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Plate and shell analysis using classical plate theory (CPT) has a lack of accuracy in predicting the 
influence of transverse deformation, because of its assumption that the line normal to the surface 
remains straight and normal to the midplane before and after deformation. The next revision by 
constant shear deformation theory or famous as first order shear deformation theory 
(CSDT/FOSDT) still suffers a disadvantage that has a constant value in the shear term that is called 
shear locking phenomenon. This matter has been corrected by higher order shear deformation theory 
(HOSDT) using a refined assumption that the line normal to the surface should be in a parabolic 
function and not normal to the midplane, but normal to the surfaces so that it fulfills the zero strain 
in the surface. The analysis of the bending part of laminated composite flat shell element is applied 
by higher order lamination theory (HOLT) that is adopted from HOSDT. This model is accurate for 
thicknesses variation and complex materials. HOLT model is implemented into finite element 
procedure to find deflection, stresses and internal forces. It can be concluded that the displacement 
and stresses in HOLT model are higher than FOLT the ones (first order lamination theory) in small 
ratio of a/h dan its result almost the same value for a/h ratio more than 10. In a square plate case, the 
displacement gets smaller if the fiber arranged into cross-ply sequence. Interlaminar stresses along 
the thickness is not distributed continuously, but they have certain modes that depend on the depth 
of point position, the lamina or layer number, fiber orthotropic angle of each layer and a/h ratio. 
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1. Introduction 

There are several models of plate and shell analysis. The first model is presented by Kirchoff and 

Love (1888) that is called classical plate theory (CPT). Actually CPT model is still adequate for 

very thin plate with the homogeneous and isotropic material. But for thicker plates and shells, 

this model has a serious shear problem that arises from its assumption that the line normal to the 

surface remains straight and normal to the midplane before and after deformation. Hence, CPT 

model neglected the transverse shear deformation that affected zero shear stress and strain in xz 

dan yz plane.  

Then this theory was improved by Reissner and Mindlin (1951) with the next model that is 

known as constant shear deformation theory or first order shear deformation theory (CSDT/ 

FOSDT). This model is based on the assumption that the line normal to the surface remains 

straight but necessarily normal to the midplane after deformation. This model has already 

considered shear deformation only in a constant term, and this could make what is called shear 

locking phenomenon. They also did not meet the zero shear strain requirement at the surface. 

Levinson (1980) corrected this problem by a refined assumption that the line normal to the 

surface should be in a parabolic function of the depth z and not normal to the midplane, but 

normal to the surface so that it fulfills the zero strain in the surfaces. This model is called higher 

order shear deformation theory (HOSDT). This model has a higher accuracy for both thin and 

thick plates and shells, homogeneous isotropic material or layered anisotropic ones. 

Based on these problems, it can be described that the work objective is to find the deflection and 

stresses of laminated composite plates in certain plies configuration in FOLT (first order 

lamination theory) and HOLT model. 

In order to make simplification, several conditions and basic assumptions are given: (1) The 

element is based on rectangular plate using HOLT model; (2) The properties of lamina is 

homogeneuous, elastic linear and tranversely isotropic with fiber angle and number of lamina 

variation; (3) Simple pinned boundary condition is used; (4) Dynamic and temperature is not 

considered in this analysis; (5) Normal stress in z direction is ignored (zz = 0); (6) Bonding 

among lamina is assumed strong enough to hold any delamination. 

 

2. Literature Review  

2.1. One Way Composite Material 

One way composite material consists of one-way fibers material as reinforcement that glued 

together in a matrix material. The direction of one way composites material that is called lamina 

is shown in Figure 1. Figure 2 shows one way bending and stress in the shell element. 
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Longitudinal dir.

Transverse dir. 

Matrix 
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In three dimensional element, stresses that occur in 6 face continuum cubic can be described by 6 

stress components, 3 normal stresses x, y, z, and 3 shear stresses xy=yx, xz=zx, yz=zy. All 

these stresses called three dimensional stresses. 

Figure 3 shows structural global tensor and material local stress if they have the same global and 

local axes. 

Considering fiber direction, unidirectional composite material is transversely isotropic material 

that has the same elastic component constants in 2 and 3 directions, because two perpendicular 

simetry planes have the same elastic constants. 
 

 

 

 

 

 

 

 

 

Figure 1. Lamina scheme (Hull, 1981) 
 

 

 

 

 

 

 

 

 

Figure 2. One way bending and stress in the shell element (y dominant bending direction) 
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Figure 3. Continuum stress tensor (Kriz, 2000) 

 

The relationship between stress and strain for transversely isotropic material hence can be shown as: 
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Fiber orthotropic angle  to the x and y axis shown in Figure 4. The local axis stress for  angle to 

the global axis is found by transforming structural global stress and strain component, {s} and 

{s} to the material local stress and strain, {m} and {m} as: 

{m}= }=[Ts {m}={m}=[Ts 
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Figure 4. Fiber angle  in composite flat shell element (Rikard, 2000) 

 

where: c = cos  and s = sin . The structural stress is shown below: 
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where:  

 Q  = transformed reduced stiffness matrix:  
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2.2. Lamination Analysis 

2.2.1. General 

Major constituents in a fiber-reinforced composite plates and shells are formed by the reinforcing 

fibers and a matrix, which acts as a binder for the fibers. The strength of a composite material 
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depends on the fiber strength and the matrix strength of the chemical bonds which holds them 

together. Usually composite plates and shells are arranged by several stacks of lamina called 

laminates that have certain orthotropic fiber angles. A microscopic zoom in m scale of a cross-

ply layered composite shown in Figure 5. Figure 6 shows the cross-ply arrangement of woven 

laminated composite and non-woven one.  

 

2.2.2. Composite Act Assumption 

In a composite plates or shells, it is assumed that every lamina has a full matrix interaction each 

other. Hence, they act as a non-homogen dan anisotropis laminates. This means that the bonds 

between two adjacent lamina surfaces are assumed strong enough to hold the shear stress so the 

displacement and or the strain through the thickness are assumed to be distributed continuously. 

 

2.3. Classical Lamination Theory 

Classical Lamination Theory (CLT) ignores transverse shear deformation in xz and yz plane that 

occurs between lamina. The lamina strain of CLT model is described as: 
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                                                      (7) 

Figure 7 shows the element laminates where n is the number of lamina and hk is the related 

lamina thickness kth and hk-1 is the previous lamina thickness (k-1). 

 

 

Figure 5. Fiber angle of laminated composite 0° and 90° in m (Kriz, 2000) 
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Figure 6. Fiber orientation in woven laminated composite (Kriz, 2000) 
 

2.4. Plates and Shells: Theory and Development 

Figures 7 and 8 show overall deformation, total strain and laminate nomenclature used in ABD 

matrix, respectively. Plates and shells element internal forces such as moment Mx, My, Mxy and 

shear forces Qx and Qy and normal forces Nx, Ny and Nxy are shown in Figure 9. 

CPT model rotation can be formulated as: 

                                                          xdx

dw
  ; ydy

dw
                                              (8) 

And the displacement field of CPT model in the x, y, and z direction is: 

                                              
dx

dw
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zv   ;  y,xww                                              (9) 

The total rotation of FOSDT model is: 
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                                 (10) 

 

Figure 7. Total strain (Matthews, 1991) 

 

 

 

 

 

Figure 8. Laminate nomenclature used in ABD matrix (Hyer, 1998) 
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Figure 9. Internal forces direction in the x, y, z axis (Szilard, 1974) 

 

While the FOSDT model displacement field can be described in x, y and z direction as: 

                                               x.zu   ; y.zv   ;  y,xww                                             (11) 

Otherwise, the third model, HOSDT, is based on the assumption that the deformed normal plane 

is in the parabolic line to approach an actual deformation. This model has shear transverse value 

and always fullfils the zero shear strain in the surfaces because the normal line perpendicular in 

both surfaces where the shell depth is z = ± h/2. The displacement field of HOSDT model in the 

x, y, z direction follow: 
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The normal line assumption differences among three models for undeformed and deformed 

section are given in Figure 10. The displacement direction, rotation and their derivative of 

HOSDT plates and shells model are shown in Figure 11. 

 

 

 

 

 

 

Figure 10. The assumption differences of the shell normal line among three models (Levinson, 1980) 

a-a    =  the undeformed normal line 

a’-a’  =  the deformed CST's normal (Kirchoff-Love) 

a’’-a’’= the deformed FOSDT's (Reissner-Mindlin) 

(straight line) 

a’’-a’’= the deformed HOSDT's (Levinson-Reddy) 

(parabolic bold line) 
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Figure 11. Displacement, rotation and their derivative (M. Levinson, 1980) 
 

The strain  and the shear rotation  in the xz and yz plane are: 
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Setting the zero shear strain xz and yz in the surfaces in Equation (13) for z= ± h/2, the kinematic 

variable x and y computed as: 
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Subsituting Equation (14) into Equations (12) and (13), results the strain {} of HOSDT model: 
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Then the stress {} of this model is found from strain {} in Equation (15) become: 
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Finally, the internal forces M, N and Q HOSDT model described as: 
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2.5. Laminated Composite Analysis (HOLT) 

Analysis of HOSDT model for laminated case is called HOLT (Higher Order Lamination 

Theory). There are shear stress component of xz and yz should be added into ABD matrix as an 

important modification. Hence, below are the internal forces of HOLT model: 

Archive of SID

www.SID.ir

www.SID.ir


T. Rochman et al. 

/ IJASE: Vol. 3, No. 1, July 2011 68

                    

where: 

                                                                    
where i, j = 1,2,6 and k, l = 4, 5. 

The Eij, Fij, Hij and Sij coefficient is higher order normal component, moment and shear 

respectively. The integration through the plates or shell thicknesses are modified for lamina 

homogenization objective, then results ABDEFH components as: 

                    

 

(22) 

(21) 

(20) 
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3. Methodology 

3.1. Problem Description 

The assumptions in solving the bending part of HOLT shell element model for laminated 

composite material are the same with basic assumptions in the previous, except that several 

assumptions should be added: 

1. Small deflection HOLT plate bending model, is used that have range 1/10 h – 1/5 h. 

2. Rectangular plate bending element with 5 DOF is used. 

3. Different shape function for displacement w and the rotation are used to avoid shear locking 

effect. 

 

3.2. Bending Part FE Formulation 

Each element has 4 nodals shown in Figure 12. 

 

 

Figure 12. Plate bending scheme (Weaver, 1989) 

 

Each nodal have 5 DOFs are w, dw/dx, 
dw/dy, x and y shown in Figure 13 below: 

 

 

 

Figure 13. Degree of freedoms of HOLT plate bending element 

 

The symbol of  is defined as:  

dw/dx

dw/dy 

w 

y 

x 
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2
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x h
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y

y h
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
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                                            (23) 

 

3.2.1. Interpolation Function 

In determining this section, we follow Liu's methodology for homogeneous case. Liu has 

formulated a good bending element, so that’s why we use his element. But it should be made a 

little modification in stiffness matrix, because the convention in the material literatures does not 

meet FEM literatures have in the sequence of xz and yz terms. It will be called Liu modified 

element. 

In order to make the reader easy and comfort in tracing the literature, it should be describe briefly 

in the following section. The displacement w used as an optimal interpolation function Si, while 

two rotations in Equation (23) use bilinear Lagrange interpolation function, Ni: 

                                                  

Equation (24) results   1x3w by multiplying   20x3N matrix with   1x20  vector: 

                                                                    .Nw                                            (25) 

where:  

                                                                 

From the Equation (26) it can be seen that the displacement w used [S] shape function, because it 

needs higher derivation of w, so the displacement shape function should have higher order too. 

 

 

(26) 

(24) 
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where r=x/a, s=y/b, while p, q and t2 is the variable parameters determined from the convergence 

requirement. The best result is found if the value of p=q=1 and t2=2. The f1, g and h1 function in 

Equation (27) can be defined as: 
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                                            (28) 

where t1 and t3 is dependent variables. 

Further detail of generalized strain vector {g}8x1 , [B]8x20 matrix and   20x1 displacement vector 

can be read in Liu’s paper. Strain component of HOLT model, {}5x1 is found by multiplying an 

operator matrix [T(z)]5x8 by generalized strain vector {g}8x1. 

 

                                                                    g.zT                                                                 (29) 

T(z) is a displacement u, v, w shape function operator of HOSDT model.  T(z) operator is: 
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where: 

f(z)= 









2

2

h3

z4
1 and f’(z) is its derivative. The element stiffness matrix, [k]20x20 is determined by 

multiplying [B]T
20x8 matrix and [D]8x8 matrix and then multiplied by the result with [B]8x20 

matrix. 

                                                          [k]e = [B]T [D] [B] dx dy                                                   (31) 

Where [D]8x8 is the homogenized material matrix found by multiplying [T(z)]T
8x5 matrix with 

 Q 5x5 matrix and then multiplying the result by [T(z)]5x8 matrix, and integrate the result through 

the lamina thicknesses. The [D]8x8 matrix is found by sum the results above, hence: 

                                                             



n

1

h

h

T
k

1k

dz)z(TQ)z(TD                                                 (32) 

Where n is lamina number, while hk-1 and hk is the bottom and top coordinates at the kth lamina 

respectively. Hence [D] in Equation (32) is the material homogenized matrix for laminated 

composite materials. Equation (31) can be solved by using 2x2 Gauss quadrature become: 

                         
 


n

1j

n

1i

T
ji )57735.0,57735.0(BD)57735.0,57735.0(BWW.h.Jk  

 

4. Results and Discussions  

4.1. Benchmark Data 

The calculation data used are of two types. First, isotropic material data for verification and 

validity between exact result by Timoshenko from linear elasticity theory and the HOSDT model, 

SAP90 software and also Stardyne thick and thin Element from STAADPro2000 software. 

Second, the laminated composite data follow Singh analysis, as a benchmark validation to 

compare the result of HOLT model, FOLT model and also the exact results from the elasticity 

theory. 

 

4.1.1. Isotropic Data 

Plate is simply supported in a square geometric a=b=1, plate thicknesses is varied from 0.25 

through 0.01, Poisson ratio =0.25, and Young elastic modulus, E=1. There are three types of 

loading; sinusoidal load, distributed load and concentrated point load.  
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4.1.2. Laminated Composite Material Data 

A symmetric laminate is arranged into four layers with the stack sequence of cross-ply fiber angle 

from top fiber respectively [0°/90°/90°/0°]. These example data use Pagano's analysis as an exact 

benchmark. The characteristic lamina material data is illustrated in Table 1.  

  

Table 1. Characteristic lamina material data (Krishnamoorty, 1987) 

E1 (GPa) E2 (GPa) 12 21 G12 (GPa) G13 (GPa) G23 (GPa) 

175 7 0.25 0.01 3.5 3.5 1.4 

 

4.1.3. Plate Geometric Data 

The plate geometric data will be observed as: (1) A square plate, where a/b=1; (2) The value of 

a/h ratio are 4, 5, 10, 20, 50 and 100 respectively; (3) The fiber angle is varied at intervals 0° to 

90° (with 15° increments); (4) Simply supported condition at the entire edge of the plate; (5) The 

elements discretization is varied as 4, 9, 16 and 25 elements to check the convergence. 

 

4.2. Analysis Results 

4.2.1. Isotropic Case 

The maximum deflection result, wo of an isotropic plate is shown in Tables 2 to 4. At the ratio of 

a/h=4, the linear elasticity HOSDT model compared with Timoshenko, SAP90, Stardyne Thick 

Element and Stardyne Thin Element results differ as much as 24.68 %, 17.27 %, -20.08 % dan 

26.76 % respectively. For sinusoidal loading, HOSDT model result lies between SAP90 and 

Stardyne-thick result from STAADPro2000 software at the small a/h ratio and almost the same 

with Timoshenko and Stardyne-thin results at the large ratio of a/h. 
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Figure 14. The central deflection wo and a/h ratio relationship for sinusoidal loading 
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At the ratio of a/h=4, the differences of linear elasticity HOSDT model compared with 

Timoshenko, SAP90, Stardyne Thick Element and Stardyne Thin Element are 24.68 %, 26.47 %, 

-5.80 % dan 26.61 %, respectively. 

For distributed loading, HOSDT model results lie between Stardyne-Thick and Timoshenko 

results at the small a/h ratio but approaching Timoshenko's result at the large ration of a/h. 

At the ratio of a/h=4, the linear elasticity HOSDT model compared with Timoshenko, SAP90, 

Stardyne Thick Element and Stardyne Thin Element results differ as much as 17.76 %, 14.40 %, -

67.96 % dan 15.20 %, respectively. 

 

Table 2. The central deflection wo (sinusoidal loading) in simply supported isotropic plate 

a/h HOSDT Elasticity 
Timoshenko   

q. a4 / (4π4D) 

SAP90 

(4x4) 

Stardyne Thick 

(4x4) 

Stardyne Thin 

(4x4) 

4 2.45342 1.84787 2.0297 2.946 1.797 

5 4.36715 3.60912 3.96425 5.238 3.510 

10 30.3918 28.8729 31.7141 35.991 28.081 

20 234.023 230.983 253.712 275.133 224.647 

50 3616.72 3609.12 3964 4241.353 3510.111 

100 28888.1 28873 31710 33864.47 28080.88 
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Figure 15. Central deflection wo and a/h ratio relationship for distributed loading 
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Table 3. Central deflection wo (distributed loading) in simply supported isotropic plates 

a/h 
HOSDT 

Elasticity 

Timoshenko 4.q. a4 

/(4π6D) 

SAP90 

(4x4) 

Stardyne Thick 

(4x4) 

Stardyne Thin 

(4x4) 

4 3.97734 2.99566 2.92459 4.208 2.919 

5 7.07973 5.8509 5.71211 7.511 5.702 

10 49.2694 46.8071 45.6969 51.019 45.616 

20 379.384 374.457 365.575 382.513 364.927 

50 5863.21 5850.9 5712 5829.631 5701.977 

100 46831.8 46807.2 45700 46445.99 45615.81 

 
 

Tabel 4. Central deflection wo (concentrated loading) in simply supported isotropic plate 

a/h 
HOSDT 

Elasticity 

Timoshenko 4.q. a4 

/(4π6D) 

SAP90       

(4x4) 

Stardyne Thick 

(4x4) 

Stardyne Thin 

(4x4) 

4 9.81372 8.0712 8.400912 16.483 8.322 

5 17.4685 15.764 16.40803 26.947 16.253 

10 121.567 126.112 131.2642 156.276 130.025 

20 936.094 1008.9 1019 1115.315 1040.197 

50 14466.9 15764 16410 16760.63 16253.09 

100 115552 126112 131300 133270 130020 
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Figure 16. Central deflection wo and a/h ratio relationship for concentrated loading 
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For concentrated loading, HOSDT model results are larger than SAP90 at ratio of a/h=4 and 

a/h=5, but they are smaller than all the models at a/h ratio between range 10 and 100. 

 

4.2.2. Laminated Composite Case 

As for the laminated composite plate the results shown in Table 5 below: 

 
Table 5. Non-dimensional central deflection w and stress  in laminated composite plate [0º/90º]S,  

a/h Analysis w* 
 

   

4 

Exact 1.9540 0.7200 - 0.2920 0.2190 0.0467 

HOLT 1.9029 0.7123 0.0715 0.2244 0.2137 0.0463 

FOLT 1.7100 0.4059 0.0689 0.1963 0.1398 0.0308 

5 

Exact 1.4685 - - - - - 

HOLT 1.4235 0.6924 0.0597 0.1899 0.2460 0.0304 

FOLT - - - - - - 

10 

Exact 0.7434 0.5990 - 0.1960 0.3010 0.0276 

HOLT 0.7147 0.5523 0.0371 0.2243 0.2492 0.0268 

FOLT 0.6628 0.4989 - 0.1292 0.1667 0.0241 

20 

Exact 0.5173 0.5430 - 0.1560 0.3280 0.0230 

HOLT 0.5071 0.5406 0.0326 0.1933 0.2639 0.0228 

FOLT 0.4912 0.5273 - 0.1087 0.1749 0.0221 

50 

Exact 0.4446 - - - - - 

HOLT 0.4434 0.5281 0.0168 0.1175 0.2735 0.0216 

FOLT - - - - - - 

100 

Exact 0.4385 0.5390 - 0.1380 0.3390 0.0213 

HOLT 0.4343 0.5239 0.0087 0.1174 0.2883 0.0246 

FOLT - - - - - - 

 

The meaning of w* and * in the Table 5 are the non-dimensional deflection and stresses: 
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The meaning of w(a/2,
b/2) is the maximum deflection wo at the plate center x=a/2 and y=b/2. 

While 12(0,0,+h/2) is shear stress in the plane 1-2 at plate edge where x=0 and y=0 and the plate 

top surface z=+h/2. 

 

4.3. Parametric Study 

In the discussion will be shown the graphics that state the correlations among maximum or 

central plate deflection, normal and shear stresses with the fiber angle, lamina number, and a/h 

ratio parameters. 

The non-dimensional plate central deflection using the discretization of 4, 9, 16, and 25 elements 

show the result convergence in Figure 17. 
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Figure 17. Element discretization number and plate central deflection relationship 

 

Relative error percentage of HOLT model shown in Table 6: 
 

Table 6. Deflection and relative error in HOLT model 
Element number Deflection w* Relative error (%) 

4 

9 

16 

25 

Exact elasticity theory 

0.6951 

0.7187 

0.7286 

0.7320 

0.7343 

6.497175141 

3.322571967 

1.990852838 

1.533494754 

0 
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For the sake of efficiency 16 element discretizations were used because they have adequate 

accuracy. The discretizations more than 16 elements will be costly in computer memory and 

time. 
 
4.4. Discussion 

4.4.1. Maximum Deflection 

The central plate maximum deflection found by three models shown in Figure 18. The larger 

plate length dimension a the larger the deflection value w (dimensional), but non-dimensional 

value of deflection w* in Equation (33) get smaller in Figure 18. The maximum deflection in 

HOLT model approximate the exact results found from elasticity theory in all a/h ratio. The 

larger a/h ratio then three models coincide the results as shown in Figure 18. Otherwise, at the 

small a/h ratio, the deflection HOLT model and FOLT model differ significantly as shown in 

Figure 19. Figure 20 shows the relationship between fiber angle in 2nd and 3rd plies using 

symmetric angle-ply arrangement [0°/°/°/0°] and central deflection with varying a/h ratio. 
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Figure 18. The relationship between a/h ratio and central deflection for three models 
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Figure 19. The difference of the deflection w* get significant at interval ratio of a/h=4 to a/h=10 
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Figure 20. Fiber angle and non-dimensional central deflection relationship of 2nd and 3rd plies with varying 

a/h ratio 

It can be seen on Figure 20 that deflection gets smaller if orthotropic fiber angle has 

perpendicular angle toward each other =0° or =90° or cross-ply laminate arrangement and vice 

versa, the deflection gets larger at the fiber angle ranged 0°<<90° or angle-ply laminate 

configuration. 
 
4.4.2. Stresses 

Stress results from HOLT model agree well with Pagano's exact result derived from elasticity 

theory. FOLT model suffer inaccuracy at the small a/h ratio. However at the large a/h all models 

have coincided the results due to a small and negligible shear deformation in the thin plates case 

as shown and described in Figure 21 for principal normal stress in 1 direction. 

The interlaminar principal normal and shear stresses distribution through the thickness for a 

symmetric cross-ply [0°/90°/90°/0°] arrangement using layer number n=4 in one of the loading 

case is shown in Figure 22 to Figure 26. 
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Figure 21. The a/h ratio and 1 relationship at x=a/2, y=b/2 and z= h/2 for three models 
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Figure 22. Principal Stress 1 (

a/2,
b/2,z) for n=4 layers [0°/90°]s 
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Figure 23. Principal Stress 2 (

a/2,
b/2,z) for n=4 layers [0°/90°]s 
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Figure 24. Transverse shear stress 23 (

a/2,
b/2,z) for n= 4 layers [0°/90°]s 
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Figure 25. Transverse shear stress 13 (

a/2,
b/2,z) for n= 4 layers [0°/90°]s 
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Figure 26. Principal shear stress 12 (

a/2,
b/2,z) for n= 4 layers [0°/90°]s 

 

In the same structural dimension, stress patterns will vary and depend on the depth of point 

position, lamina number, fiber angle of each lamina, thickness and the heterogenity properties 

each lamina. 

 

5. Conclusions 

Regarding these studies it can be concluded that: 

1. The deflection, normal and shear stresses in the bending part of present Liu-modified shell 

element in the HOLT model especially in rectangular laminated composite plates, have 

larger results compared with FOLT model at the small a/h ratio and almost the same at a/h 

ratio larger than 10.  

2. The plate will be stiffer and or the deflection smaller if a symmetric cross-ply laminates (fiber 

angle 0° and 90° arrangement) is used.  
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3. The interlaminar stresses through the thickness is not distributed continuously, but they have 

certain patterns depending on depth of the point observed, lamina number, fiber angle of 

each layer, thickness and their heterogenity material properties, and a/h ratio. 

The point can be suggested is that using higher order Gauss quadrature will reduce running 

analysis time without any refined elements required and without any harm to accuracy. It must be 

considered that using another lamination theory such as layerwise and zigzag theory – while 

keeping procedure efficient– so symmetric, odd and even lamina number inaccuracy can be 

avoided. Any other  type of elements should be compared in both aspect of efficiency and 

accuracy like a solid shell element that they do not suffer any locking. Further research still 

needed to observe the temperature, dynamics, impacts, delamination, crack, buckling and 

postbuckling or a combination of them. Do they have a consistent result at all composite 

materials? None of shell elements pass both numerical and experimental tests as well. 
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