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 ABSTRACT 

 The present investigation deals with the propagation of waves in a micropolar transversely 
isotropic layer. Secular equations for symmetric and skew-symmetric modes of wave propagation 
in completely separate terms are derived. The amplitudes of displacements and microrotation were 
also obtained. Finally, the numerical solution was carried out for aluminium epoxy material and 
the dispersion curves. Amplitudes of displacements and microrotation for symmetric and skew-
symmetric wave modes are presented to evince the effect of anisotropy. Some particular cases are 
also deduced. 
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1    INTRODUCTION 

LASSICAL mechanics deals with the basic assumption that the effect of the microstructure of a material is not 
essential for describing mechanical behavior. Such an approximation has been shown in many well-known 

cases. Often, however, discrepancies between the classical theory and experiments are observed, indicating that the 
microstructure might be important. For example, discrepancies have been found in the stress concentrations in the 
areas of holes, notches and cracks; elastic vibrations characterized by a high frequency and small wavelengths, 
particularly in granular composites consisting of stiff inclusions embedded in a weaker matrix, fibers or grains; and 
the mechanical behavior of complex fluids such as liquid crystals, polymeric suspensions, and animal blood. In 
general, granular composites, for example porous materials, are widely used in the area of passive noise control as 
sound absorbers and the effect of acoustical waves characterized by high frequencies and small wavelengths become 
significant. To explain the fundamental departure of microcontinuum theories from the classical continuum theories, 
continuum model embedded with microstructures to describe the microscopic motion or a non local model to 
describe the long range material interaction is developed. This theory extends the application of the continuum 
model to microscopic space and short-time scales. Micromorphic theory [1, 2] treats a material body as a continuous 
collection of a large number of deformable particles, with each particle possessing finite size and inner structure. 
Using assumptions such as infinitesimal deformation and slow motion, Micromorphic theory can be reduced to 
Mindlin’s Microstructure theory [3]. When the microstructure of the material is considered rigid, it becomes the 
Micropolar theory [4]. Since, Eringen’s micropolar takes into account the intrinsic rotation and predict the behavior 
of material with inner structure, this theory is more appropriate for geological materials like rocks and soils. 
Different researchers had discussed different type of problems in transversely isotropic elastic material. Abubakar 
[5] discussed free vibrations of a transversely isotropic plate.  Keck et al. [6] derived the frequency equation for the 
propagation of train of non-torsional axisymmetric harmonic wave in infinitely long shells, made of three concentric 
cylinders of different transversely isotropic materials. In 1974, Shuvalov et al. [7] described long wavelength onset 
of the fundamental branches for a free anisotropic plate with arbitrary through plate variation of material properties. 
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Payton [8] in 1991 has studied wave propagation in a restricted transversely isotropic elastic solid whose slowness 
surface contains conical points. However, no attempt has been made to study the wave propagation in micropolar 
transversely isotropic medium. 

The aim of the present study is to enhance our knowledge about the propagation of waves in a micropolar 
transversely isotopic layer. This study has many applications in various fields of science and technology, namely, 
atomic physics, industrial engineering, thermal power plants, submarine structures, pressure vessel, aerospace, 
chemical pipes and metallurgy. After developing the solution, frequency equations connecting the phase velocity 
with wave number, for symmetric and skew-symmetric wave modes are derived. The amplitude ratios of 
displacements and microrotation are also obtained. The dispersion curves, attenuation coefficients, amplitude ratio 
of displacements and microrotation for symmetric and skew-symmetric waves are presented and illustrated 
graphically, to evince the effect of anisotropy. 

2    BASIC EQUATIONS 

Following Eringen [9], the constitutive relations and balance laws in general micropolar anisotropic medium 
possessing center of symmetry, in the absence of body forces and body couples, are given by 

2.1 Constitutive relations 

ij ijkl kl ijkl klt A E G Ψ= +
 

ij ijkl kl ijkl klm G E B Ψ= +
 

(1a)
 

 
The deformation and wryness tensor are defined by 

 
, ,,ji i j ijk k ij i jE u ε ϕ ϕΨ= + =  (1b) 

2.2 Balance laws 

,ij j it uρ= &&
 

,ik i ijk ij km t jε ρ ϕ+ = &&
 

(2)
 

 
where ijt  and ijm  are respectively, the stress tensor and couple stress tensor, ρ  is bulk mass density, iu  and iϕ  are 

respectively the components of displacement vector and microrotation vector. , ,ijkl ijkl ijklA G B are characteristic 
constants of material following the symmetry properties given by Eringen [2].  

3    PROBLEM FORMULATION AND SOLUTION 

We have used appropriate transformations, following Slaughter [9], on the set of Eqs. (1) to derive equations for 
micropolar transversely isotopic medium and restricted our analysis to the two dimensional problem. In the present 
paper, we consider an infinite layer with traction free surfaces at 3 2x H=±  (layer of thickness 2H), which consists 
of homogeneous, micropolar transversely isotropic material. We take the origin of the coordinate system 

1 2 3( , , )x x x on the middle surface of the layer. The 1 3x x−  plane is chosen to coincide with the middle surface and 

3x  axis normal to it along the thickness. For the two-dimensional problem, we assume the components of the 
displacement and microrotation vector of the form 
 

1 3 2( ,0, ), (0, ,0)u u u ϕ ϕ= =
rr

 (3)
 
and assume that the solutions are explicitly independent of 2x  i.e. 2/ 0x∂ ∂ = . Thus the field equations reduce to 
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22 2 2

31 1 2 1
11 55 13 56 12 2 2

1 3 31 3
( )

uu u u
A A A A K

x x xx x t

ϕ
ρ

∂∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂∂ ∂ ∂
 (4)
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u u uu

A A A A K
x x xx x t

ϕ
ρ

∂ ∂ ∂∂ ∂
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∂ ∂ ∂∂ ∂ ∂
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u u
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x xx x t

ϕ ϕ ϕ
ρ

∂ ∂ ∂ ∂ ∂
+ − + =

∂ ∂∂ ∂ ∂
 (6)

 

31
33 11 33

1 3

uu
t A A

x x

∂∂
= +

∂ ∂
 (7) 

3 1
31 65 1 2 55

1 3

u u
t A K A

x x
ϕ

∂ ∂
= − +

∂ ∂
 (8)

2
32 66

3
m B

x

ϕ∂
=

∂
 (9) 

 
where 1 56 55 ,K A A= −  2 66 56 ,K A A= −  and we have used the notations 11 1,→  33 3,→  12 7,→  13 6,→  and 
23 5,→ for the material constants. For further considerations, it is convenient to introduce the dimensionless 
variables defined by 
 

*

1 3 1 3
1

( ', ') ( , ),x x x x
c

ω
=

  

*

1 3 1 3
1

( ', ') ( , ),u u u u
c

ω
=   ,

55

'
A
t

t ij
ij =

  

1'
*

56
,ij

ij

m c
m

B ω
=

  

' 2 55
2

1
,

A

K

ϕ
ϕ =  

*' ,t tω=   
*2 ,X

j
ω

ρ
=   2 55

1
A

c
ρ

=  
(10) 

 
where  2 1.X K K= −  

4    BOUNDARY CONDITION 

The boundaries of the layer are assumed to be stress free. Therefore, we consider the dimensionless boundary 
conditions at 3x H=± as:  
 

33 31 320,   0,   0t t m= = =  (11) 

5    NORMAL MODE ANALYSIS AND SOLUTION OF THE PROBLEM 

We assume the solution for 1 3 2, ,u u ϕ
 
 representing propagating waves in the 1 3x x−  plane of the form

  
1 3( )

1 3 2 3 2 1( , , ) (1, , ) i x mx ctu u u u e ξϕ ϕ + −= (12)

 
where ξ  is the wave number, cω ξ=  is the angular frequency and c  is the phase velocity of the wave, m  is the 
unknown parameter which signifies the penetration depth of the wave, 3 2,u ϕ are respectively, the amplitude ratios 
of the displacement 3u  and microrotation 2ϕ  to that of the displacement 1.u  With the help of Eqs. (10) and (12), 
field Eqs. (4)-(6) reduced to (after suppressing primes)  
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1 3( )2 2
1 1 2 3 2 2 1( ) ( ) ( 1) 0i x mx ctm c d m d d u i m d u e ξξ ϕ + −⎡ ⎤− + − − + + − =⎢ ⎥⎣ ⎦  

1 3( )2 2 2 2
1 2 3 4 3 2 3 2 4 2 1( ) ( ) ( 1)( ) 0i x mx ctm d d m d d c u i d d d d u e ξξ ξ ξ ϕ + −⎡ ⎤− + + − + + − − =⎢ ⎥⎣ ⎦  

1 3( )2 2 27 3 2 4
7 3 5 6 8 2 1

4 2

( )
( ) 0

( 1)
i x mx cti d d d d

i m d u m d c d d u e
d d

ξξ
ξ ξ ϕ + −
⎡ ⎤− ⎡ ⎤⎢ ⎥+ + − − + =⎢ ⎥⎢ ⎥⎣ ⎦−⎣ ⎦

 

(13) 

 
where  
 

1 11 55/d A A= , 2 56 55/d A A= , 3 66 55/d A A= , 4 55 33/d A A= , 5 77 66/d B B= , 6 55 66/d A j B= , 
2 *2

7 55 1 66/d A c B ω= ,      8 1 55/d K A= ,       9 13 55/d A A=  
 

The condition for the non trivial solution of system of Eq. (13), yields a cubic equation in 2m  as 
 

6 4 2 0Am Bm Cm D+ + + =  (14)
 
where 
 

2 2 2 2 2 2
3 5 1 1 2 6 4 8 7 2,   ( ) ( ) ( 1) ,A B d d d c d d d d d d dξ ξ ω⎡ ⎤=− =− + + − − + + + − + −⎢ ⎥⎣ ⎦

[ ]2 2 2 2
2 7 1 4 3 1 1 3 1 1 2 4 1 2 3 2 4 5 2 3( ) ( )( ) ( ) ( )( ) ( 1)C a d a c d d c d a a a d d a d d d d d a d aξ= − − − − − − + − + − + −

2 2 2
1 4 3 1 7 2 1( )( ) ( ),D c d c d d a d a c d= − − − −   

2 2
1 6 5 8 ,a d d dω ξ= − −   

2
2 3 2 4 4( ) / ,a d d d d= −  

2
3 3 4 ,a d c d= −   4 7 2( 1),a d d= −   5 4 4( 1) / ,a d d= +   6 2 ,a a=   7 1 2 2( ) / ( 1)a d d d= − −  

 
The roots of this equation give three values of 2 ,m and hence of 2c . Three positive values of c  will be the 

velocities of propagation of three possible waves viz quasi-longitudinal displacement (QLD) wave, transverse 
displacement (QCTD) wave and quasi-coupled quasi-coupled transverse microrotational (QCTM) wave. This fact is 
verified, when we solve Eq. (14), using MATLAB programming. For isotropic linear micropolar elastic solid i.e., if 
we put 
 

11 33 2 ,A A Kλ μ= = + + 55 66 ,A A Kμ= = + 13 ,A λ= 56 ,A μ= 1 2 / 2,K K K X=− = = 66 77B B γ= =  
 
In Eq. (14), the velocity 1c  corresponds to longitudinal displacement wave and the velocities 2c  and 3c  

correspond to two coupled waves viz transverse microrotational and  transverse displacement wave as obtained by 
Parfitt and Eringen [10]. So Eq. (14) leads to the following solution for displacements and microrotation as: 
 

1

3
( )

1 3 2 3 3
1

( , , ) cos  ( ) sin  ( ) i x ct
i i i i

i

u u A m x B m x e ξϕ ξ ξ −

=

= +∑  (15) 

 
where 
 

2 2 2
1 1 2 4 3 2 4 7 7 6 3

4 2 2 2 4 2 2 2
1 3 3 1 6 1 3 3 1 6

[( )( ) ( )] ( )
,

( ) ( )
i i i i

i i
i i i i

m m a d d a d d d im d a a m a
r t

m m a a a a a m m a a a a a

ξ
ξ ξ ξ ξ

− + − − − −
= =

− − − − − − − −  (16) 

6    DERIVATION OF SECULAR EQUATION 

Substituting the values of 1 3,u u and 2ϕ  in the boundary conditions (11) at the surfaces H± of the layer, 
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3

1 2 1 2
1

[( ) ( ) ] 0i i i i i i i i
i

g c g s A g s g c B
=

− + + =∑  
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1 2 1 2
1

[( ) ( ) ] 0i i i i i i i i

i

g c g s A g s g c B
=

+ + − + =∑  

3

3 4 3 4
1

[( ) ( ) ] 0i i i i i i i i i i

i

g c g s A g s g c B
=

− + + =∑  

3

3 4 3 4
1

[( ) ( ) ] 0i i i i i i i i i i
i

g c g s A g s g c B
=

+ + − + =∑  

3

5 5
1

[ ] 0i i i i i i

i

g s A g c B
=

− + =∑  

3

5 5
1

[ ] 0i i i i i i

i

g s A g c B
=

+ =∑  

(17) 

 
where 
 

3sin  ( )i is m xξ= , 3cos  ( )i ic m xξ= , 1 1g d iξ= , 

2 4/ ,i i ig m r dξ=  2
3 2 2( 1) ,i i ig i d r d tξ= + −  4i ig mξ=  5 2( 1) ,i i ig m d tξ= −    i=1, 2, 3 

 
In order that the six boundary conditions given by Eq. (11) be satisfied simultaneously, the determinant of the 

coefficients of iA  and iB  (i=1, 2, 3) in Eqs. (17) vanishes. This gives an equation for the frequency of the layer 
oscillations. The frequency equation for the waves in the present case, after applying lengthy algebraic reductions 
and manipulations of the determinant leads to the following secular equations: 
 

1 1 51 33 32 2 1 52 31 33 3 1 53 32 31[ ] ( ) [ ] ( ) [ ] ( ) 0T g g g g T g g g g T g g g g± ± ±− + − + − =  (18) 
 

These are the frequency equations which correspond to the symmetric and skew symmetric mode with respect to 
the medial plane 3 0.x =  Here, the superscript '+' corresponds to skew symmetric and '-' refers to symmetric modes 
and 3T an  ( )i iT m xξ= , i=1, 2, 3. 

6.1 Amplitudes of displacements and microrotation 

In this section the amplitudes of displacement components and microrotation for symmetric and skew symmetric 
modes of plane waves can be obtained as: 
 

1

3
( )

1 1 3 3
1

[( ) , ( ) ] [ cos( ), sin( )] i x ct
sym asym i i i i

i

u u A m x B m x e ξξ ξ −

=

=∑  

1

3
( )

3 3 3 3
1

[( ) , ( ) ] [ sin( ), cos( )] i x ct
sym asym i i i i i

i

u u r A m x B m x e ξξ ξ −

=

=∑  

1

3
( )

2 2 3 3
1

[( ) , ( ) ] [ sin( ), cos( )] i x ct
sym asym i i i i i

i

t A m x B m x e ξϕ ϕ ξ ξ −

=

=∑  

(19) 
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6.2 Specific loss 

The specific loss is the ratio of energy ( )WΔ  dissipated in taking a specimen through a stress cycle, to the elastic 
energy ( )W stored in the specimen when the strain is maximum. Kolsky [11] shows that specific loss ( / )W WΔ  is, 

ctimes the absolute value of the ratio of the imaginary part of wave number to the real part of wave number i.e. 
 

Im( )4
Re( )

W k

W k
πΔ

=  (20)

 
He noted that specific loss is the most direct method of defining internal friction for a material.

 

6.3 Particular case 

Taking 
        

11 33 2 ,A A Kλ μ= = + + 55 66 ,A A Kμ= = + 13 ,A λ= 56 ,A μ= 1 2 / 2,K K K X=− = = 66 77B B γ= =  
 

We obtain the corresponding expressions for the micropolar isotropic medium. These results are tally with those 
obtained in Brulin [12], after changing the dimensionless quantities into physical quantities.  

In the limiting case if we neglect the effect of micropolarity, then we will recover the results of classical theory 
of elasticity for transversely isotropic elastic solid which are similar to those obtained in Abubakar [5] by changing 
dimensionless quantities into the physical quantities. 

By letting ξ →∞ ,  the  secular equations reduced to, 
  

2
2

2
3

1
1

b
c

m

+
=

+
 , 

* * 2
1 1 2 2

4
, ( 1) ,i i

i i i i
m r

a d i c d ir m d s
d

ξ
ξ ξ ξ= − = − + −   

* * * * * * * *
1 1 2 3 3 2 2 2 3 1 1 3[ ( ) ( )]b m s a c a c m s a c a c=− − + −  

7    NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate theoretical results obtained in the preceding sections, we now present some numerical results 
taking 
 

10 2 10 2 10 2 10 2
11 33 55 6613.8 10 N m , 14.43 10 N m , 3.7 10 N m , 4.2 10 N m ,A A A A− − − −= × = × = × = ×

10 2 10 2 9 9
13 56 77 668.85 10 N m , 2.977 10 N m , 3.71 10 N, 3.9 10 NA A B B− −= × = × = × = ×  

 
For comparison with a micropolar isotropic solid, following Gauthier [13], we take the following values of the 

relevant parameters for the case of aluminium epoxy composite as, 
 

3 3 9 2 10 2 9 22.19 10 Kg m , 7.59 10 N m , 1.89 10 N m , 1.49 10 N mKρ λ μ− − − −= × = × = × = ×  
9 2 22.63 10 N, 0.196 10 mjγ −= × = ×  

 
All numerical computations are carried out by taking 1.H =  Here, solid line with and without center symbol 

represent the variations corresponding to micropolar transversely isotropic solid (MTIS) and, for comparison, 
broken lines with and without center symbol represent the variations corresponding to micropolar isotropic solid 
(MIS). The lines shown in the figures without center symbol represent the variations corresponding to initial mode 
( 1)n = of wave propagation, lines with center symbol ( o )− − represent the variations corresponding to second mode 
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( 2)n = and lines with center symbol ( )−Δ− represent the variations corresponding to final mode ( 3)n =  of wave 
propagation. Figs. 1 and 4 show the variations of phase velocity with respect to R  i.e. real part of wave number for 
symmetric and skew symmetric modes, respectively. It is evident from these figures that for the first mode, the 
values of phase velocity starts with slight initial increase and then attain a constant value, in both the cases of MTIS 
and MIS. However, for the higher modes (n=2, 3) its value shows the opposite behavior at initial stage and then 
represents the similar pattern.  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 
Variation of phase velocity with wave number for symmetric mode. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 
Variation of attenuation coefficient with wave number for symmetric 
mode. 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 
Variation of specific loss with wave number for symmetric mode. 
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Fig. 4 
Variation of phase velocity with wave number for skew symmetric 
mode. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
Variation of attenuation coefficient with wave number for skew 
symmetric mode. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 
Variation of specific loss with wave number for skew symmetric mode. 

 
 

 

The variation of attenuation coefficient with respect to wave number for symmetric and skew symmetric modes 
can be depicted from Figs 2 and 5, respectively. It is seen from these figures that for initial mode the value of 
attenuation coefficient slowly decreases to attain a constant value for MTIS and MIS. As we move to higher mode 
of wave propagation, its value initially oscillates and then decreases for the case of MTIS. However for MIS and 
final mode of wave propagation, its value sharply increases and then sharply decreases to attain a peak value within 
the interval (0, 1) and then becomes constant. For skew symmetric mode, the variation pattern of attenuation 
coefficient is similar to that of MI for highest mode, with difference in their amplitude and for the lower modes its 
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value oscillates finitely and becomes constant. The peak value of attenuation coefficient for symmetric mode is 
higher for third mode of wave propagation but for skew symmetric mode its value is higher for second mode of 
wave propagation. It can be illustrated from Figs. 3 and 6 that the value of specific loss for initial mode of wave 
propagation decreases with increase in wave number and tends to attain a constant value, but for the higher modes 
its value oscillates finitely and becomes constant with increase in wave number. However, for the skew symmetric 
mode, the trend of variation of specific loss is similar to that of attenuation coefficient. For the range 6R > , all the 
curves approach to vanishingly small values.  

Figs. 7-9 indicate the trend of variations of amplitudes of normal displacement, tangential displacement and 
microrotation with respect to thickness H of the layer. It is depicted from figures 7 and 8 that the amplitude of 
normal and tangential displacement oscillates finitely within the interval (0, 10) for both symmetric and skew 
symmetric mode of wave propagation. The amplitudes of oscillation for MTIS are higher as compared to those of 
MIS. From figure 9, it can be seen that the value of amplitude of microrotation initially decreases and then becomes 
constant for symmetric mode, while the reverse behavior is observed for skew symmetric mode, as far as the case of 
MTIS is considered. But for MIS, its value initially increases and then decreases sharply with increase in thickness 
H of the layer, for the symmetric mode, and for the skew symmetric mode its value initially decreases and then 
increases over the interval (8, 10). Figs. 10-12 show the variations of phase velocity, attenuation coefficient and 
specific loss as obtained for the case of Rayleigh wave. In these figures the solid line corresponds to the case of 
micropolar transversely isotropic half-space, while the dotted line corresponds to the case of micropolar isotropic 
half-space. 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 
Variation of amplitude ratio of tangential displacement with thickness H 
of the layer. 

  
  
  

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 
Variation of amplitude of normal displacement with thickness H of the 
layer. 
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Fig. 9 
Variation of amplitude of microrotation with thickness H of the layer. 

 
Fig. 10 
Variation of phase velocity with wave number. 

  

 
Fig. 11 
Variation of attenuation coefficient with wave number. 

  

 
Fig. 12 
Variation of specific loss with wave number. 
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8    CONCLUSIONS 

The propagation of waves in an infinite layer of transversely isotropic medium after deriving the secular equation is 
investigated. The phase velocity of higher modes of wave propagation for symmetric and antisymmetric modes 
attain quite large values at vanishing wave number, which sharply flattens out to become steady with increasing 
wave number. The value of attenuation coefficient initially increases and then tends to zero at higher values of wave 
number. An appreciable of anisotropy is evinced from all the curves. The amplitudes of displacement and specific 
loss are also computed from the relative expressions and are shown graphically for both symmetric and 
antisymmetric modes of wave propagation. The numerically computed results are found to be in close agreement 
with the theoretical results. 
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