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 ABSTRACT 

 An accurate solution procedure based on the three-dimensional elasticity theory for the free 

vibration analysis of Functionally Graded Sandwich (FGS) plates is presented. Since no 

assumptions on stresses and displacements have been employed, it can be applied to the free 

vibration analysis of plates with arbitrary thickness. The two-constituent FGS plate consists 

of ceramic and metal graded through the thickness, from one surface of the each sheet to the 

other according to a generalized power-law distribution with four parameters. The benefit of 

using generalized power-law distribution is to illustrate and present useful results arising from 

symmetric, asymmetric and classic profiles. Using the Generalized Differential Quadrature 

(GDQ) method through the thickness of the plate, further allows one to deal with FG plates 

with an arbitrary thickness distribution of material properties. The fast rate of convergence 

and accuracy of the method are investigated through the different solved examples. The 

effects of different geometrical parameters such as the thickness-to-length ratio, different 

profiles of materials volume fraction and four parameters of power-law distribution on the 

vibration characteristics of the FGS plates are investigated. Interesting result shows that by 

utilizing a suitable four-parameter model for materials volume fraction, frequency parameter 

can be obtained more than the frequency parameter of the similar FGS plate with sheets made 

of 100% ceramic and at the same time lighter. Also, results show that frequencies of 

symmetric and classic profiles are smaller and larger than that of other types of FGS plates 

respectively. The solution can be used as benchmark for other numerical methods and also the 

refined plate theories.                                        © 2013 IAU, Arak Branch. All rights reserved. 

 Keywords: Elasticity solution; Sandwich plate; Functionally graded materials; Generalized 

power-law distribution; GDQ method 

1    INTRODUCTION 

 ANDWICH structures are used in a variety of engineering applications including aircraft, construction and 

transportation where strong, stiff and light structures are required. The advantages of these structures are that it 

provides high specific stiffness and strength for a low-weight consideration. Due to the mismatch of stiffness 

properties between the face sheets and the core, sandwich plates are susceptible to face sheet/core debonding, which 

is a major problem in sandwich construction, especially under impact loading. To increase the resistance of 

sandwich plates to this type of failure, the concept of a Functionally Graded Material (FGM) is being actively 

explored in sandwich structure design. FGMs are achieved by gradually changing the composition of the constituent 
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materials along one (or more) direction(s), usually in the thickness direction, to obtain smooth variation of material 

properties and optimum response to externally applied loading. Various material profiles through the functionally 

graded plate thickness can be illustrated by using a generalization of the power-law distribution. Recently, some 

researchers have studied free vibrations of four-parameter functionally graded structures [1, 4]. 

A lot of number of plates with different shapes, size, and thickness variations and boundary conditions has been 

the subject of numerous investigations and those play an important role in aerospace, marine, civil, mechanical, 

electronic and nuclear engineering problems. Malekzadeh [5] studied three-dimensional free vibrations analyses of 

thick functionally graded plates on elastic foundations by using Differential Quadratic (DQ) method. Yas and 

Sobhani analyzed free vibration of continuous grading fiber reinforced plates on elastic foundation [6]. Matsunaga 

analyzed free vibration and stability of functionally graded plates according to a 2D higher-order deformation theory 

[7].  

Though there are research works reported on general sandwich structures, a few works have been done to 

consider the vibration behavior of FGM sandwich (FGS) structures. Li et al. [8] studied free vibrations of FGS 

rectangular plates with simply supported and clamped edges. Zenkour [9, 10] presented a two dimensional solution 

to study the bending, buckling and free vibration of simply supported FG ceramic–metal sandwich plates. Khalili 

and Mohammadi analyzed the free vibration of a rectangular sandwich plate with functionally graded face sheets 

[11]. The material properties of FG face sheets were assumed to be temperature-dependent by a third-order function 

of temperature and vary continuously through the thickness according to a power-law distribution in terms of the 

volume fractions of the constituents. The results showed that as the side-to-thickness ratio, the core-to-face sheet 

thickness ratio and the temperature are changed, a significant effect on the fundamental frequency parameter is 

observed. Natarajan and Manickam investigated bending and vibration of functionally graded material sandwich 

plates using QUAD-8 shear flexible element developed based on higher order structural theory [12].They considered 

two types of sandwich FGM plates, viz., homogeneous face sheets with FGM core and FGM face sheets with 

homogeneous hard core. The influence of the gradient index and the plate aspect ratio on the response of different 

sandwich FGM plates was examined in their work. Static, free vibration and buckling of isotropic and sandwich 

functionally graded plates was analyzed by Neves et al. [13]. They utilized a quasi-3D higher-order shear 

deformation theory and a meshless technique for their investigations. Sobhy analyzed vibration and buckling 

behavior of Exponentially Graded Material (EGM) sandwich plate resting on Pasternak foundation under various 

boundary conditions [14].The influences of the geometrical parameters, inhomogeneity parameter and the 

foundation parameters on the natural frequencies and critical buckling loads were investigated in their work. 

Recently Xiang et al. [15] analyzed the free vibration of sandwich plate with functionally graded face and 

homogeneous core using meshless global collocation method on the thin plate spline radial basis function and nth-

order shear deformation theory.   

The present research is in the continuation of previous works on four-parameters FGM structures [2-4]. In order 

to distinguish the present work from the above pertinent literature, first, the accuracy of the three-dimensional 

elasticity theory is discussed. Then, effect of functionally graded face sheets on free vibration of simply supported 

sandwich rectangular plates is investigated. The fiber-reinforced composite material studied in the present work 

consists of alumina (ceramic) fibers embedded in aluminum (metal) matrix with the fiber volume fraction graded 

according to a four-parameter power-law distribution through thickness. Frequency parameters are obtained by 

using numerical technique termed the GDQM which leads to a generalized eigen value problem. GDQ is found to be 

a simple and efficient numerical technique for solving partial differential equations as reported by Bellman et al. 

[16]. The mathematical fundamental and recent development of GDQ method as well as its' major applications in 

engineering were discussed in detail in Ref. [17]. 

2    PROBLEM DESCRIPTION 

2.1 FGM material properties 

Consider a thick FGS plate as shown in Fig. 1. A Cartesian coordinate system (x, y, z) is used to label the material 

point of the plate in the unstressed reference configuration.  

The plate has continuous grading of fiber reinforcement through thickness. h, hc, and hf  are the thickness of 

plate, core and face sheets respectively and the plate is assumed to be symmetric with respect to its mid-plane 0z  . 

The Young’s modulus ( ),E z Poisson’s ratio ( )z and mass density ( )z of the FGS plate can be expressed as [1]: 

 

cmccmccmc VvvzVzVEEzE )()(,)()(,)()(    (1) 
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where indexes m and c present metal and ceramic material respectively. In the present work, by idealizing Ref. [1], 

the metal volume fraction of FGS plate is assumed as follows: 
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(2) 

 

where the power-law index p  0 p    and the parameters a, b, c dictate the metal variation profile through the 

FGS plate thickness. It should be noticed that the values of parameters a, b and c must be chosen so that 0 1
m

V  . 

According to the relation (2), the core of FGS plate and the inner surfaces of the sheets are metal rich, where as the 

outer surfaces of the sheets can be metal rich, ceramic rich or made of a mixture of the two constituents. The 

through-thickness variations of Young's modulus of FGS plate for some profiles are illustrated in Fig. 2. The 

relevant material properties for the constituent materials considered in this work are as follows [15]: 

 
3 3380 Gp , 3800 / , 0.3 , 70 Gp , 0.3 , 2707 /

c c c m m m
E a kg m E a kg m            

 

In Fig. 2a the classical Young's modulus profiles are presented as special cases of the general distribution laws 

(2) by setting a=1, b=0 which has been recently considered for analysis of a FGS rectangular plate by Xiang et al. 

[15]. In Figs. 2b and 2c, by setting a=1, b=1, c=2 and a=1, b=1, c=4 symmetric and asymmetric profiles respect to 

the mid-planes of the sheets are obtained respectively. In Fig. 2e, Young's modulus profiles for the different values 

of parameter c is shown by considering p=1 in which Young's modulus profile along z direction becomes 

asymmetric with increasing parameter c. Young's modulus on the inner and outer surfaces of sheets for the different 

values of parameter c is the same in Fig. 2e. 

2.2 The basic formulation 

The mechanical constitutive relations which relates the stresses to the strains are as [6]: 
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(3) 

 

In the absence of body forces, the governing equations are as follows [6]: 

 

 

 

 

 

 

 

 

Fig. 1  

Geometry of the FGS rectangular plate. 
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(4) 

 

 

Strain- displacement relations are expressed as [6]: 
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(5) 

 

where wvu ,,  are displacement components along the x, y and z axes respectively. Upon substitution Eq. (5) into 

(3) and then into (4), the following equations of motion as matrix form are obtained in term of displacement 

components [6]: 
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(6) 

 

where coefficients Lij are given in Appendix A. For a simply supported rectangular plate, the boundary conditions 

can be expressed on the x-constant as well as y-constant edges as [6]: 

 

, ,
0 , 0
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Moreover, for the lower and upper surfaces of the plate, it can be written: 
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(8) 

 

Using the method of separation of variables, it is possible to seek solutions that are harmonic in time and their 

frequency is ω. The displacements can be written as follows [6]: 
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(9) 

 

where 
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m
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1

( 1,2,...)
n

n
p n

L


  , m and n are wave numbers along x and y directions 

respectively. Inserting these displacement components into the equations of motion (6), one obtains a set of coupled 

differential equations with variable coefficients [6]. 
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(10) 

2.3 GDQ solution of governing equations 

The GDQ approach is used to obtain the natural frequencies of FGS plate. This method approximates the spatial 

derivative of a function of given grid point as a weighted linear sum of all the functional value at all grid point in the 

whole domain. The computation of weighting coefficient by GDQ is based on an analysis of a high order 

polynomial approximation and the analysis of a linear vector space. The weighting coefficients of the first-order 

derivative are calculated by a simple algebraic formulation, and the weighting coefficient of the second-and higher-

order derivatives are given by a recurrence relationship. In the purposed method, the nth order of a continuous 

function f(x, z) with respect to x at a given point xi can be approximated as a linear sum of weighting values at all of 

the discrete point in the domain of x , i.e. [18]: 
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where N is the number of sampling points, and 
n

ijc  is the xi dependent weight coefficients.  

In order to determine the weighting coefficients 
n

ijc , the Lagrange interpolation basic functions are used as test 

functions, and explicit formulation for computing these weighting coefficients can be obtained [18]: 
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For the first-order derivative; i.e. n=1 and for higher-order derivative, one can use the following relations 

iteratively [18]: 
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A simple and natural choice of the grid distribution is the uniform grid spacing rule. However, it was found that 
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non-uniform grid spacing yields results with better accuracy [19]. Hence, in this work, the Chebyshev-Gauss-

Labatto quadrature points are used, that is [18], 
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(16) 

 

More details about GDQ method can be found in Ref. [17]. 

By applying the GDQ method to Eq. (10), the following equations are obtained: 
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In the above equation (1)

ikc and (2)

ikc  are the weighting coefficients of the first and second order derivatives. In a 

similar manner the boundary conditions can be discretized. For this purpose, using Eq.(8) and DQ discretization rule 

for special derivatives, the boundary conditions at z=-h/2  and z=h/2 become: 
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In order to carry out the eigenvalue analysis, domain and boundary degrees of freedom are separated and in 

vector forms they are denoted as (d) and (b), respectively. Based on this definition, the matrix form of the 

equilibrium equations and the related boundary conditions take the following form: 
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where   dU   and   bU  are as follows: 
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        , ,
T

d d d dU U V W  
(20) 

        , ,
T

b b b bU U V W  
(21) 

 

Eliminating the boundary degrees of freedom, this equation become: 

 

       2 0 dA M U  (22) 

 

where 

 

        
1

 dd db bb bdA A A A A  (23) 

 

The above eigenvalue system of equations can be solved to find the natural frequencies of the FGS plate. 

3    NUMERICAL AND RESULTS 

To verify the proficiency of presented method and four-parameter model for volume fraction of FGM materials, two 

numerical examples are carried out for comparisons. As a first example, the convergence and accuracy of the 

method is investigated in evaluating the first four natural frequency parameters of the FG moderately thick plates. 

The results are prepared for different values of the DQ grid points in Table 1. As noticed, fast rate of convergence of 

the GDQ method is evident and it is founded that only 13 DQ grid in the thickness direction can yield accurate 

results for a graded plate. Also, one can see that excellent agreement exist between the results of this method and 

those of 2D higher order theory of Matsunaga [7]. 

For further verification of the results of new four-parameter model, by setting a=1and b=0 in relation (2), the 

non-dimensional fundamental frequencies for the simply supported square sandwich plate with classic functionally 

graded faces and homogeneous core are listed in Table 2. The Young's modulus profile in this case is as shown in 

Fig 2a. It is seen that the present results agree well with those obtained through three-dimensional Ritz solution by 

Li et al. [8] as well as meshless global collocation method by Xiang et al. [15]. 

In this section, we characterize the response of FGS rectangular plate. The non-dimensional natural frequency is 

defined by
cc Eh / . 

 

 
Table 1 

Convergence behavior and accuracy of the first four non-dimensional natural frequencies ( /  c ch E  ) of a simply supported 

FG plate against the number of DQ grid points (h/L1 =0.5) 

                                                                                                                           p                                                            Mode (n,m) 

  (1,0) (1,1) (2,0) (1,2) 

4 N=9 0.3957663 0.59935    0.958488  1.103291 

 N=13 0.357754     0.599487   0.958751  1.103656 

 N=20 0.357758   0.599494   0.958764  1.103674 

 [5] 0.3577       0.5995      0.9587      1.1037     

 [7] 0.3579       0.5997      0.9591     1.1040    

      

10 N=9 0.328012   0.541517   0.852797 0.978336 

 N=13 0.331127   0.545802   0.858398 0.984311 

 N=20 0.331146   0.545833   0.858445 0.984365 

 [5] 0.3311      0.5458      0.8584     0.9843     

 [7] 0.3313      0.546       0.8588    0.9847    
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Table 2  

Comparison of none dimensional fundamental frequency (

0

0

2

1 )(
Eh

L 
  ) for the simply supported square sandwich plates 

with classic FGM faces 3

1 0 0
( 1, 0, / 0.1 , 1 / , 1 )a b h L kg m E GPa       

  p 
 hf/h   

1/3 4/10 

1 Li et al. [8] 1.63053  1.67437 

 Xiang et al. [15] 1.66476  1.70605     

 Present 1.6778    1.7221      

    

5 Li et al. [8] 1.78956 1.82611    

 Xiang et al. [15] 1.84690 1.86177    

 Present 1.7895   1.8371      
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Fig. 2  

Variation of the Young's modulus through the thickness in the FGS plate a: 1 , 0a b   ,  b:

 

1 , 1 , 2a b c      

c: 1 , 1 , 4a b c     ,   d: 0.8 , 0.2 , 2a b c      ,  e: 0.8 , 0.3 , 3.a b p  
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The numerical results are tabulated in Table 3. for the symmetric FGS plates for the different values of p, 

geometrical parameter h/L1 ratio and hf/h ratio. The influence of the index p on the natural frequency of FGS plate is 

shown in Table 3. As can be seen from this table, increasing the value of the parameter index p up to infinity 

increases the contents of ceramic phase and at the same time reduces the percentage of metal phase in the sheets. In 

other words, relations 1 and 2 represent this fact that it is possible to obtain the homogeneous isotropic material in 

the sheets when the power-law exponent is set equal to zero or equal to infinity. Considering Table 3. , it is found 

that with increasing the value of p, the natural frequency, first, increases and then decreases.  Also, the normalized 

natural frequency of FGS plate increases with increasing the h/L1 ratio and hf/h ratio for the different values of 

parameters p. 

 

 
Table 3 

First normalized natural frequency of the symmetric FGS plate for different values of power- law index p, hf/h ratio and h/L1 ratio 

(
1 2

/ 1 , 1, 1, 2, 1 , 1L L a b c n m      ) 

1
/h L  /

f
h h   p  

    0 1 2 5 10 50   

0.3 0.1  0.2173 0.2398 0.2527 0.2692 0.2740 0.2507 0.2362 

0.2 0.2173 0.2515 0.2698 0.2938 0.3054 0.2940 0.2602 

0.4 0.2173 0.2639 0.2893 0.3252 0.3475 0.3716 0.3411 

        

0.4 0.1 0.3434 0.3741 0.3910 0.4122 0.4193 0.3925 0.3735 

0.2 0.3434 0.3893 0.4127 0.4426 0.4585 0.4532 0.4114 

0.4 0.3434 0.4114 0.4473 0.4978 0.5306 0.5749 0.5388 

        

0.5 0.1 0.4780 0.5151 0.5349 0.5597 0.5689 0.5420 0.5200 

0.2 0.4780 0.5332 0.5602 0.5946 0.6147 0.6186 0.5723 

0.4 0.4780 0.5671 0.6133 0.6788 0.7228 0.7886 0.7490 

 

 

The influence of the index p on the natural frequency is also shown in Figs. 3-5. The new and interesting result is 

that although it is expected the value of natural frequency parameter to be between the natural frequency parameter 

of the limit cases of homogeneous sheets of metal ( 0)p   and of ceramic ( )p    , natural frequency parameter 

sometimes exceed the limit cases. It means though frequency parameter of the plate with ceramic rich sheets 

( )p    is more than the plate with metal rich sheets ( 0)p  , the frequency parameter of the sandwich plate doesn't 

necessarily increases with the increase of ceramic volume fraction. Since density of ceramic is more than metal, it 

means by choosing suitable values of a, b, c and p, frequency parameter can be obtained more than the frequency 

parameter of the similar FGS plate with sheets made of 100% ceramic and at the same time lighter. This result is 

because of using the four-parameter power-law distribution for FG materials. To explain the physically reason of 

this fact, as a very simple example, consider two mass-spring systems (systems 1 and 2) with single degree of 

freedom shown in Fig. 6. Results show that:  
2 1 2 1 2 1

, ,k k M M   . 

Now, consider system 3. As observed 
3 2

k k  and 
3 2

M M  but 
3 2

  . So, we can have a system with larger 

frequency, lower stiffness parameter and at the same time lighter than system 2. In other words, increasing the 

stiffness parameter does not necessary increase the frequency parameter. 

Tornabene and Viola [1] came to the similar conclusion for four-parameter functionally graded conical, 

cylindrical shell and annular plate structures. Also, Yas et al. [20, 21] have obtained similar results for three-

parameter FGM Euler-Bernolli beams. 

Table 4. shows the influence of the parameter c on the first normalized frequencies for different values of h/L1 

and hf/h ratio. In this Table, the Young's modulus profile of faces through thickness becomes asymmetric with 

increasing parameter c (as observed in Fig. 2e). As parameter c increases, the material's profile becomes asymmetric 

and then the frequency parameter increases for different values of hf/h and h/L1 ratio. The first normalized 

frequencies of different types of FGS plates are compared with each other in Table 5. for different values of h/L1 

ratio and hf/h ratio. In this table, the Young’s modulus profiles through thickness are classical for a=1, b=0, 

symmetric for a=1, b=1, c=2 and asymmetric for a=1, b=1, c=4. It can be concluded from Table 5. that the 

normalized frequencies of symmetric profile are smaller than that of other types of FGS plates for different values of 

p, hf/h ratio and h/L1 ratio. 
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Fig. 3  

Variation of the first non-dimensional natural frequency of 

FGS plate vs. the power-law exponent p for various values of 

the parameter a 
1

(0.2 1.2 , 0.2 , 2 , / 0.4 , / 0.2).
f

a b c h L h h       
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Fig. 4  

Variation of the first non-dimensional natural frequency of 

FGS plate vs. the power-law exponent p for various values of 

the parameter b 1
( 0 , 1 0 , 2 , / 0.4 , / 0.2 ).

f
a b c h L h h        
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Fig. 5 

Variation of the first non-dimensional natural frequency of 

FGS plate vs. the power-law exponent p for various values of 

the parameter c  1
( 1 , 1 , 1 10 , / 0.4 , / 0.2 ).

f
a b c h L h h       

  

 

 
 

 

 

Fig. 6 

Three simple mass-spring systems with single degree of freedom.  
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Also, it can be found, the normalized frequencies of classic profile are larger than that of other types of FGS 

plates for different values of p, hf/h ratio and h/L1 ratio. This fact that frequencies of symmetric and classic profiles 

are smaller and larger than that of other types of FGS plates respectively is also shown in Fig. 7. 

The effect of length to width ratio of the FGS plate on the first non-dimensional natural frequency is shown in 

Fig.8. It results the non-dimensional natural frequency decreases with increasing the L1/L2 ratio and then remain 

almost unaltered for L1/L2 greater than 5 for different types of FGS plate. 
 

Table 4  

Variations of the first normalized natural frequency of FGS plate vs. the parameter c for various values of hf/h ratio and h/L1. 

(
1 2

/ 1 , 1, 1, 1, 1 , 1L L a b p n m      ) 

1
/h L  /

f
h h  c  

 2 4 8 13 20 30 50 

0.3  0.2 0.2515 0.2731 0.2859 0.2915 0.2949 0.2971 0.2989 

0.3 0.2587 0.2842 0.2999 0.3069 0.3112 0.3140 0.3164 

0.4 0.2639 0.2942 0.3134 0.3223 0.3278 0.3315 0.3346 

        

0.5 0.2 0.5332 0.5640 0.5819 0.5897 0.5945 0.5977 0.6003 

0.3 0.5480 0.5859 0.6085 0.6188 0.6253 0.6297 0.6334 

0.4 0.5671       0.6165 0.6460 0.6596 0.6683 0.6741 0.6792 

 

Table 5 

Comparison of fundamental normalized frequencies of different types of FGS plates for different values of hf/h ratio and h/L1 

ratio (
1 2

/ 1 , 1 , 1L L n m   ) 

1
/h L  /

f
h h  p  

 0 1 2 5 10 50   

0.2  0.2        

Classic 0.1079 0.1604 0.1676 0.1710 0.1699 0.1513 0.1290 

Asymmetric 0.1079 0.1417 0.1544 0.1658 0.1677 0.1511 0.1290 

Symmetric 0.1079 0.1280 0.1395 0.1550 0.1619 0.1503 0.1290 

        

0.4        

Classic 0.1079 0.1802 0.1885 0.1932 0.1945 0.1922 0.1692 

Asymmetric 0.1079 0.1515 0.1677 0.1839 0.1902 0.1915 0.1692 

Symmetric 0.1079 0.1333 0.1477 0.1686 0.1810 0.1897 0.1692 

        

0.5 0.2        

Classic 0.4780 0.6044 0.6170 0.6262 0.6319 0.6217 0.5723 

Asymmetric 0.4780 0.5640 0.5900 0.6147 0.6266 0.6209 0.5723 

Symmetric 0.4780 0.5332 0.5602 0.5946 0.6147 0.6186 0.5723 

        

0.4        

Classic 0.4780 0.6874 0.7170 0.7445 0.7617 0.7966 0.7490 

Asymmetric 0.4780 0.6165 0.6647 0.7184 0.7484 0.7944 0.7490 

Symmetric 0.4780 0.5671 0.6133 0.6788 0.7228 0.7886 0.7490 
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Fig. 7 

Comparison of fundamental normalized frequencies of different 

types of FGS square plates ( 1
/ 0.4 , / 0.2

f
h L h h  ). 
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Fig. 8  

The effect of length to width ratio of the FGS plate (L1/L2) on the 

non-dimensional natural frequency 

(
1

5 , / 0.4 , / 0.2
f

p h L h h   ). 

4    CONCLUSION 

The GDQ method has been used to study three-dimensional free vibration analysis of functionally graded sandwich 

rectangular plate. The fast rate of convergence and accuracy of the method were investigated through the different 

solved examples. The two-constituent functionally graded plate consists of ceramic and metal which are graded 

through the thickness according to a four-parameter power-law distribution. From this study, some conclusions can 

be made: 

Interesting result shows, by using the four-parameter power-law distribution and  choosing suitable values of a, 

b, c and p, frequency parameter can be obtained more than the frequency parameter of the similar FGS plate with 

sheets made of 100% ceramic and at the same time lighter. This result is against the expected one for the frequency 

parameter of FGS plate to fall between those for p=0 (100% metal sheet) and p=∞ (100% ceramic sheet). Results 

show that normalized frequencies of symmetric and classic profiles are smaller and larger than that of other types of 

FGS plates respectively for different values of p, hf/h ratio and h/L1 ratio. It can be found, the normalized natural 

frequencies of FGS plate increase with increasing hf/h ratio and h/L1 ratio. As parameter c increases, the material's 

profile becomes asymmetric and then the frequency parameter increases for different values of hf/h and h/L1 ratio. It 

results the non-dimensional natural frequency decreases with increasing the L1/L2 ratio and then remain almost 

unaltered for L1/L2 greater than 5 for different types of FGS plates. 
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