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Abstract 
  
The generalized eigenvalue problem BXAX λ=  has special properties when ),( BA  

is a symmetric and positive definite pair. 
We have recently developed three methods for computing a few smallest (largest) 

eigenvalues of a symmetric positive definite problem BXAX λ=  [2-3-4]. In this article 
we compared those methods by some numerical examples. 
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1. Introduction 
 
Solving generalized eigenvalue problem, BXAX λ= , is one of the most important 

problems in numerical linear algebra. It’s importance is because it is often used in a lot 
of engineering problems. In most of these cases we come across a symmetric positive 
definite generalized eigenvalue problem of the form BXAX λ= , where A  and B  are 
symmetric, and at least one of them is positive definite, for example in problems 
connected to mechanical vibration or analysis of structures. 

There are several methods to solve generalized eigenvalue problem, BXAX λ= , 
but the number of computed eigenvalues by these methods might be less or more than 
expected. There are also methods which can lead us to the amount of results needed, 
like krylov subspace method, [5-12]. 

In this paper we compute P  smallest (largest) eigenvalues which is very important 
in engineering problems, P  is an arbitrary integer number. Our work is based on using 
inverse vector iteration method and solving the resulting system with the help of krylov 
subspace methods. After finding the smallest (largest) eigenvalue of pair ),( BA , by 
using an appropriate deflation method on the new pair the next eigenvalue will be 
computed. 

 
                                                       
1 Corresponding author. 
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2. Definition 
 

2.1 If nRX ∈  and 1
2
=X ,then the number 

BXX
AXXXR T

T

=)(  is called the 

generalized Rayleigh quotient. This quotient is well defined if and only if the matrix B  
is positive definite. 

2.2 Let D  be a diagonal matrix, i.e, ),,,( 21 nddddiagD K= . If  VU ,  are two 
vectors of nR . We define the D -scalar product of DUVVU t

D =⋅ )( . This product is 
well defined if and only if matrix D  is positive definite, i. e, 0>id , ni ,,2,1 K= . The 
norm associated with this inner product is the D -norm 

D
⋅  and define by 

nT
DD

RUDUUUUU ∈∀== ).(  
  

3. Theorems 
 
Theorem 3.1. The symmetric definite generalized eigenvalue problem has real 

eigenvalues and linearly independent eigenvectors. 
Proof in [1] 
 
Theorem 3.2. The generalized eigenvectors of pair ),( BA  are B -orthonormal. 
Proof in [1] 

 
4.G-R Method 
 

Theorem 4.1.  Let )(m
iY  be an a eigenvector of symmetric tridiagonal matrix mT  

associated with the eigenvalue )(m
iλ , computed by Lanczos algorithm, and )(m

iU ,the Ritz 
approximate eigenvector, )()( m

im
m

i YVU =  of pencil ( A , B ), then 
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ii) If the matrix B  be idempotent then : 

)(

2

)()()()( )()( m
i

T
mm

m
i

m
iB

m
i

m
i YeUBAUBA βλλ =−=−  

Proof:  
i) Since we have T

mmmmmm eBvTBVAV 1++= β  
Therefore multiplying both sides of above relation by )(m

iY  can be written as,  
)(

1
)()( m

i
T
mmm

m
imm

m
im YeBvYTBVYAV ++= β  

So 
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Since B  is idempotent so 
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And similarly  
2)(2
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Finally 
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Algorithm 1. Generalized Restarting process.(G-R) [2] 

Choose an initial vector 1
~V  

Compute 
B

V
V

V
1

1
1 ~

~
=  

For k=1,2,…,m do 
For s=1,2,…,m  do 
Run Lanczos algorithm for m  step ),( )()( s

m
s

m TV  
Compute Lanczos Ritz value )(s

iθ and generalized Ritz vector 

Set { }m

ki

s
i

s
i

s
i

s
i BYAr

=
−==

2

)()()()(min θθγ  

for p=k,k+1,…,m do 
If )(s

PY=γ  then, set )(
1

s
PYV =  and B -normalized. 

end if; end do; end do; 
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End do. 
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Numerical test 1: 
Let A  and B  are 10001000×  matrices as: 

 
 

1000100010002.142.08.03.08.0
2.19992.142.08.03.08.0
42.02.19982.142.08.03.08.0
8.042.02.1
3.08.042.0
8.03.08.08.0

8.03.03.08.0
8.08.03.08.0

42.08.03.08.0
2.142.08.03.08.0

62.142.08.03.08.0
2.152.142.08.03.0
42.02.142.142.08.0
8.042.02.132.142.0
3.08.042.02.122.1
8.03.08.042.02.11

×
























































=A

 

10001000)1001,1000,,3,2( ×= KDiagB  
 
We apply algorithm 1 for m=4.The results are shown in Fig1, Fig2, Fig3, and Fig4  
 
Fig 1 

Showing the improvement of the first generalized eigenvalue ( 1λ ) in the first step of generalized  

 
 
 
 
 
 
 
 
 
 
 
 
 
Restarting after a number of restarts  
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Fig 2  

Showing the improvement of the fourth generalized eigenvalue ( 4λ ) in the second step of generalized restarting after a number of 
restarts 
 
 
 
 
 
 
 
 
 
 
Fig 3 

Showing the improvement of the third generalized eigenvalue ( )( 3λ ) in the third step of generalized restarting after a number of 

restarts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4  

Showing the improvement of the second generalized eigenvalue ( )( 2λ ) in the fourth step of generalized restarting after a number 
of restarts.  
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B
 

2
 

Step Iteration Error Time Step Iteration Error Time 
1 10 3.5439e-8 17.0288 1 10 1.38e-9 17.1634 
2 10 4.88e-13 17.3324 2 10 1.7225e-14 16.7966 
3 50 9.5053e-5 83.6560 3 37 9.3618e-5 62.0779 
4 49 0.0001637 82.0542 4 47 0.0000157 78.6765 
 119 2.5888e-4 200.0714  104 6.281e-5 174.7144 

 
 

5. FOM- inverse Vector iteration method  
 
Algorithm 2. FOM-inverse vector iteration method [3] 
 Input initial vector 1x  whit 11 =x and tolerance ε and parameter m . 

1

11

11
1

xx
Bxx
Axx

m

T

T

=

=λ
 

For k=1, 2,…do 
Compute mk AxBxr −=0  
For z=1,2,… do 

Compute 
20r=β and 

β
0

1
rv =  

Construct the orthonormal basis mV by the Arnoldi process, starting with 1v  
Solve 1eYH mm β= , and set mkmmmm AxBxrYVxx −=+= ,0  
If ε>mr then mm rrxx == 00 ,     end {for}    end {if} 

11

11
1

1

~~
~~

~

++

++
+

+

=

=

k
T
k

k
T
k

k

mk

xBx
xAx

xx

λ
 

If ε
λ

λλ
>

−

+

+

1

1

k

kk  then 
2
1

11

1
1

)~~(

~

++

+
+ =

kk

k
k

xBx

x
x    end {for}   end {if} 

As algorithm 4 shows, there are 2 loops in this algorithm, one computes the 
eigenvector and is called outer iteration, the other solves the system of linear equation 
at each iteration, which is inner iteration. Numerical tests show that there are a 
significant relation between parameter m  and inner-outer iterations. 

 
Numerical test 2  
 
Let A  and B  are two 10001000×  matrices used in numerical test 1. We apply 

algorithm 2 to find the smallest eigenvalue with initial vector 1v  and the stopping 

criterion is set as 710−≤ε  where
1

1

+

+ −
=

k

kk

λ
λλ

ε . 

 
 
 

www.SID.ir



Arc
hi

ve
 o

f S
ID

 

      
Journal of Applied Mathematics,Islamic Azad university of Lahijan                                 Vol.3, NO.11, Winter2006 

 19

m  Inner iteration Outer iteration Total inner iteration Tim 
4 28 48 112 19.86 
6 15 47 90 13.70 
8 7 47 56 9.36 
10 5 47 50 9.04 
12 4 45 48 8.06 

 
By applying algorithm 2 and deflation process [4] we find 4 smallest generalized 

eigenvalue of pair ( A , B ). 
 

Fig 5  

Showing number required outer-iterations for compute 4 smallest generalized eigenvalue of pair ( BA, ) with accuracy
710−

. 

 
 
 
 
 
 
 
 

 
6. Weighted FOM- inverse vector iteration method 
Algorithm 3. Weighted FOM-inverse vector iteration method [4] 
Input initial vector 1x  whit 11 =x and tolerance ε and parameter m . 

1

11

11
1

xx
Bxx
Axx

m

T

T

=

=λ
 

For k=1,2,…do 
Compute mk AxBxr −=0  
For z=1,2,… do 
Choose the vector d  such as nd =

2
 and set )(ddiagD =  

Compute 
D

r0
~
=β and 

β~
~ 0

1
rv =  

Construct the D-orthonormal basis mV~ by the weighted Arnoldi process, 
starting with 1

~v  
Solve 1

~~ eYH mm β= , and set mkmmmm AxBxrYVxx −=+= ,~
0  

If ε>
2mr then mm rrxx == 00 ,    

end {for}    
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1
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~
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T
k

k
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k
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If ε
λ

λλ
<

−

+

+

1

1

k

kk  then stop 

Else 
2
1

11

1
1

)~~(

~

++

+
+ =

kk

k
k

xBx

x
x    end {for} 

    
Numerical test 3 for G-R 
Let A  and B  are two 10001000×  matrices used in numerical test 1. We apply 

algorithm 3 to find the smallest eigenvalue with initial vector 1v  and the stopping 

criterion is set as 710−≤ε  where
1

1

+

+ −
=

k

kk

λ
λλ

ε . 

m  Inner iteration Outer iteration Total inner iteration Tim 
2 30 29 60 53.04 
4 10 28 40 18.87 
6 6 27 36 12.49 
8 6 27 48 24.11 

 
 
Fig 6  
Comparing the total number of inner iterations needed to reach a desired accuracy for 12,10,8,6,4=m . By FOM inverse 

vector iteration method [7] and for 6,4,2=m  by W-FOM inverse vector iteration method which can be compared with the W-
F-Inverse method. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

By applying algorithm 3 and deflation process [4] we find 4 smallest generalized 
eigenvalue of pair ( A , B ). 
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Fig 7 

 Showing number required outer-iterations for compute 4 smallest generalized eigenvalue of pair ( BA, ) with accuracy
710−

. 

 
 
 
 
 
 
 
 
 

7. Comparison between FOM-Inverse and Weighted-FOM- Inverse and GR 
methods 
P Iteration Error Time 
GR method    
1 10 1.38e-9 17.1634 
2 10 1.7225e-14 16.7966 
3 37 9.3618e-5 62.0779 
4 47 0.0000157 78.6765 
 104 6.281e-5 174.7144 
Fom-inverse vector iteration method    
1 45 1.41e-7 8.06 
2 149 2.121e-7 72.67 
3 289 1.134e-7 141.18 
4 374 4.561e-7 178.114 
 857 2.1e-7 400.02 
WeightedFom-inverse vector iteration method    
1 27 1.91e-7 12.49 
2 65 6.23e-7 46.09 
3 113 3.123e-7 80.57 
4 177 1.1e-7 125.67 
 382 3.3e-7 264.82 

 
8.   Comments and conclusions. 

 
1) As we know there are some methods for computing the rest of eigenvalues, for 

example, shift method but the advantage of this kind of deflation compared to the shift 
method is that for any ),,2,1(2 PiPi K=> +λδ  the method converges to 

thP )1( + eigenvalue but in the shift method if we don’t use an appropriate shift value it 
might converge to another eigenvalue. 

2) To compute the largest eigenvalue of ( A , B ), we just need to compute the 
smallest eigenvalue of (- A , B ) and change the sign to obtain the largest eigenvalue of 
( A , B ). 

3) The vector d  will be chosen as
20

0 )(
r
r

nd i
i = . Such a choice favors the 

components of the residual which are far away from zero. 
4) This algorithm has the advantage of letting us choose an appropriate m , so as to              

reach the necessary accuracy, meaning the smallest inner-outer iterations needed 
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