or equal to zero. The value of zero for the k  represents a fully ceramic plate. From Eqs. (2) and 
(3) material properties of the FGM plate are determined, which are the same as the equations proposed by reference 
[15] 
 

k
cmm hzEEzE )2/1/()( ++=  (4a) 

k
cmm hzz )2/1/()( ++= ααα  (4b) 

k
cmm hzKKzK )2/1/()( ++=  (4c) 

νν =)(z  (4d) 
 
in which 
 

mccm EEE −= ,  mccm ααα −= ,  mccm KKK −= , (5) 

3    BASIC AND EQUILIBRIUM EQUATIONS 

The classical plate theory (CPT) which is considered for further study in the present work is based on the 
assumption of the displacement field in the following form 
 

xzwyxuzyxu ,00 ),(),,( −=  

yzwyxvzyxv ,00 ),(),,( −=  
),(),,( 0 yxwzyxw =  

 
(6) 
 

 
in which wvu ,,  are the total displacement and ),,( 000 wvu are the mid-plane displacements in the yx,  and z  
directions, respectively. For the thin plate i.e. )20/1()/( ≤bh , where h and b  are the thickness and smaller edge 
side of the rectangular plate, respectively. Hook’s law for a plate with thermal effects is defined as 
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The plate is assumed to be comparatively thin and according to the Love-Kirchhoff assumption, normal to the 

median surface are assumed to remain straight and normal during deformation, thus out-of-plane shear deformations 
),( yzxz γγ are disregarded. Strain components at distance z from the middle plane are then given by 

 

xxxxxx zκεε +=  

yyyyyy zκεε +=  

xyxyxy zκγγ 2+=  

 
 
(8) 
 
 

 
Here xyyyxx γεε ,,  denote the corresponding quantities at points on the mid-plane surface only, and xyyyxx κκκ ,,  are 
the curvatures which can be expressed in term of the displacement components. The relations between the mid-plane 
strains and the displacement components according to the Sander’s assumption are [16] 
 

2
,, 2

1
xxxx wu +=ε  

2
,, 2

1
yyyy wv +=ε  

yxxyxy wwvu ,,,, ++=γ  

(9) 

 
and 
 

xyxyyyyyxxxx www ,,, ,, −=−=−= κκκ  (10) 
 

Substituting Eqs. (9) and (10) into Eqs. (8), the following expression for the strain components are obtained 
 

,xx,x,x zwwu −+= 2
xx 2

1ε  

,yy,yyyy zwwv −+= 2
, 2

1ε  

xy,y,x,x,yxy zwwwvu ,2−++=γ  

 
 

(11) 
 

 
A loaded plate is in equilibrium if its total potential energy V  remains stationary )0( =Vδ , and V is stationary if 

the integrand in expression for V  satisfies the Euler equations. The total potential energy V of a plate subjected to 
thermal loads is defined as 
 

Tcbm UUUUV +++=  (12) 
 
where mU  is the membrane strain energy, bU is the bending strain energy, cU  is the coupled strain energy, and TU  
is the thermal strain energy. The strain energy for thin rectangular plate based on classical plate theory is defined as 
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∫∫∫ +Τ−+Τ−= zyxU xyxyyyyyxxxx d d d ])()([
2
1 γταεσαεσ  (13) 

 
Substituting of Eqs. (7) and (8) into Eq. (13), integration with represent to z  from / 2ξ−  to 2/ξ , the total 

potential energy results in 
 

∫ ∫= yxFV d d  (14) 

 
where functional F is 
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(15) 
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The total potential energy is a function of the displacement components and their derivatives. Hence, 

minimization of total potential energy in terms of the functional F yields the following Euler equations [16] 
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Substituting of Eqs. (9) and (10) into Eqs. (15) and using Eqs. (17) the equilibrium equations for general 

rectangular plate made of functionally graded material are given by 
 

0,, =+ yxyxx NN  
0,, =+ yyxxy NN  

022 ,,,,,, =++++++ nyyyxyxyxxxyyyxyxyxxx PwNwNwNMMM
(18) 
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where stress resultant ii MN ,  are given by 
 

∫− ⋅⋅=
2/

2/
d),1(),(

ξ

ξ
σ zzMN iii ,  xyyxi ,,= . (19) 

 
By substitution Eq. (7) into Eq. (19), one can arrive to the following constitutive relation as 

 

[ ]),)(1())(,())(,(
1

1),( 2 ΦΘ++++= ννκκνεε
ν

-
- yyxxyyxxxx CBBAMN  

[ ]),)(1())(,())(,(
1

1),( 2 ΦΘ+−+++
−
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ν xxyyxxyyyy CBBAMN  

[ ]xyxyxyxy CBBAMN κγ
ν

),(2),(
)1(2

1),( +
+

=  

 
(20) 

 

4    PLATE STABILITY EQUATIONS 

Stability equations of thin rectangular plates are derived using the energy method. If V is the total potential energy 
of the plate, the expanding V about the equilibrium state using Taylor series yields; 
 

⋅⋅⋅+++=Δ VVVV 32

!3
1

!2
1 δδδ  (21) 

 
The first variation Vδ  is associated with the state of equilibrium. The stability of the plate in the neighborhood 

of equilibrium condition may be determined by the sign of second variation. The condition 02 =Vδ  is used to 
derive the stability equations for buckling problems [16]. Let us assume that iû  denotes the displacement 
component of the equilibrium state and iûδ  the virtual displacement corresponding to a neighboring state. Denoting 

δ the variation with respect to iû , the following rule, known as the Trefftz rule, is stated for the determination of 
the critical load. The external load acting on the plate is considered to be the critical buckling load if the following 
variational equation is satisfied 2( ) 0Vδ δ = . Consider the state of primary equilibrium of a rectangular plate under 
general loading to be designated by ooo wvu ,, . For derived stability equations, virtual displacements are defined as 
 

10 uuu +→  

10 vvv +→  

10 www +→  

 
(22) 

 

 
where 111 ,, wvu  are the virtual displacement increments. Substituting Eqs. (22) into Eq. (15) and collecting the 
second-order terms, we obtain the second variation of the potential energy as 
 

( )

( ) ( )( )

( )

22 2 2
1, 1, 1, 1, 1, 1,2

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,2

2 2 2
1, 1, 1, 1, 1,2

0 2 0
1, 1,

1 12
2 22(1 )

1
1

2 2 1
2(1 )
1 2
2

x y x y y x

x xx y yy x yy y xx y x xy

xx yy xx yy xy

x x xy

A
V u v u v u v

B
u w v w u w v w u v w

C
w w w w w

N w N w

νδ ν
ν

ν ν
ν

ν ν
ν

⎧ −⎡ ⎤= + + + + −⎨ ⎢ ⎥− ⎣ ⎦⎩

⎡ ⎤+ + + + − + +⎣ ⎦−

⎡ ⎤+ + + − +⎣ ⎦−

+

∫ ∫

0 2
1, 1,  d  dx y y yw N w x y

⎫⎡ ⎤+ ⎬⎣ ⎦⎭

 (23) 

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Thermal Stability of Thin Rectangular Plates with Variable Thickness …                   177  

 

© 2009 IAU, Arak Branch 

Applying the Euler equations (17) to the functional of Eq. (23), we find the stability equations as 
 

1 1

1 1

1 1 1 1 1 1

0

0

2 ( 2 ) 0

x ,x xy ,y

xy ,x y ,y

o o o
x ,xx xy ,xy y ,yy x ,xx xy ,xy y ,yy

N N

N N

M M M N w N w N w

+ =

+ =

+ + + + + =

   
(24) 

 
where 

1 1 1, 1, 1, 1,2
1( , ) ( , )( ) ( , )( )

1
ν ν

ν
⎡ ⎤= + − +⎣ ⎦−

x x x y xx yyN M A B u v B C w w  

( )1 1 1, 1, 1, 1,2
1( , ) ( , ) ( , )( )

1
ν ν

ν
⎡ ⎤= + − +⎣ ⎦−

y y y x yy xxN M A B v u B C w w  

1 1 1, 1, 1,
1( , ) ( , )( ) 2( , )

2(1 )ν
⎡ ⎤= + −⎣ ⎦+xy xy y x xyN M A B u v B C w  

0
0, 0, 0, 0,2

1 ( ) ( )
11x x y xx yyN A u v B w wν ν

νν
Θ⎡ ⎤= + − + −⎣ ⎦ −−

 

0
0, 0, 0, 0,2

1 ( ) ( )
11y y x yy xxN A v u B w wν ν

νν
Θ⎡ ⎤= + − + −⎣ ⎦ −−

 

0
0, 0, 0,( )

2(1 ) 1xy y x xy
A B

N u v w
ν ν

= + −
+ +

 

 
 
 
 
 
 
 

              (25) 

4.1 Governing differential equation for functionally graded rectangular plate (FGRP) 

By substituting Eq. (25) into Eq. (24), the stability equations in terms of displacement components become 
 

)()()()( ,1,1,1,1,,1,1,1,1, xyyxxxyyxxxxyxxyxx wwBwwBvuAvuA νννν +−+−+++

0)1()(
2

)1(
,1,1,1 =−−+

−
+ xyxyyy wBvu

A νν  
 

(26a) 

xxyxyxxxxyxyx BwwBvuAvuA ,1,1,,1,1,1,1, )1()1()(
2

1)(
2

1 νννν
−−−−+

−
++

−
 

0)()( ,1,1,1,1 =+−++ xxyyyyxyyy wwBuvA νν  

(26b) 
 

)()()(2)( ,1,1,1,1,1,1,,1,1, xyyyyyxxyxxxxyxxxyxxx uvBvuBvuBvuB νννν +++++++  

       )()()1()()1( ,1,1,,1,1,1,1, yyxxxxxxyxyyxyyyx wwCvuBvuB ννν +−+−++−+  

    , 1, 1, , 1, 1,2 ( ) 2 (1 ) 2(1 )x xxx xyy x xy xxyyC w w C w Cwν ν ν− + − − − − 1, 1,( )xxxx xxyyC w wν+−  

      2 0 0 0
1, 1, 1, 1, 1,( ) (1 )[ 2 ] 0yyyy xxyy x xx y yy xy xyC w w N w N w N wν ν− + + − + + =  

(26c) 

 
In the next step we eliminate variables vu,  in above relations; then the equations of stability (26) can be merged 

into one equation in terms of deflection component w  and pre-buckling forces only for linear thickness variation as 
 

22
,

1 , , 1 , , 1, 1,3 2 ( )x
x x xx xx xx yy

BB B B
C w B C w B C w w

A A x A A
ν

⎛ ⎞⎛ ⎞ ∂⎛ ⎞ ⎜ ⎟− ΔΔ + − Δ + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠ ⎝ ⎠
 

2 0 0 0
1,xx 1,yy 1,xy(1 ν ) 2 0( )x y xyw N w N wN+ − + + =  

 
(27) 

 

 
where 
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2

2

2

2

yx ∂
∂

+
∂
∂

=Δ  (28) 

4.2 Solution method 

The method of solving Eq. (27) is based on the series expansion developed by Galerkin [16]. It was originally 
proposed by Bubnov and sometimes is referred to as the Bubnov-Galerkin method. A brief description of the 
method is coming in the following. If the FGM rectangular plate is simply supported in all four edges, then the 
boundary condition is 
 

0,0 ,11 == xxww            at    ax ,0= , 
0,0 ,11 == yyww            at    by ,0= ,                                                              (29)

 
The proposed deflection function 1w  for this case is assumed to be in the following series form 
 

1  sin( / ) sin( / )mnw B m x a n y bπ π= ,  ( , ) 1,  2,  3,...m n = . (30)
 
where mnB  are constant coefficients, and nm,  are the half wave numbers in the yx,  directions, respectively. In 
this article, in order to determine the critical load, the Galerkin method is used. According to this method 
 

∫∫
Ω

= 0d d ),()( yxyxRwφ , (31) 

in which ),( yxR  is the residue function and )(wφ is the weight function.  

5    THERMAL BUCKLING ANALYSIS  

In this section, the closed form solutions of Eq. (27) for three types of thermal loading conditions are presented. The 
plate is assumed to be simply supported in all edges and rigidity fixed against any extension.  
 
Case A. Uniform temperature rises 
 
The initial uniform temperature of the plate is assumed to be iT , the temperature can be uniformly raised to final 
value fT , such that the plate buckles. To find the critical buckling temperature difference i.e., ifA TTT −=Δ , the 
pre-buckling thermal forces, should be found. Solving the membrane form of equilibrium equations i.e., Eq (18), 
gives the pre-buckling force resultants as 
 

)2(
)1(2 21

10 cac
GT

N A
x +

−
Δ

−=
ν

,  xcGTcac
GT

N A
A

y 1121
10 )2(
)1(2

Δ−+
−

Δ
−=

ν
,  00 =xyN  (32) 

 
where 
 

)]12/()1/()([1 +++++= kEkEEEG cmcmmcmcmmmm αααα  (33) 

 
By substituting this type of loading in Eqs. (16), one can get 

 
1GTA ⋅⋅Δ=Θ ξ      (34) 
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Substituting Eq. (32) into Eq. (27), the buckling equation for this type of loading is obtained as 
 

22
,

1 , , 1 , , 1, 1,3 2 ( )x
x x xx xx xx yy

BB B B
C w B C w B C w w

A A x A A
ν

⎛ ⎞⎛ ⎞ ∂⎛ ⎞ ⎜ ⎟− ΔΔ + − Δ + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠ ⎝ ⎠

2 1 2 1 2
1 1, 1 1,(1 ) 0

2(1 ) 1 2(1 ) 1A xx yy
c a c c a c

T G w c x w
ν

ν
ν ν ν ν

⎡ ⎤⎛ ⎞ ⎛ ⎞
− − Δ + + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟− − − −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
(35) 

 
For the assumed displacement field given by Eq. (30) the result of Eqs. (31) and (35) becomes 

 

{
2

2 2 2 2 2 2 2 3
1 24 4 0 0

2 2 2 2 2 2 2
1 1 2
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π π π
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+ − +

+ − + + +
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(36) 

 
After carrying out the integration, one would get 
 

2 2. ( / )AT H mb a n⎡ ⎤Δ = +⎣ ⎦  (37) 
 
in which 
 

)2/34/)(~/~~(
)2/)(1(

3
2

2
21

2
2

2
1

33
1

2

121
2

2
caccaccacABC

Gcacb
H +++

⎩
⎨
⎧

−
++

=
ν

π  

        })2/(
)(

)(~/~~6 2
2
1

3
1222222

222222
2 )( ccac

anbm

anbmba
ABC +

+
+

−+
π

ν  

 
(38) 

 
where 
 

)1/(~
++= kEEA cmm ,  / (2 2)( 2)cmB E k k k= + + ,   

)]44/(1)2/(1)3/(1[12/~
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(39) 
 

 
The critical buckling load cr

ATΔ can be obtained for different values of nm,   such that it minimizes Eq. (37). 

Apparently, when minimization methods are used, the critical buckling load, cr
ATΔ , is obtained for m=n=1, thus 
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(40) 

 
when 01 =c , Eq. (40) represents the critical thermal buckling load, cr

Ai
TΔ of a FGM rectangular plate with constant 

thickness  hc =2 ,  i.e. 
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(41) 

 
The result given in Eq. (41) is exactly the same as the one obtained by Ref. [9]. 

Case B. Linear temperature change across the thickness 

For a functionally graded plate, the temperature change is not uniform. Usually, the temperature level is much 
higher at the ceramic side than that in the metal side of the plate. In this case, the temperature variation through the 
thickness is given by 
 

ξ
ξ

ΔΤ
= + +( ) ( )

2
B

mT z z T  (42) 

 
in which 
 

2
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T Tξ
=

=  
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TT =
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2
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B c mT T TΔ = −                                                

(43) 
 

 
where cT  and mT  denote the temperature level at the top (ceramic side) and the bottom (metal side) surfaces, 
respectively. The pre-buckling forces now can be obtained by solving the membrane form of equilibrium equations, 
i.e. Eq. (18) this gives 
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in which 
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(45) 
 

 
Substituting Eq. (44) into Eq. (27), buckling equation for this case of loading is obtained 
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(46) 

 
By following similar steps to that given in case A, the buckling load for case B is 
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when 01 =c , Eq. (47) is reduced to the critical buckling load cr

Bi
TΔ  of a FGM rectangular plate with constant 

thickness  hc =2 ,  which is 
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The result given in Eq. (48) is exactly the same as the one obtained by Ref. [9]. 

Case C. Buckling of FGRP under non-linear temperature change across the thickness 

In this section, the governing differential equation for the temperature distribute through the thickness is given by 
one-dimensional Fourier equation under steady state heat condition as 
 

d d( ) 0
d d

T
K z

z z
⎡ ⎤ =⎢ ⎥⎣ ⎦

 (49) 

 
where K(z) is the coefficient of thermal conduction. Similar to what was considered for the variation of the elastic 
modulus and coefficient of thermal expansion, here the coefficient of the heat conduction is also assumed to change 
according to a power law in terms of z as represented by Eq. (4c). By inserting Eq. (4c) into Eq. (49) one would get 
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(50) 

 
in which 
 

ξ
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2
2 +

=
z
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and boundary conditions across the plate thickness are 
 

1, == mTT c  
0, == mTT m  

 
(52) 

 
The solution of Eq. (50) can be obtained by means of polynomial series. Taking the first seven terms of the 

series, we have 
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in which iĈ  are constant coefficients to be evaluated. After substituting Eq. (53) into Eq. (50) imposing the 
boundary conditions and doing some mathematical manipulations, one can get  
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c c mT T TΔ = −  (55c) 

 
The pre-buckling resultants loads for this case can be obtained by solving the membrane form of equilibrium 

equations i.e., (Eq. (18)) which yields to 
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(56) 

 
In the next step, we substitute T(z) in Eqs. (16) and calculate Θ  as 
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Substituting Eq. (56) into Eq. (27), the buckling equation for this case of loading is obtained. By performing an 

analysis similar to that given for the case A, the thermal critical buckling load, cr
CTΔ , for case C is determined to be 
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in which 
 

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Thermal Stability of Thin Rectangular Plates with Variable Thickness …                   183  

 

© 2009 IAU, Arak Branch 

]})15)(27/()14)(2

6/()13)(25/()24)(12/(

)1)(23/()22/(1[])15)(26/(

)14)(25/()13)(24/()12)(23/(

)1)(22/()2/(1)[(])1

5)(25/()14)(24/()23)(13/(

)12)(22/()1)(2/(2/1[{ˆ/1

554

43322

554

4332

25

54433

22
03

mcmm

cmmcmmcmm

cmcmcmmcmm

cmmcmm

cmmcmmcmcmmm

cmmcmmcm

mcmmcmmm

KkkKKk

kKKkkKKkkKk

kkKkEKkkKK

kkKKkkKKkk

KKkkKkEEK

kkKKkkKKkkK

KkkKKkkKECG

++−+

++++−+++

++−++++−

+++++−++

+++−++++

+−+++++

−+++++−=

α

αα

α

  
(59) 

 
when 01 =c , Eq. (58) will reduced to the critical buckling load cr

Ci
TΔ of a FGM rectangular plate with constant 

thickness  hc =2 ,  which is 
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The result given in Eq. (60) is exactly the same as the one obtained by Ref. [9]. 

6    RESULTS AND DISCUSSIONS 

 In this paper, the pre-buckling and critical thermal buckling loads of a thin rectangular FGM plate with variable 
thickness are obtained. Thickness variation follows simultaneously with two different types of linear changes both in 
x and y directions, respectively. In order to conduct further calculations, a functionally graded material consisting of 
aluminum and alumina is considered in which the Young’s modulus, conductivity, and the coefficient of thermal 
expansion, are: for the aluminum, 70 GPamE = , 204 W / mKmK =  , 6 o23 10  (1/ C)mα

−= ×  and for the alumina, 

380 GpacE = , 10.4 W / mKcK = , 6 o7.4 10  (1/ C)cα
−= ×  and  3.0== cm νν  for both. The critical temperature 

change crTΔ versus the aspect ratio b/a, 1c , and volume fraction exponent k  for two types of linear change of 
thickness at yx,  directions and three types of thermal loadings are shown in Figs. 2-13. To begin with, we start with 

the variation of the critical temperature difference cr
ATΔ  of FGRP under uniform temperature rise vs. different 

geometric parameter (b/a), for different volume fraction exponent. The variations are plotted in Figs. 2-5.  
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.2 
Variation of buckling critical temperature gradient vs. b/a for 
different FGRP with linear thickness change in x direction 
under uniform temperature rise (c1, c2 =const.). 

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


184                   M. Pouladvand 
 

© 2009 IAU, Arak Branch 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 
Variation of buckling critical temperature gradient vs. 
b/a for different FGRP with linear thickness change in y 
direction under uniform temperature rise (c1, c2 =const.). 

 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 
Variation of buckling critical temperature gradient vs. c1 
for different FGRP with linear thickness change in both x 
and y directions and under uniform temperature rise  
(b/a =1, c2 =const.). 

 
By comparing the values of the critical temperature differences cr

ATΔ calculated with using linear change in the 
plate thickness at the x direction are lower than y direction. For the plate of FGM material (k>0), the critical 
temperature difference of the buckling for thickness variation in the y-direction is higher than of x-direction. 
Therefore, the plate strength against buckling with respect to all kinds of thermal loads is higher in y-direction when 
the plate has a variable thickness. Fig. 4 illustrates the variation of the buckling critical temperature gradient of 
different FGRP versus thickness variation parameter c1 for the linear change in the plate thickness in both x and y 
directions subjected to uniform temperature rise when b/a =1 and c2 = constant. Notice that cr

ATΔ  has a shallow 
increase specially for 0≥k . Moreover, k=0 represents a fully ceramic plate. Fig. 5 displays the variation of the 
buckling critical temperature gradient, cr

ATΔ  vs. the material index k for a FGRP with linear thickness change in 
both x and y directions under uniform temperature rise when b/a =1, c2 =const. From Fig. 5 we can see that unlike 
the former case, the critical temperature difference demonstrates a decreasing trend with increasing gradient index k. 
It is evident that  cr

ATΔ  changes very slowly when the material gradient index k is greater than 1. Moreover, again 
k=0 represents a fully ceramic plate. In Figs. 6-9 the graphs of buckling critical temperature gradient of different 
FGRP’s under linear temperature change across the thickness vs. different types of geometric parameter and volume 
fraction exponent k, are plotted. Fig. 9 demonstrates the variation of buckling critical temperature cr

BTΔ  vs. the 
material graded index k. From Fig. 9 we can see that unlike the former cases, the critical temperature difference 
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demonstrates a decreasing trend with increasing gradient index. It is evident that cr
BTΔ changes very slowly or 

constant when the material gradient k is greater than 10. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
Variation of the buckling critical temperature gradient vs. 
material index k for different FGRP with linear thickness 
change in both x and y directions under uniform 
temperature rise (b/a =1, c2 =const.). 

   

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 
Variation of the buckling critical temperature gradient vs. 
b/a for different FGRP with linear thickness change in x 
direction under linear temperature change across the 
thickness (c1, c2 =const.). 

  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 
Variation of the buckling critical temperature gradient vs. 
b/a for different FGRP with linear thickness change in y 
direction under linear temperature change across the 
thickness (c1, c2 =const.). 
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Fig. 8 
Variation of the buckling critical temperature gradient vs. 
c1 for different FGRP with linear thickness change in x 
and y directions under linear temperature change across 
the thickness (b/a=1, c2 =const.). 

   

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 
Variation of the buckling critical temperature gradient vs. 
material index k for different FGRP with linear thickness 
change in both x and y directions under linear 
temperature across thickness (b/a =1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 
Variation of the buckling critical temperature gradient vs. 
b/a for different FGRP with linear thickness change in x 
direction under non-linear temperature rise across the 
thickness (c1, c2 =const.). 

 
In Figs. 10-13 the graphs of buckling critical temperature gradient of FGRP under non-linear temperature change 

across the thickness versus two types of different geometric parameter and volume fraction exponent k, are plotted. 
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Fig. 11 
Variation of the buckling critical temperature gradient vs. 
b/a for different FGRP with linear thickness change in y 
direction under non-linear temperature rise across the 
thickness (c1, c2 =const.). 

   

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 
Variation of the buckling critical temperature gradient vs. 
c1 for different FGRP with linear thickness change in x 
and y directions under non-linear temperature change 
across the thickness (b/a =1, c2 =const.). 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 
Variation of the buckling critical temperature gradient vs. 
material index k for different FGRP with linear thickness 
change in both x and y directions under non-linear 
temperature across thickness (b/a =1). 

 
In Fig. 13 variation of the buckling critical temperature gradient vs. material index k for different FGRP with 

linear thickness change in both x and y directions under non-linear temperature across thickness when b/a =1 is 
plotted. As it is seen in this figure, the critical temperature gradient has the highest variation for the range of 0<k<10 
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and for k values greater than 10 it flattens and reaches to a steady state condition. In an overview of all above cases, 
one can say that the buckling critical temperature gradient of a homogeneous ceramic plate (k=0), is higher than the 
FGM plate. This result is justifiable, because the coefficient of the thermal expansion of ceramic plate is lower than 
the FGM plate. Referred to Figs. 10-11 it can be said that the difference between variation of buckling critical 
temperature gradient of the homogeneous ceramic plate (k=0) and the FGM plate (k>0) is not significantly high but 
rather small. Contrary to this, on the other types of loadings the difference is much higher; therefore, this type of 
loading results in a more acceptable thermal stress distribution in the plate. In Figs. 2-13, it is found that the critical 
temperature difference of FGRP is higher than that of the fully metal plate but lower than that of the fully ceramics 
plate. In addition, the critical temperature change decreases as volume fraction exponent k is increased. In all cases, 
the critical temperature difference increases, when the geometric parameter b/a is increased.  

6    CONCLUSIONS 

In the present paper, equilibrium and stability equations for a simply supported rectangular functionally graded plate 
with its thickness varying along both the x and y axes as a linear function, under thermal loading are obtained 
according to the classical plate theory. The buckling critical temperature gradient for three different types of thermal 
loadings is derived using Galerkin method. From the obtained results, primarily one can conclude that the thickness 
change causes the reinforcement or reduction of the load-carrying capacity of plate structure. So, this effect should 
be taken into account in the engineering design of plate structures. Moreover, based on the analysis of numerical 
results, the following conclusions are reached: 
1. The critical buckling temperature difference crTΔ for FGRP are generally lower than the corresponding values 

for homogeneous ceramic plate (k=0). 
2. The critical buckling temperature difference crTΔ for a FGRP will increase as ab / and 1c increase. 
3. The critical buckling temperature difference , ,

cr
A B CTΔ for a FGRP is decreasing the volume fraction exponent k 

increases. 
4. The critical buckling temperature difference crTΔ  for FGRP with a linear thickness change in x direction is 

lower than the one for the plate with a linear thickness change in y direction. 
5. The critical buckling temperature difference crTΔ increases steadily as c1 increases. This indicates that no 

sudden variation can occur on the critical buckling load under this condition hence, it can be regarded as an 
advantage. 

6. The difference between variation buckling critical temperature gradient of the homogeneous ceramic plate (k=0) 
and the FGM plate (k>0) is not significantly high but rather small. Contrary to this, on the other types of loadings 
the difference is much higher; therefore, this type of loading results in a more acceptable thermal stress 
distribution in the plate. 

7. For the nonlinear type of loading in z-direction, the plate experiences a thermal stress distribution which is lower 
than the one induced by two other linear types. 
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