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Abstract 

This paper presents two different Monte Carlo algorithms for obtaining the 

solution of vector x in linear system x=Ax+f, where A is a given non singular matrix 

and f is a known vector with the same size as A.  In this paper, we consider two 

individual transition probabilities for our Monte Carlo computations. Considering 

different statistical nature for generating the random walk to select the nonzero entries 

of the coefficient matrix A, are caused different accuracy and computational times for 

our employed algorithms. 

We first make Monte Carlo estimator for the elements of the solution vector x, then we 

determine the Monte Carlo estimation of the solution vector x based on its unbiased 

estimator. Finally, we present the computational results obtained by two different 

transition probabilities.  

Key Words: Monte Carlo, Markov Chain, Linear System, Transition Probabilities, 

Random Walk. 

 

 Introduction 

One of the most important problems in the numerical linear algebra is solving the 

linear systems. When we want to have accurate results of the linear systems, we prefer 

to use the classical method such as Gauss and Gauss-Jordan methods. But, when the 

dimension of coefficient matrix in the linear systems increases, the classical methods 

obtain the solution so slow. Then we prefer to use the iterative methods such as Jacobi,  
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SOR , … [2]. Here we want to introduce a stochastic-numerical method which is 

called Monte Carlo method as an alternative for the iterative methods.   

The Monte Carlo method can obtain the solution of the linear systems based on a non 

singular coefficient matrix.  In this method we first establish an unbiased estimator for 

 jth element of the solution x in the given linear system x=Ax+f.  Then we simulate N 

different random paths on the matrix A and employ them in our corresponding Monte 

Carlo solution. 

Monte Carlo computations in general and especially finding the solution of the given 

linear system are based on generating the random numbers. Then we have the stochastic 

natures in the computations of Monte Carlo methods. 

 Monte Carlo method for solving SLAE 

Consider solving SLAE of the form Bx=f, where B is a square non-singular matrix 

of the size n, and   are known. We want to obtain the solution of the 

above linear system by Monte Carlo method. If we consider I-A=B, where I is an 

identity matrix with size n, then this system can be converted to: 

t
nffff ),...,,( 21=

x=Ax+f.                                                                                                                                                (1) 
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Under this assumption we can solve (1) by applying the recursive equation: 
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it means that, the exact solution is available for (3) when k is sufficiently large. The  

coordinate of the vector  is equal to 
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We consider the definition of the inner product of two vectors nRxh ∈, by: 

,..., 2211 nn
t xhxhxhxhxh +++=>=<                                                                        (7) 

where h is a known vector and x is the exact solution of (1). If we set 

then from (7) we obtain the  element of the vector x i.e. We 

want to consider a Markov chain to obtain the estimate of solution x by Monte Carlo 

method.  
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j

h = thj .jx

The probability functions and (initial distribution and the transition probability 

from state i to state j of the Markov chain) are acceptable for and , respectively if: 
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Under condition (2) we first consider the estimation ,, )1( >< +kxh  which it approximates 

, since (5) is valid. Let k be given integer and let us simulate the Markov chain: >< xh,
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Under the above conditions, we have                         
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If we note to the following product of order  of matrix A: 2≥m
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i.e. is an unbiased estimator of the inner product )(hTk
>< + )1(, kxh . With regards to the 

above discussion we proved the following theorem. 

Theorem: Introduced  in (11) is an unbiased estimator for )(hTk
>< + )1(, kxh . 

Generally, to approximate  we simulate N random paths [7] >< + )1(, kxh
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In (17) each path we may realize a different estimation and therefor we consider the 

sample mean of the estimations for obtaining better estimation of the parameter: 
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If we consider , then we have  {
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Where  in (18), is the Monte Carlo estimation for the element of the vector x. 

Here, we obtained only one element of the vector solution x. We can obtain the other 

elements of the solution vector x in the same way, it only needs to be changed the vector 

h. This is another point of the Monte Carlo method that with a simple variation in 

selection of h we can get an arbitrary element of x. This is in contrast with the iterative 

methods, where all elements of the vector x are obtained in each step.   
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It can be easily proved that this Monte Carlo estimator is convergent to its exact 

solution, i.e. 
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which q.m., p. and a.s. mean the convergence in quadratic mean, in probability and with 

probability one, respectively [5,6]. 

Provided that the Neumann series ...2 ++ AA  converges, and the path                    

 is infinitely long, we obtain an unbiased estimator of 
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and 
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Page simulate N such independent random paths, then we have:  
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 Therefore all random variables  j=1,2,…,n, are defined on the same path and are 

calculated according to the same formula.  
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Markov Chains according to whether or not it is possible to go from a given state to 

another given state can be considered. If we consider  

,,...}2,1{0)|( 0
)( ∈>=== nsomeforiXjXpp n

n
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it means the probability of that Markov Chain reaching from i to j in n steps ( ) [4]. 

Here, we use only the transition probability of the Markov chain with n=1. The number 

of Markov chains is given by 

1≥n

2)
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 and the length of Markov chain 

is also bounded by
||||log

)||||log(
A
fkT δ

<=  [1,6].  

 

Different Transition Probabilities for Markov Chains 

When we use Monte Carlo method for solving the linear system (1), we should 

specify our transition probabilities for walking on the rows and columns of the given 

matrix A in (1) for randomly selecting of its nonzero elements. It is expected that with 

considering different probabilistic nature in Monte Carlo algorithms we conclude 

difference accuracy and computational times from our employed algorithms.   

 
Two Monte Carlo Algorithms for Solving SLAE  

In solving System Linear Algebraic Equations (SLAE) if we use uniform 

transition probabilities for our Markov chain, we call it  UM Monte Carlo method.  We  
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We call Monte Carlo method using this transition probability, Monte Carlo algorithm 

using Almost Optimal (MAO) transition probabilities[1]. 

To compute the solution of the SLAE (1) by Monte Carlo methods, we select the non-

zero elements of the coefficient matrix with regards to the specified transition 

probability. We note that if the random walk encounters a zero element, we ignore it in 

our computation and generate another random number to select the next non-zero 

element of A.  We make two different algorithms by considering these two transition 

probabilities: UM Monte Carlo algorithm and MAO Monte Carlo algorithm.  

Experimental Results 

Now, we present the numerical results given by the above MAO and UM Monte 

Carlo Algorithms. The algorithm tested for solving linear systems with different 

dimensions of the coefficient matrices: 

 

 

 
 

Table 1: Computational time for larger matrices. 

n UM MAO 

50 0.585 0.80 

100 1.025 1.035 

200 1.715 1.775 

500 3.895 4.21 

700 5.770 6.31 

1000 8.050 8.450 

1500 14.19 14.78 

2000 20.85 23.31 
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n UM MAO 

50 0.00027 0.00016 

100 0.00028 0.00011 

200 0.00031 0.00010 

500 0.000436 0.00010 

700 0.00037 0.00011 

1000 0.00044 0.00014 

1500 0.00057 0.00017 

2000 0.00074 0.00021 

Table2: Computational error (accuracy) of methods. 
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Comparison of the Accuracy of two M onte Carlo 
Algorithms
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