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ABSTRACT
In this paper the classic coupled thermoporoelasticity model of hollow and solid cylinders under
radial symmetric loading condition (r, 7) is considered. A full analytical method is used and an
exact unique solution of the classic coupled equations is presented. The thermal and pressure
boundary conditions, the body force, the heat source, and the injected volume rate per unit volume
of a distribute water source are considered in the most general forms, and no limiting assumption
is used. This generality allows simulation of various applicable problems.
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1 INTRODUCTION

OUPLED thermal and poro-mechanical processes play an important role in a number of problems of interest in

the geomechanics such as stability of boreholes and permeability enhancement in geothermal reservoirs. A
thermoporoelastic approach combines the theory of heat conduction with poroelastic constitutive equations and
coupling the temperature field with the stresses and pore pressure.

There are a limited numbers of papers that present the closed-form or analytical solution for the coupled
thermoporoelasticity problems. Bai [1] invastigated the response of saturated porous media subjected to local
thermal loading on the surface of semi-infinite space. He used the numerical integral methods for calculating the
unsteady temparature, pore pressure and displacement fields. This author also studied the fluctuation responses of
saturated porous media subjected to cyclic thermal loading [2]. In the mentioned paper, an analytical solution was
proposed by using the Laplace transform and the Gauss-Legendre method and Laplace transform inversion.
Droujinine [3] invatastigated dispersion and attenuation of body waves in a wide range of materials representing
realistic rock structures. He used the time-domain asymptotic ray theory to a new generalized coordinate-free wave
equation with an arbitrary tensor relaxation function. Bai and Li [4] found a solution for cylinderical cavety in
saturated thermoporoelastic medium by using Laplace transform and numerical Laplace transform inversion.

The number of papers that present the closed-form or analytical solution for the coupled thermoelasticity
problems is also limited. Hetnarski [5] found the solution of the coupled thermoelasticity in the form of a series
function. Hetnarski and Ignaczak presented a study of the one-dimensional thermoelastic waves produced by an
instantaneous plane source of heat in homogeneous isotropic infinite and semi-infinite bodies of the Green-Lindsay
theory type [6]. Also, these authors presented an analysis for laser-induced waves propagating in an absorbing
thermoelastic semi-space of the Green-Lindsay theory [7]. Georgiadis and Lykotrafitis obtained a three-dimensional
transient thermoelastic solution for Rayleigh-type disturbances propagating on the surface of a half-space [8].
Wagner [9] presented the fundamental matrix of a system of partial differential operators that governs the diffusion
of heat and the strains in elastic media. This method can be used to predict the temperature distribution and the
strains by an instantaneous point heat, point source of heat, or by a suddenly applied delta force.
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In the present work a full analytical method is used to obtain the response of the governing equations, therefore
an exact solution is presented. The method of solution is based on the Fourier’s expansion and eigenfunction
methods, which are traditional and routine methods in solving the partial differential equations. Since the
coefficients of equations are not functions of the time variable (#), an exponential form is considered for the general
solution matched with the physical wave properties of thermal and mechanical waves. For the particular solution,
that is the response to mechanical and thermal shocks, the eigenfunction method and Laplace transformation is used.

2 GOVERNING EQUATIONS

A hollow cylinder with inner and outer radius r; and r,, respectively, made of isotropic material subjected to radial-
symmetric mechanical, thermal, and pressure shocks is considered.

The classic theory of thermoporoelasticity for wave propagation is considered to allow coupling between
deformation, thermal energy and pressure fields and to describe the physical behavior of the elastic domain to
mechanical, thermal and pressure shock loads. Navier equation in terms of the displacement components is obtained
as [4]

", —I—lu,, —Lzu g (I+v)Q-2v) . —f (I+v)Y1-2v) T, — (1+v)Y1-2v) P (1+v)1-2v) F(r.0)
r r (1-v)E (1-v)E (1-v)E (1-v)E
M
Heat conduction equation in radial-symmetric direction with the mechanical coupling term is
1 T, . T T 1 1
T, +-T,—Z=T+Y—=p—p—u, +—u)=——0Q(r,t 2
r X i p X ( r ) X o(r,1) 2

According to Darcy’s law and continuity condition of seepage, the equation of mass conservation can be written
as

1 . ' oo,
P t=py—a, L py LT g v G iy = — LW r) 3)
r k r k

Pk k
where (,) denotes partial derivative, u is the displacement component in the radial direction, p is the pore
pressure, 0 is bulk mass density, o :1—?A is the Biot’s coefficient, C, =3(1—-2v,)E, is the coefficient of

volumetric compression of solid grains, with E; and v, being the elastic modulus and Poisson’s ratio of solid

grains and C =3(1—2v)E is the coefficient of volumetric compression of solid skeleton, with £ and v being the

aS

elastic modulus and Poisson’s ratio of the solid skeleton, 7, is initial reference temperature, f = is the thermal

expansion factor, ¢, is the coefficient of linear thermal expansion of the solid grains, ¥ =3(ne,, +(a —n)a,) and
a, =n(C, —C,)+aC; are coupling parameters, ¢, and C, are the coefficients of linear thermal expansion and
volumetric compression of pure water, n is the porosity, k is the hydraulic conductivity, y,, is the unit of pore

(A=n)pye; +np,c,,)
T,

o

water and Z = —3pa, is coupling parameter, p,, and p, are the densities of pore water and

solid grains and ¢, and ¢, are the heat capacities of pore water and solid grains and K is the coefficient of heat

conductivity. Here, F(r, 1), O(r, ) and W(r, t) are the body force, heat generation and the injected volume rate per
unit volume of a distribute water source, respectively. The mechanical, thermal, and pressure boundary conditions
are
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Chu(r, 1) + Cpou . (1;,1) + C3T(1;,1) + Cy p(r;,1) = £ (1)

Cou(r,,t) + Coou . (r,,1) + Co3T (1, ,1) + Coy p(r,,1) = f5(1)

C\T(r;,1)+ C, T, (1;,1) = f3(1)

CpT(r,,0) + Cyp T, (1, 1) = [f4(2)

Csip(r;,1) = f5(1)

Corp(r,,1) = fo (1) 4)

where C; are the mechanical, thermal and pressure coefficients, and by assigning different values for them,

different types of mechanical, thermal, and pressure boundary conditions may be obtained. These boundary
conditions include the displacement, strain, stress (for the first and second boundary conditions), specified
temperature, convection, heat flux condition (for the third and forth boundary conditions), and pressure (for the fifth
and sixth boundary conditions). fi(#) to fs(f) are arbitrary functions which show mechanical, thermal and pressure
shocks, respectively. The initial boundary conditions are assumed in the following general form

w(r,0)= f(r),  u,(r,0)=fy(r),  TE0)=fo(r),  p@,0)= fio(r) (5)
where f5(f) to fio(f) are arbitrary functions which show initial distributions of displacement, temperature and
pressure, respectively.

3 SOLUTION

The Egs. (1) to (3) constitute a system of non-homogeneous partial differential equations with non-constant
coefficients (functions of the radius only) has general and particular solutions.

3.1 General solution with homogeneous boundary conditions

Since the coefficients of Egs. (1) to (3) are independent of the time variable (f), an exponential function form in
terms of the time variable may be assumed for the general solution as

u(r,t) =[U(r)]e*
T(r,t) =[0(r)]e" (©6)
p(r,t) =[P(r)le”

Substituting Eq. (6) into homogeneous parts of Egs. (1) to (3), yields

U’ +1U'7%U +d,P' +d,0' +d; AU =0
r r
9"+%c9'+d4ic9+d5/1P+d61(U/+%U):O (7)

P” +lP’ +d; AP +dgA0 + dy A(U' +1U) =0
r r

Eqs. (7) constitute a system of ordinary differential equations, where the prime symbol () indicates
differentiation with respect to the radius variable () and d, to d, are constant parameters given in the Appendix A.

The first solutions of U, ,6, and P, are considered as
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Uy(r)=AJ,(Br)
6,(r)= B J,(pr)
R(r)=CJy(Br)

Substituting Eqs. (8) into Egs. (7) yields

{(—=B> + 2°d3)A, — d, BB, — d, BC, 1, (Br) =0
{AdgBA + AdB, + (=B + Ad5)C, }J o (r) =0
{Ady A, +(— B + Ad;)B, + AdgC 1y (Br) =0

Eq. (9) shows that U, ,6, and P, can be the solutions of Egs. (7), if and only if

—pP A, —dyf —df (4] o
Adgf3 Ad, — %+ Ads|{B, | =10
Adofp —p*+Ad, Ady GJ (0

The non-trivial solution of Egs. (10) is obtained by equating the determinant of this equation to zero as

—p*A%dydy + ¢ — B Ad, — B Ads + BPAPdsd, + Atdydyd, — 2Py B+ Ady Ry + Adyd B
—2dydsdy + APdgBPdydy + AdgBrdy — 2Py frdid, + Ady frdy — APdy frdyds + APdy Brdydy =0

346

®)

&)

(10)

(11)

Eq. (11) is the first characteristic equation. Thus, it is concluded that U, ,6, and P, satisfy the system of Egs.

(7) and they are the first solution of the system. The second solutions of U, ,8, and P, are considered as

U, (r) =[AyJ (Br) + Ayrd, (Br)]
0,(r) =[ByJo(Br)+ B;rJ (Sr)]
Py (r) =[CyJ o (Br) + Csrd  (Br)]

Substituting Eqgs. (12) to Egs. (7) yields
2
{7+ 2%d3) Ay = dy BBs — dy BC3rd o (Br) +{(F” — s A7) A, —EdﬁzAg +dy BB,y +dy fCy 1, (Br) = 0

{Adg A + AdyBy +(— B + Ads)C3}rJ  (Br) + {dgABA, + dyABy + (=B +dsA)Cy +2BC3 1o (r) =0
{Ady Ay + (=B + Ad;) By + AdyCy yrdy (Br) + {do ABA, + (= B +d; A)B, +dgAC, + 2 8B} (Br) =0

The expressions for U, ,6, and P, can be the solutions of Egs. (7), if and only if

2y —dyp -df |(a) (o
Adgf Ad, — 2+ Ads|{B; t =10
Adyp  —pBF+Ad, Ady Gj |0

2
(8% —dsAH)A, —Ed3/12A3 +d,BB, +d,C, =0

dg Ay +d,ABy + (—f° +dsA)Cy +25C5 =0
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dyABA; +(—pB* +d;A)By +dgAC, +28B; =0 (17)
The non-trivial solution of Egs. (14) is obtained by equating the determinant to zero as

—pPA%dyd, + ° — Brad, — prads + pPAPdsd, + Atdsd,dy — APy B4 AP dy prd, + Adyds P
= A dydsd; + 22dg fPdydy + Ads iy = 2 dg B dydy + Ado S dy — A2 do fdyds + APdy fPdydy = 0 (18)

Egs. (15) to (17) give the relations between A,,A;,B,,B;,C, and C;. They play as the balancing ratios that

make Eq. (12) to be the second solution of the system of Egs. (7). The third solution of the system of the ordinary
differential equations with non-constant coefficients (7) must be considered as

Us(r) = [AJ,(Br) + Asrd 5 (Br) + Agr T3 (Br)]
0(r) = [ByJo (Br) + BsrJ, (Br) + Bgr* J,(fr)] (19)
Py(r) =[CyJ o (Br)+Csrd (Br)+ Cer®J, (Br)]

Substituting Eq. (19) into Eq. (7) yields

{(—izds + ﬂz)Aé +d, B +d1ﬂC6}VZJ1 (Br)+ {(ﬂz - ds/ﬁtz )As +d, Bs +d, fCs _%szAé}”]o (Br)
2 @ 2 5 8 )
+1{(d;A" = B°)Ay — d,C, — d, BB, +Ed3fl As +Pd3/1 Ag}Jy(Br)=0
{=Ad fAs — Ad,Bs + (B — 2d5)Csr o (Br) +1ds ABA, +dyABy + (=B +ds2)Cy +2Cs} o (Br)
+{dsABAs + dyABs + B’ +dsA)Cs +2dgAAg +%d4/136 + (2,3+%d5/1)cs rd (Br)=0

{(—AdyBAg + (B> — Ady)Bs — AdyCe 31 J o (Br) + {dy AP A, +(— B> +dy A)B, + dgAC, + 2 BBs }J o (Br)

2 2
+{BdyAAs + (—B* +dy A)Bs + dy ACs + 2dgAAg + (28 +Ed7/‘t)B(, +Ed8/1c6}r11 (Br)=0 o0

The expressions for U, ,6; and P; can be the solutions of Egs. (7), if and only if
~pP A%y —dyp —df (A [0

Adp Ad, —B* +Ads|{Bs 1 =10 1)
Adyf  —pF+Ad, Ady Cs) (0

The non-trivial solution of Egs. (21) is obtained by equating the determinant of this equation to zero as

4
(B* —d3A*)As +d, BBs +d, fCs —EdyizAé =0

2 8
(d;A* — BHA, —d, fC, —d, B, +Zd3/12A5 +Fd3/12A6 =0
dsABA, +d,ABy + (=% +dsA)Cy +25Cs =0

2 2
dgABAs +dyABs +(—f* + dsA)Cs + 2dg A A, —i—EdMBé +2p +Ed5/1)C6 =0

doAfA, + (—f* +dyA)B, +dgACy +23Bs = 0 (22)
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2 2
BdyAAs + (— B2 +dy A)Bs + dgACs + 2dy A A, +(2,B+Ed7/1)36 +Ed8/w6 =0

—p*A%d,d; + B° — BrAd; — Brads + P Adsd, + Atdydyd, — APdy Y+ AP dy Brd, + A dyds B

(23)
—Adydsdy + 2P dg P dydy + AdgBid, — APdgfrddy + Ady i dy — APdy Brdyds + APdy frdidy =0

The characteristic Eq. (23) is the same as the characteristic Eqs. (11) and (18). This equality is interesting as it
prevents mathematical dilemma and complexity and a single value for the eigenvalue £ simultaneously satisfies

three characteristic Eqs. (11), (18), and (23). Eq. (22) gives the relation between A,, Ay, A¢,B,,Bs,Bs,C4,Cs and
Cs. They play as the balancing ratios that help Eq. (19) to be the third solution of the system of Eq. (7). Therefore,
the complete general solutions for the solid cylinder are

Ug("):Aljl(ﬂ”)JrA3[§1J1(ﬂ”)+"Jz(/77")]+A6[§211(ﬂ”)+C3rjz(ﬁr)+”2-]3(ﬂ”)]
gg("):A1§4J0(,3")+A3[§5%(ﬂ”)+§s”~’1(/””)]+A6[§7jo(ﬂr)+58rjl(ﬂr)+C9r212(/77")] 24
Pg(r):Alé’lOJo(ﬁr)+A3[§11J0(ﬂr)+é’lerl(ﬂr)]JrA6[§13J0(ﬂr)+4’14rJ1(/)’r)+§15r2J2(/)’r)]

and for hollow cylinder are

Us(r)= Aljl(ﬁr)‘f'A3[§1J1(ﬁ”)+”Jz(ﬂ”)]"‘A6[§2J1(ﬂ”)+§3rJz(ﬂV)+rZJ3(ﬁr)]
+AY, (Br)+ A6 Y, (Br) + 1Yo (B + A[S,Y, (Br) + £3rYa (Br)+ 7Yy ()]
6% (r)= Al@b’o(ﬂr)‘i‘A3[§5J0(ﬂ”)+ge”l(ﬂ”)]"‘A6[§7J0(ﬂ”)+§8”J1(ﬂ”)+§9”212(ﬁr)]
+ ALYy (Br) + A3 [SsY, (Br) + S oYy (Br)]+ Ag[S Yo (Br) + CerYi (Br) + Cor™Ys ()]
P(r)= A1§10Jo(ﬂ’”)+A3[4’11J0(ﬂ”)+glﬂ"l(ﬁ")]"‘A6[4’13J0(ﬂ’”)+414’"J1(ﬂ’")+§15’”2~]2(ﬂ’”)]
+ A 10Xy (Br) + A3 61X (Br) + Siar Vi (B + Ag[S13 Yo (Br) + C1ar Vi (Br) + §57° Yo (Br)] (25)

where & to {5 are ratios obtained from Eqs (21) to (22), (14) to (17) and (10) and are given in the Appendix A.

Substituting U® ,0% and P® in the homogeneous form of the boundary conditions (4), three linear algebraic
equations are obtained. They are coefficients depends on 4 and £ . Setting the determinant of the coefficients equal

to zero, the second characteristic equation is obtained. Simultaneous solution of this equation and Eq. (11), results
into infinite number of two eigenvalues S, and A4, . Therefore, U¢ ,0% and P® are rewritten as

Ug(”):Al[-]1(,b)")+§16[§1J1(ﬂ")+"12(,3")]+417[4211(,3V)+§3”Jz(ﬂ”)+”2-]3(ﬂ”)]]
gg("):A1[§4Jo(ﬂ")JFglé[gsjo(ﬂ”)JrQ”ﬁ(/””)]ﬂL417[§7J0(/3V)+§8”J1(/77”)+§9”2Jz(,3”)]] (26)
Pg("):Al[glo-lo(ﬂ”)+glé[glljo(ﬂr)+512"11(/77")]+4/17[4/13J0(/77")JF414”-]1(,3”)+§15r2]2(,3”)]]

where &, and (), are presented in the appendix. Let us show the functions in the brackets of Eqgs. (26) by
functions H,,H, and H, as

HO:Jl(ﬂr)+§16[g”1J1(ﬂr)+rJz(ﬁr)]+{17[§2J1(ﬁr)+cj3rJ2(ﬂr)—|—r2J3(ﬁr)
H, :4’410(ﬂ”)+glé[(s%(ﬂ’")"’(ﬁh(ﬁ”)]"‘4’17[§7J0(ﬂ”)+4’8”1(ﬂ”)+4’9"2]2(ﬂ") 27
H, :4/10-]0()8")"‘4/16[5:11]0(,3’")"'5:12”-]1(ﬂ”)]+4’17[4’13-]0(ﬂ’”)+4’14”J1(ﬂ")+§15"2~]2(ﬂ")

According to the Sturm-Liouville theorem, these functions are orthogonal with respect to the weight function
p(r) =r such as
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r, q 0 n=m
H H =
| sna,nra - o (28)
where ||H ( ,b’nr)" is norm of the H function and equals
1
l#.n = \f SR (| (29)

i

Due to the orthogonality of function H, every piece-wise continuous function, such as f{r), can be expanded in
terms of the function H (either H,, H, or H, ), and is called the H-Fourier series as

F)=> e,H(B,r) (30)

n=1

where e, equals

"H(ﬂ 7 f FOYH() rdr G31)
5

Using Egs. (6), (26), and (27) the displacement and temperature distributions due to the general solution become

NgE
-

us (r,t) = €™ S Ho (B,r)
n=l1 m=1
00 4
TEr0 = 4> Nppy e 1, (B,r) (32)
n=1 m=1
00 4
PED =D 1) My, e sHy (B,r)

Il
3
I

n

where N,,, and M,,, are ratios obtained by substituting Egs. (32) to Eq. (1) to (3). Using the initial conditions (5) and
with the help of Egs. (29), (30) and (31), four unknown constants are obtained.

3.2 Particular solution with non-homogeneous boundary conditions

The general solutions may be used as proper functions for guessing the particular solution adopted to the non-
homogeneous parts of the Egs. (1) to (3) and the non-homogeneous boundary conditions (4) as

W =S4

n=1

I o

n=l1

pr(r,t) = i{

n=I

Gy, ()T, (Bur) + Gy (1T 5 (Bnr) + Gy, (OF T3 (Bur) |+ 17 Gy, (1)}

G, (o (Brr) + G, (OrT, (Bar) + Gy, ()r2 Ty (Bnr) |+ 1 G, (1)} (33)

Go,, (1) o () + Gy, ()1 (Bar) + Gy, (D77 T 5 ( ﬂnr)] + 717Gy, (1)}
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For the solid cylinder, the second type of Bessel function Y is excluded. It is necessary and suitable to expand the

body force F(r, 1), heat source Q(r, ¢) and porosity function W(r, ¢) in H-Fourier expansion form as

Mg

F(rat) Fn(t)HO(/Bnr)

n=1

MR

O(r,1) = 0,(NH,(B,r) (34

n=1

P(r,) =Y B,()H,(B,r)

n=1

8

where F,(t) , Q,(¢) and P,(¢) are

1 r
F, = F(r, t)HO (ﬂnr)r dr
| (B0 ”f
0,(t)=——— | " O@r.0)H (B,r)r dr (35)
|4, (5 rlf'j;

RO =T ||f P Hy(B,r)r dr
V

Substituting Eq. (33) and (34) into the non-homogeneous form of Eqs. (1) into (3) yield

Gmwhbmm—mm%%—%@mq4%@@@%—%@@@4%@@Qﬂﬂmwﬁ

1 1 1
—d;5Gg (G —4d,5G5 (1), E + Gy ()d, B — d4Gy, (1)C, —16d,,Gy, (1)C, E —dy5dy FC, —4d,5d, FC, E =0

(36a)
~G,(t)B* + G\ (1)d, +Zéz(f)ﬁd3 +8G3(f)ﬁ d3d 3G, (1)Cy +2d,3G4(1)C, ﬁ+8d13G4(f)C2 5 +d16G4(f)Co

+2d,,G, (1)C, ﬁ+8d16G4(t)C2 5 *Gs(l‘)ﬂdz +d,5Gg (1)Cy + 2d,5Gg (1), ﬁ+8d15G8(t)C2 5 =Gy (1) Bd,

1 1 1 1
+d 4G (1)Cy +2d,,Gy, (N E"‘gdem(f)Cz F"‘dzsdloFCo +2d,s5d, FC, E+8d25d10FC2 ? =0

(36b)
G}(f)/j2 _63 (Nd;y —d3G4(1)C, _d1664(f)C2 +G; (1) fdy —disGg (1)C, + Gy, (1) fdy — d4Gy, (1),
—dys5d ) FC, =0
(36¢)
ds BGy (1) + dig EgG4 (1) — B G5 (t) + dyGis () + 2 G () + dy7 EgGi (1) + dyo EyGg (1) + dsGo () + dy Ey Gy (1)
+dyed | EyQ,(t) =0
(36d)
—dg Gy (1) = EydiyGy (1) + B2 G (1) — dyGy (1) — dy1 EyGy (1) — dy g By Gy (1) — ds Gy (1) — g Eo Gy (1)
—dyE,Q,(1)=0
(36¢)
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dg fG, (1) +2dGy (r)+{dlgEl +%dl4Ez]G'4<r)ﬂ2G6 (1) +d, G (1) + 2 8G, (r)+%d4c'7 (t)

2 2
+[d17E1 "‘EdnEz]Gg(f)"‘{dwEl "‘EEzdw

Gs(’)+G10(f)d5 +%Gll(t)d5

2 . 2
+|dyE, "‘EdzoEz Gy (1) + | dy6Ey +Ed26E2 0,H)=0
(361)
do Gy (1) + dy, DyGy (1) + dy G5 (1) + dyy Do G (1) — 7 Gy (1) + dyGiy (1) + 2G (1) B + oy G (5)Dy + oy G (1)
+dyrd), DoW, (1) =0
_d9ﬂG3 (n— d22D2G4 (n— d7G7 (n— dstst (n+ /’7261 (1) — dSGI 1 () —dy D, Gy (1) — d24G12 (1)D,
—dyd, E;W, (1) =0
(36g)

doG, (1) B+ dy 2G5 (1) + [dzle + %dzzDz]sz () +d;G, (1) + %d767 )+ [dZSDl +%dzsl)z ] Gy (1)

— B2Gyo(0) + dSGmm+ZﬂGn(t)+%d86n(r>+[d2101 +%dZIDz]Gu<r) + [d2401 +%d24Dz]Glz(r> —0
(36h)

where d,, to d,; are the coefficients of the H-expansion and constant parameters presented in the appendix. By
taking Laplace transform of Eq. (36) and using three boundary conditions of Eq. (4) (for solid cylinder only second,
fourth and sixth boundary condones are applicable), a system of algebraic equations is obtained and solved by
Carmer’s methods in the Laplace domain. By the inverse Laplace transform, the functions are transformed into the
real time domain and finally G,,(t) to G,,,(¢) are calculated. In this process, it is necessary to consider the

following points:
1. The initial conditions (5) are considered only for the general solutions, the initial conditions of G, (¢) to

G,,(t) for the particular solutions are considered equal to zero.

2. Laplace transform of Eq. (36) is in terms of polynomial functions of the Laplace parameter s (not the
Bessel functions form of s). Therefore, the exact inverse Laplace transform is possible and somehow
simple.

3. For the hollow cylinder it is enough to include the second type of Bessel function Y (r) in a sequence of the
particular solution as

u" (r,0) = Y A Gua (I () + G (D1, (o) + G, (5 (Bor)|

n=1

+ [ Gan OV (Bar) + G, (DrYy (ar) + G, (Y (Bar) |+ G, (1) + 77 G, (1)

TP (r,1) = > [ Gou (1o (Bar) + G, (0T, (Bar) + Gy, (07, (Bor)

n=I

+ {GIZn (DY, (Brr) + Gy, (OrY (Bnr) + Gy, (I)VzYz (Bnr)|+7rGys, (1) + rzGlén (1}

PP 1) = Y 4 Gina (VI (Bar)+ G, (T, (Bar) +Girg, (07 ()|

n=1

G0 (VY (Brr) + G (VP V (Brr) + G (0P Yy (Bar)] 4 Gy (6) + 7 Gy (1))

(37
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By substituting Egs. (37) in Egs. (1) to (3), eighteen equations are obtained, where using the six boundary
conditions (4) twenty four functions G, (¢) to G,,,(t) are obtained for the hollow cylinder.

4 RESULTS AND DISCUSSIONS

As an example, a solid cylinder with r, =0 , r, =1m is considered. The material properties are listed in Table 1.

The initial temperature 7, is considered to be 293°K . Now, an instantaneous hot spot T'(1,7) = 1073TD§(Z) , Where
o(t) is unit dirac function, is considered and the outside radius of the cylinder is assumed to be fixed (u(1, t) = 0).

For plotting the graphs a nondimensional time ; — *~ is considered where e [ EQ-v) s the dilatational -wave
p(l+v)1-2v)

r

o

velocity. Figs. 1-3 show the wave-front for the displacement, temperature, and pressure. As a second example
mechanical shock wave is applied to the outside surface of the cylinder given as u(l,¢) = 107"2u,6(1), and the

surface is assumed to be at zero temperature (7(1, 7) = 0). Figs. 4-6 show the wave fronts for the displacement and
temperature distributions versus the nondimensional radius. The convergence of the solutions for these examples is
achieved by consideration of 1200 eigenvalues used for the H-Fourier expansion. Choosing more than this number
for eigenvalues, increases round-off and truncation errors affects the quality of the graphs.

Table 1

Material parameters [4]

Parameters Value Unit Parameters Value Unit
N 0.4 - a; 1.5x10° 1/°C
E 6x10° Pa a, 2x10™ 1/°C
1% 0.3 - s 0.8 J/g°C
To 293 °K Cw 4.2 J/g°C
K, 2x10"° Pa P 2.6x10° g/m’
K, 5x10° Pa Do 1x10° g/m’
K 0.5 W/m°C a 1 -

Hon-dmensional dieplacement {4fu )
P
i
——=

Fig. 1
Non-dimensional displacement distribution due to input

Wer s a4 a5 a8 0T ke es 1 u(1,1)=10""24,5(t) at non-dimensional time 7 = 0.6.

£
g 1
|, ~
i,
§
g 2
o Fig. 2
Non-dimensional temperature distribution due to input
RS- A PO T, = 10_3Tc§(t) at non-dimensional time 7 = 0.6.
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£

Mon-cimensional prossuns (B )
=
1E

&

Fig. 3
Non-dimensional pressure distribution due to input
COM Y e ey p(l,t):lof3 p,O(t) at non-dimensional time 7 = 0.6.
x10”
)|
S
>
Pt
2 oo 4
i
El
1l
af Fig. 4
Non-dimensional displacement distribution due to input
l:‘ ﬂ‘J ﬂ‘.ﬁ ’J lf! nt‘ 0‘.? .l.! ltﬂ 1

Non dimensioal s (11, u(l,t)= 10_12u05(t) at non-dimensional time 7 = 0.4.

£

Non-cimensional temperature (T/T,)
-
Y

4

Fig. 5
Non-dimensional temperature distribution due to input
R - .- P A T(1,1)=10">T.5(t) at non-dimensional time 7 = 0.4.
1. T T T T
. 1
i
£
g ol
i
%
H
* Fig. 6
Non-dimensional pressure distribution due to input
B

o LA [ %] 03 4 [E] 0.6 or LE] (2] 1

Non- dmensional racks (11 p(1,1)=10"2p.5(1) at non-dimensional time 7 = 0.4.

The convergence of the solution is better for the displacement results in comparison with the temperature. The
small oscillations in Figs. (3) and (5) are due to the convergence errors of solutions.
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5 CONCLUSION

In the present paper an analytical solution for the coupled thermoporoelasticity of thick cylinders under radial
temperature is presented. The method is based on the eigenfunctions Fourier expansion, which is a classical and
traditional method of solution of the typical initial and boundary value problems. The non-competetive strength of
this method is its ability to reveal the fundamental mathematical and physical properties and interpretations of the
problem under studying. In the coupled thermoporoelastic problem of radial-symmetric cylinder, the governing
equations constitute a system of partial differential equations with two independent variables, radius (r) and time (t).
The traditional procedure to solve this class of problems is to eliminate the time variable by using the Laplace
transform. The resulting system is a set of ordinary differential equations in terms of the radius variable, whose
solution falls in the Bessel functions family. This method of the analysis brings the Laplace parameter (s) in the
argument of the Bessel functions, causing hardship or difficulties in carrying out the exact inverse of the Laplace
transformation. As a result, the numerical inversion of the Laplase transformation is used in the papers dealing with
this type of problems in literature. In the present paper, to prevent this problem, when the Laplace transform is
applied to the particular solutions, it is postponed after eliminating the radius variable r by H-Fourier Expansion.
Thus, the Laplace parameter (s) appears in polynomial function forms and hence the exact Laplace inversion
transformation is possible.
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7 APPENDIX A

(I+v)A-2v) (1+v)Q-2v) (I+v)A-2v)

lz—a—’ dzz—ﬁ—’ d3 = — _—
(1-v)E (1-v)E (1-v)E

T T T 7, 1 Vo
d, =—-7—, d: =Y—, d, =—p—, d, =—a, 22—, d, =Y~
4 K 5 K 6 'BK 7 "k M 8 X

n (14+v)A—-2v) 1 n
dy =—a—, dog=—"—""""". dy=——, dy, =—

k (1-v)E K K

1 1 1
dy = f 3rdr, dy,= f 2dr*dr,  dis = f 2dyr*dr,  dig= | dyridr,
0 0 0 0

1 1 1 1
d17 _ f 4r dr, d]g _ f 3d5r2dr, dl9 — f 2d4r3dr, d20 = f d5r3dr,
0 0 0 0

1 1 1 1
dy = f 4rdr,  dy— f 3dor’dr,  dy = f 2,°3dr,  dy = f dgrdr,
0 0 0 0

1 1 1
dys = f F(r)r dr, dye = f G(r)r dr, dy; = f W(r)r dr
0 0 0

2
my = my, =mg = Myy = Myg = My3 = Myg = Myg = —f3
my =my = —d, 3, my = —d, 3, my =my = d3/12
ms = ﬂza mg =d, 3, m; =d,p, mg = *d3/12
4 2 8 2
my =——d; A", myy = _Ed3/l , myy =—-dsA
ms =—d,f3, My =My =my; =dy A,
Mg = Myy = Myg = dyAf3, Mg = Mmyy = dg A (A.1)
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2
My, = Mys = Mys = myg =23, Myg =—d; A

myy = 2dyA, my, = dgA, My, = %dsxl

myy = dsA, Mg = Myg = Myy = de/fs
Myg = My = Myg = dyA, Myg = Myy = dsA
2 2
My3 :EdS/L Mmys = 2dgA, My :Ed4/1
dydg A 2d,A*
(=B +dy ) == @G + (7 +dsH) =2 5
d,p* 2d5d81
Va —dsﬁ>j+d4ﬂ s
g = : 2 2 2
P ran- dzds ddid oy B +d52>;ﬂ —d; %)
(do 28— (S —d¢2>;7>- !
1 (-p* +d5/1) +d4/1
My, +m m m
gzz—( = 21):7— 2o -2,
Myy My; My,
m m m
G3=— 2 - ? gy — : Cla
(ms+mg)  (ms+mg)™" (ms+mg) ™"
(—ﬂ2+d3/12) 4
€4 =66 = 5o Zdz—ﬂ—zﬁo
(*ﬂ2+d51)(ﬂ27d312) 2d. A2
~ldgaB— —|2B&, + (=B +dsA) =3
B . & - 286, +(-8 s)dlﬁz
gs = d
2 _ “2
[(ﬂ d; ) . +d4/1]
(m33+m34) nmy3 MssGys Moy
Cat|————
M3 My, M3 My,
¢ =
[_”137+<m20 +m21)]
M3 Myy
(m30 +msp8is )+ (mas +myg )y N I LT c
‘ Mg ms + mg My M +m8 °
8:
_(m26+m27>+ ny
Mg ms +mg
dgAB + +d;A*
%4 dzﬂ( B +ds2%)
Co=Cn="¢i5= dd A
S (B —dsA)
2
(B —d;A%) 2d;4°  d
4:111:* d : §1+ 32*d_2§5
4 a\p 1 (A2)
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_[(’"10 +myy ) (myy +my, ) s

My,

[_ mysCys + MGy ]
M3 My _[(mm + mlz)m24§8
my)

+my 85 +my

m My +Mm
{ 37 4 Mo 21 ]
M3 My,

513 =

[(mlo +myy ) (myg +my,) ][ (mys +may) "123]
- —Ms || T +
My, M3 My,

M3 My,

My (my +m21)]

—M M
(—1=2 Fmys +(myg +m3) s +myy)
ms + Mg

414 =

my,m m m
447 +m46)(7 31 + 6

ms +mg Myg M5 + g
(— My + My,

(

MmyyMg

+(-
n my ms + mg

Mg ms +mg
((m3g +my¢s) + (mys +mag)cy) mg
46)(— +
ms + mg Myg ms + mg
(— a6 +my ny

+myg +my,)

Mgy

(

_|_
Mg ms +mg

m,,m m m
(— T mye)(——2L+——)
ms +mg Myg Mg +mg
+

( Mg ms +mg
G16 = =11 (BT (B) + {1 (B) + o d 2 (B) + To (BUEGI1 (B) + S5 (B) + T5(B)]/
[ (B) + T2 (BT o (B) + Sy (B) + o T 5 ()
+ (G50 (B) + e L (BINGI (B) + E32(B) + T3 (P))]
_ LB+ (61 (B) + 1672 (P)
T OB B+ B+ (P)
Co =1+ + 17, G =¢1616 + 62617 C, =G3¢17
Ey=¢4+ 45016 476175 E; = Celi6 +CsC17> Ey = {917,
Dy = C1o +¢11616 + 4136175 Dy = ¢15¢16 + 6146175 D, =¢15¢17,
Hy = CoJ\(Br)+ Cirly (Br)+ Cor* J5(Br),  Hy = EgJo(Br)+ Eird (Br)+ Eyr*J5 (Br)
Hy = DyJo(Br)+Dyrdy(Br) + Dyr* 5 (Br) (A3)

+

myyMg

+(=

e +m +myg +my,)
) s 1 mg

Myt 1My m;
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