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Diversity between shell-like and beam-like
regions for a cantilever cylindrical shell under
follower forces
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Abstract

The effect of length and thickness on dynamic stability analysis of cantilever cylindrical shells under follower forces
is addressed. Beck's, Leipholz's, and Hauger's problems were solved for cylindrical shells with different
length-to-radius and thicknesses-to-radius ratios using the Galerkin method. First-order shear theory was used, and
rotary inertias were considered in deriving the differential equations. Critical circumferential and longitudinal mode
numbers and loads were evaluated for each case. Diagrams containing nondimensional load parameters vs. length
and thickness parameters were plotted for each problem. For some shells with small length-to-radius ratios, flutter
occurred in high longitudinal mode numbers where the first-order shear theory may not suffice to accurately
evaluate the deformations. However, for long and moderately thick shells, there are ranges in which the shell can
be analyzed using the simplified equivalent beam model.
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Introduction
A prevailing position of potential instability is when a
structure, especially a column, a reservoir, or an aero-
space structure such as a projectile, undergoes an axial
follower force. The most well-known physical state of fol-
lower force is Beck's problem, in which a concentrated
follower force is applied at the free end of a cantilever.
Practical applications of this problem include the thrust
applied at the end of a projectile or missile by a rocket,
the thrust applied on the body of aircraft structures by a
jet engine or a gas turbine rotor, the gripping force in
disk brakes, the eccentric load exerted on a platform by
a tip mass, etc. Also, Leipholz's and Hauger's problems
can be applied to cantilever reservoirs conveying fluid
with constant or linearly varying velocity, respectively
Simkins and Anderson (1975); Seyranian and Elishakoff
(2002); Simitses and Hodges (2006). Two basic types of
instability may exist in the case of a follower force: one
characterized with zero frequency, called divergence,
and the other with nonzero frequency, known as flutter.

However, the prevailing instability type in these struc-
tures is flutter, which occurs in high-speed fluid flows
Elfesoufi and Azrar (2005). When undergoing follower
forces, the only instability type in structures with moder-
ate thickness amounts is flutter, which is, for the most
part, limited to columns, reservoirs, and aerospace struc-
tures, especially projectiles such as missiles Park and
Kim (2000).
Another boundary condition in structures under fol-

lower forces is free-free at the two ends. Free-free beams
or shells can also be analyzed with the equivalent canti-
lever model, which is rather overestimating Seyranian
and Elishakoff (2002).
Most of the research on the three above-mentioned

problems is concerned with beams and plates. Sugiyama
and Kawagoe (1975) studied the dynamic stability of elas-
tic columns with different boundary conditions under the
simultaneous effect of conservative and nonconservative
(follower) axial loads using the finite difference method.
Kounadis and Katsikadelis (1976) considered the effects of
shear deformation and rotary inertia on the critical Beck's
load for columns with open sections and different slender-
ness ratios. Sugiyama and Mladenov (1983) studied the
dynamic stability of elastic columns under Hauger's
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loading. Ryu and Sugiyama (1994) studied the dynamic
stability of cantilever Timoshenko beams under Beck's
loading by modeling the effect of the rocket-throwing en-
gine as a follower load and a concentrated mass.
Altman and De Oliviera (1988), (1990) studied the

dynamic stability of cantilever cylindrical and conical
panels with and without slight internal damping. They
asserted that due to numerical defects, the critical load
calculated becomes occasionally very small. To over-
come this problem, a slight damping matrix propor-
tional to the stiffness matrix can be used in the
solution Altman and De Oliviera (1988), (1990). The
dynamic stability of thin cylindrical panels with differ-
ent boundary conditions under concentrated and dis-
tributed follower forces was first studied by Bismark
Nasr (1995) using the finite element method with C1

continuity. The dynamic stability of free-free cylin-
drical shells under end-follower forces was studied by
Park and Kim (2000). They used the finite element
method with first-order shear theory (FST) theory.
They extracted the critical loads, critical sequential
modes, and critical circumferential mode numbers for
different length-to-radius (L/R) and thickness-to-radius
(h/R) ratios. They concluded that FST is valid only for
L/R > 20, and for L/R > 40, the cylindrical shell can be
analyzed with the beam theory in certain regions of h/
R. The same problem for cylindrical shells was studied
by considering the fluid-shell interaction by Jung et al.
(2005). They gathered that, in most cases except those
with very low filling ratios, the presence of liquid in the
cylinder increases the stability. Bochkarev and Mat-
veenko (2008) also studied the dynamic stability of cy-
lindrical shells conveying fluid for free-free and
clamped-free boundary conditions using the perturb-
ation of velocity potential method.
Although rockets, missiles, and fluid reservoirs are

mostly cylindrical shells rather than beams, to the best
of the authors' knowledge, it seems the dynamic stabil-
ity of complete cylindrical shells undergoing follower
forces has not been studied to the sufficient extent.
Specifically, actual shell-like and beam-like geometric
regions in cylindrical shells for all three kinds of fol-
lower forces have not been sophisticatedly defined for
cantilever structures.
In the present research, the dynamic instability of

cantilever cylindrical shells is solved for Beck's, Lei-
pholz's, and Hauger's problems to find out the geo-
metrical regions in which the structure acts as a
general shell-like or simplified beam-like model. Flut-
ter loads are plotted for different L/R and h/R ratios.
Tables containing critical sequential modes and crit-
ical circumferential mode numbers are collected for
different L/R and h/R ratios. For each L/R, specific h/R
regions could be found in which the structure can be

analyzed simply with an equivalent beam model. This
region is found to be almost independent of the load-
ing scheme (i.e., almost the same in Beck's, Leipholz's,
or Hauger's problems).

Methods
Formulation
Consider a cylindrical shell with radius R, thickness h,
and length L. In case that the coordinate system is taken
to be as shown in Figure 1a, then using FST, the deform-
ation components of any point can be written as follows
Reddy (2007):

u x; θ; z; tð Þ ¼ u0 x; θ; tð Þ þ zφx x; θ; tð Þ
v x; θ; z; tð Þ ¼ v0 x; θ; tð Þ þ zφθ x; θ; tð Þ
w x; θ; z; tð Þ ¼ w0 x; θ; tð Þ;

ð1Þ

where u0, v0, and w0 are the displacement components
of the middle surface, and φx and φθ are changes in the
slope of the normal to the middle surface around θ and
x axes, respectively. The strain resultants per unit length
for a cylindrical shell are shown in Figure 1b.

Figure 1 The coordinate system (a) and strain resultants (b)
considered for cylindrical shells.
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For the strain components, Love's hypotheses are used.
These hypotheses express the following Reddy (2007):

– The transverse normal is inextensible.
– Normals to the reference surface of the shell before

deformation remain straight, but not necessarily
normal, after deformation.

– Deflections and strains are infinitesimal.
– The transverse normal stress is negligible (plane-

stress state is invoked).

Using Equation 1 and by considering Love's hypoth-
eses expressed above, the strain tensor elements can be
written as follows Reddy (2007):

ε1 ¼ ε01 þ zε11; ε2 ¼
1

1þ z=R
ε02 þ zε12
� �

ε6 ¼ ω0
1 þ zω1

1 þ
1

1þ z=R
ω0
2 þ zω1

2

� �

ε4 ¼ 1
1þ z=R

ε04; ε5 ¼ ε4;

ð2Þ

where the superscripted components are defined as fol-
lows Reddy (2007):

ε01 ¼
∂u0
∂x

; ε02 ¼
1
R

1
R
∂v0
∂θ

þ ∂R
∂x

u0 þ w0

� �

ε04 ¼
1
R

1
R
∂w0

∂θ
þ Rφθ � v0

� �
; ε05 ¼

∂w0

∂x
þ φx

ω0
1 ¼

∂v0
∂x

;ω0
2 ¼

1
R2

∂u0
∂θ

ε11 ¼
∂φx
∂x

; ε12 ¼
1
R2

∂φθ
∂θ

ω1
1 ¼

∂φθ
∂x

;ω1
2 ¼

1
R2

∂φx
∂θ

:

ð3Þ

The stress resultant vectors in unit length (of the shell
circumference), N, M, and Q, can be obtained in terms
of strain components using the ABD matrix as follows
Reddy (2007):

Nf g
Mf g

� �
¼ A½ �

B½ �
B½ �
D½ �

� �
ε0f g
ε1f g

� �
; ε0f g ¼

ε01
ε02
ε06

8<
:

9=
;;

ε1f g ¼
ε11
ε12
ε16

8<
:

9=
;; ε06 ¼ ω0

1 þ ω0
2; ε

1
6 ¼ ω1

1 þ ω1
2

Q2

Q1

� 	
¼ Ks

A44

A45

A45

A55

� �
ε04
ε05

� 	
;

ð4Þ

where the components are defined as follows Reddy
(2007):

Aij;Bij;Dij
� � ¼

Zh=2

�h=2

Sij zð Þ 1; z; z2
� �

dz; i; j ¼ 1; 2; 6ð Þ

Aij ¼
Zh=2

�h=2

Sij zð Þdz; i; j ¼ 4; 5ð Þ

S11 ¼ S22 ¼ E
1� υ2

; S12 ¼ S21 ¼ υE
1� υ2

;

S44 ¼ S55 ¼ S66 ¼ E
2 1þ υð Þ ;

ð5Þ

where Ks is the shear correction factor, which is π2/12
for cylindrical shells Park and Kim (2000), and υ is
Poisson's ratio, which was taken as 0.3 (for mild steel)
in this research.
In order to derive the governing equations of motion,

Hamilton's principle is used as follows Reddy (2007):

ZT

0

δK � δU þ δWnc½ �dt ¼ 0; ð6Þ

where δK and δU are variations of kinetic energy and
strain energy, respectively, defined as follows:

δK ¼
ZL

0

Z2π

0

I0 _u0δ _u0 þ _v0δ _v0 þ _w0δ _w0ð Þ½

þ I1 _φxδ _u0 þ _u0δ _φx þ _φθδ _v0 þ _v0δ _φθð Þ
þI2 _φxδ _φx þ _φθδ _φθð Þ�Rdxdθ

δU ¼
ZL

0

Z2π

0

Nxδε
0
1 þMxδε

1
1 þ Nθδε

0
2 þMθδε

1
2




þ Nxθδω
0
1 þ Nθxδω

0
2

� �þ Mxθδω
1
1 þMθxδω

1
2

� �
þQθδε

0
4 þ Qxδε

0
5

�
Rdxdθ

Ii ¼
Zh=2

�h=2

ρ zð Þ 1þ z
R

� 
zð Þidz; i ¼ 0; 1; 2ð Þ ð7Þ

where the dot superscript shows differentiation with re-
spect to time. δWnc is the variation of the work done by
nonconservative forces. δWnc in Beck's, Leipholz's, and
Hauger's problems for cylindrical shells are obtained
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after integration by parts as follows Simitses and Hodges
(2006; Altman and De Oliviera (1988); Park and Kim
(2000):

δWnc ¼ ��P
ZL

0

Z2π

0

∂2v
∂x2

δvþ ∂2w
∂x2

δw

� �
Rdxdθ

for Beck’s problem; ð8Þ

δWnc ¼ ��p
ZL

0

Z2π

0

L� xð Þ ∂2v
∂x2

δvþ ∂2w
∂x2

δw

� �
Rdxdθ

for Leipholz’s problem; ð9Þ

δWnc ¼ � �g
2

ZL

0

Z2π

0

L� xð Þ2 ∂2v
∂x2

δvþ ∂2w
∂x2

δw

� �
Rdxdθ

for Hauger’s problem; ð10Þ

where �P ¼ P=2πR , �p ¼ p=2πR , and �g ¼ g=2πR are the
forces per unit length of the shell circumference, on the
premise that the axial stress is uniformly distributed
along the thickness. We note that �p and �g are forces
per unit length and unit square length of the shell, re-
spectively. Stated another way, if the resultant force per
unit length of the shell cross section circumference is
of an equal magnitude �P in all three cases, then �p and
�g will be �P=L and 2�P=L2, respectively. Figure 2 includes
the scheme of each follower loading.
Thus, Equations 8, 9 and 10 can be rewritten as fol-

lows:

δWnc ¼ ��P
ZL

0

Z2π

0

∂2v
∂x2

δvþ ∂2w
∂x2

δw

� �
Rdxdθ

for Beck’s problem; ð11Þ

δWnc ¼ ��P
ZL

0

Z2π

0

1� x
L

�  ∂2v
∂x2

δvþ ∂2w
∂x2

δw

� �
Rdxdθ

for Leipholz’s problem; ð12Þ

δWnc ¼ ��P
ZL

0

Z2π

0

1� x
L

� 2 ∂2v
∂x2

δvþ ∂2w
∂x2

δw

� �
Rdxdθ

for Hauger’s problem: ð13Þ

In order to derive the equations of motion correctly, an
additional constraint equation must be added to δU as
follows:

Z Z
Mθx

R
þ Nθx � Nxθ

� �
δφnRdxdθ; ð14Þ

where δφn denotes the rotation about the transverse
normal to the shell surface. For thin shells, Mxθ =Mθx,
Nxθ =Nθx. Using Equation 2 to write the strain compo-
nents of Equation 3 in terms of displacements, the
following system of differential equations will be
derived:

Zt2
t1

Z2π

0

ZL

0

∂Nx

∂x
þ 1
R

∂
∂θ

Nxθ � 1
2R

Mxθ

� �
� F xð Þ ∂

2u0
∂x2

�

� I0
∂2u0
∂t2

þ I1
∂2φx
∂t2

� �	
dxRdθdt

þ
Z t

0

Z2π

0

�Nx½ �
L

0
Rdθdt ¼ 0

δv0 :
Zt2
t1

Z2π

0

ZL

0

∂
∂x

Nxθ þ 1
2R

Mxθ

� �
þ 1
R
∂Nθ

∂θ
þ Qθ

R

�

�F xð Þ ∂
2v0
∂x2

� I0
∂2v0
∂t2

þ I1
∂2φθ
∂t2

� �	
dxRdθdt

þ
Z t

0

Z2π

0

�Nxθ½ �
L

0
Rdθdt ¼ 0

δw0 :

Zt2
t1

Z2π

0

ZL

0

∂Qx

∂x
þ 1

R
∂Qθ

∂θ
� Nθ

R
þ q � F xð Þ ∂

2w0

∂x2

�

�I0
∂2w0

∂t2

	
dxRdθdt þ

Z t

0

Z2π

0

�Qx½ �L0Rdθdt ¼ 0

δφ1 :
Zt2
t1

Z2π

0

ZL

0

∂Mx

∂x
þ 1
R
∂Mxθ

∂θ
� Qx � I2

∂2φx
∂t2

��

þI1
∂2u0
∂t2

�	
dxRdθdt þ

Z t

0

Z2π

0

�Mx½ �L0Rdθdt ¼ 0

δφ2 :
Zt2
t1

Z2π

0

ZL

0

∂Mxθ

∂x
þ 1
R
∂Mθ

∂θ
� Qθ � I2

∂2φθ
∂t2

��

þI1
∂2v0
∂t2

�	
dxRdθdt þ

Z t

0

Z2π

0

�Mxθ½ �L0Rdθdt ¼ 0;

ð15Þ
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where []0
L denotes the value at x = 0 subtracted from the

value at x = L, and F(x) is �P , �P 1� x=Lð Þ, and �P 1� x=Lð Þ2
in Beck's, Leipholz's, and Hauger's problems, respectively.
Since the mode shapes used in the present research do
not satisfy natural boundary conditions, the boundary
equations have been added to the domain equations. After
replacing the stress resultants by their strain equivalents
(Equation 4) and replacing strain components in terms of
deformations (Equation 1), the following differential
operators will be derived:

Zt2
t1

Z2π

0

ZL

0

L½ � Δf gdxþ L0½ � Δf g½ �L0

0
@

1
ARdθdt ¼ 0f g;

Δf g ¼ u0; v0;w0; φx; φθf gT ð16Þ

where L and L0 matrices are differential operators of
the domain and boundary, respectively, whose elements
are defined in the Appendix.

Solution method
It can be proved that all of the equations are orthogonal
in terms of θ if the displacements are defined using al-
ternative sine and cosine functions as stated in Equation
17. Thus, we can choose base functions and mode shape
functions as follows:

u0 ¼
Xq

j¼1
Uj xð Þ cos nθð Þeωt;Uj xð Þ ¼ a1j ψ

1
j xð Þ

v0 ¼
Xq

j¼1
Vj xð Þ sin nθð Þeωt;Vj xð Þ ¼ a2j ψ

2
j xð Þ

w0 ¼
Xq

j¼1
Wj xð Þ cos nθð Þeωt;Wj xð Þ ¼ a3j ψ

3
j xð Þ

φx ¼
Xq

j¼1
Xj xð Þ cos nθð Þeωt;Xj xð Þ ¼ a4j ψ

4
j xð Þ

φθ ¼
Xq

j¼1
Yj xð Þ sin nθð Þeωt ;Yj xð Þ ¼ a5j ψ

5
j xð Þ:

ð17Þ

The superscripts denote functions corresponding to
u0, . . ., and φθ, and aj

i (i = 1. . .5) are the unknown coeffi-
cients that could be determined by exerting any approxi-
mation method such as the Galerkin method. For the
mode shape functions, ψj

i(x) (i = 1. . .5) that satisfy the
essential boundary conditions of the cantilever cylinder,
the following polynomials have been taken (Altman and
De Oliviera, 1988):

ψ1
j ¼ ψ2

j ¼ xj;ψ3
j ¼ xjþ1;ψ4

j ¼
dφ3j
dx

;ψ5
j ¼ ψ3

j : ð18Þ

After application of the Galerkin method, stiffness and
mass matrices can be defined as functions of n. The
stiffness matrix is also a function of �P . The equations
obtained by the application of the so-called generalized
Galerkin method are algebraic equations in terms of aj

i

(i = 1. . .5). Setting the determinant of the coefficient
matrix to zero to impose the condition of nontrivial so-
lution, as stated in Equation 19, ω will be obtained:

det K �P ;nð Þ þ ω2M nð Þ
� 

¼ 0: ð19Þ

ω is a complex number with a zero real part until the
shell loses its stability under the applied follower forces.
As soon as instability occurs, the real part begins to become
positive or negative. In order to facilitate verification for
future works, the nondimensional load parameter βs for the
shell model can be considered as the comparator, which is
defined as follows Park and Kim (2000):

βs ¼
1� ν2

Eh
�P: ð20Þ

Figure 2 Schematic shape of follower loading. (a) Beck's
problem, (b) Leipholz's problem, (c) Hauger's problem.
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Calculations in the present study that demonstrated the
optimum number of terms needed for convergence in
the Galerkin method is 6, which is confirmed in the
study of Altman and De Oliviera (1988). The ‘Free vibra-
tion of shells’ and ‘Flutter of very long shells (equivalent
beam model)’ subsections comprise verification of results
with previous works.

Free vibration of shells
The minimum natural frequency (pertaining to the
first mode) vs. the circumferential mode number for a
shell with the following properties is shown in Figure 3.
The results were verified with those of the work of
Leissa (1973).

Flutter of very long shells (equivalent beam model)
When the imaginary part of the natural frequency (ω)
of two sequential modes becomes zero and the real
part gets greater than zero, the vibration amplitude

approaches infinity and divergence occurs. Alterna-
tively, when the imaginary parts of the natural fre-
quency of two sequential modes become equal and the
real part gets greater than zero, the vibration ampli-
tude approaches infinity and flutter occurs. Results
demonstrated that instability under follower forces can
be flutter or divergence. However, flutter always takes
place before divergence in shells with moderate thick-
nesses. In order to verify the present computational
approach, the problem was firstly solved for long
shells, and the results were compared with those
obtained with the beam model. The nondimensional
load and frequency parameters in the beam model
have been defined in the literature as follows Simitses
and Hodges (2006):

βb ¼
PL2

EI
;Ωb ¼ ωL2

ffiffiffiffiffi
μ

EI

r
ð21Þ

Figure 4 Variation of the imaginary and real parts of Ωb vs. βb
for Beck's problem.

Figure 5 Variation of the imaginary and real parts of Ωb vs. βb
for Leipholz's problem.

Figure 3 Minimum natural frequency (Hz) for free vibration of
cantilever shell vs. circumferential mode number (R/h = 400,
L/R = 2.23, h = 0.254 mm).

Figure 6 Variation of the imaginary and real parts of Ωb vs. βb
for Hauger's problem (βbcr(De Rosa and Franciosi) = 75.4).
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order to analyze very long shells with the equivalent
beam model, the following identity can be used:

A ¼ 2πRh; I ¼ πR3h⇒
I

AL2
¼ 1

2
R
L

� �2

: ð22Þ

Therefore, the relation between the two nondimen-
sional loads is as follows:

βb ¼
2 L=Rð Þ2
1� ν2

βs: ð23Þ

Figures 4, 5, and 6 show the results for Beck's, Lei-
pholz's, and Hauger's problems, respectively. In all three
figures, the minimum flutter load occurs between the
first and second longitudinal modes. Thus, the upper
and lower branches of Im(Ωb) pertain to the first and
second longitudinal modes, respectively. Present results
for Hauger's problem have been compared with those of
the work of De Rosa and Franciosi (1990). However,

based on the alternative definition of Hauger's loading in
the work of De Rosa and Franciosi (1990), twice the load
calculated in the present research is given in that
reference.

Results for shells
Tables 1 and 2 include critical circumferential mode
numbers (ncr) and critical longitudinal mode numbers
(Mcr), those corresponding to the minimum flutter load,
for the three problems of shells with different L/R and
h/R ratios. The shell has the following geometric para-
meters (which belong to mild steel):

h ¼ 0:01 m;E ¼ 2:03� 1011 Pa; ν ¼ 0:3;

ρ ¼ 7; 850 kg=m3:

Tables 1 and 2 reveal the following results:

– For a given L/R and h/R ratio, ncr is identical for all
three problems for short shells (L/R ≤ 1). However,

Table 1 Critical circumferential mode numbers (ncr) for all three problems

h/R L/R

0.1 0.25 0.5 1.0 5.0 10 20 40 60 80 100

All All All All B L H B L H B L H B L H B L H B L H B L H

0.01 1 1 1 1 7 7 7 5 5 6 4 4 5 4 4 4 3 3 3 2 3 3 2 3 3

0.03 1 1 1 1 5 5 5 3 4 4 3 3 3 2 2 3 2 2 2 2 2 2 2 2 2

0.05 - 1 1 2 4 4 4 3 3 3 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2

0.075 - 3 1 - 4 4 4 2 3 3 2 2 2 2 2 2 1 2 2 1 1 2 1 1 1

0.1 - - - - 3 3 3 2 2 3 2 2 2 2 2 2 1 1 2 1 1 1 1 1 1

0.125 - - - - 2 2 3 2 2 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1 1

0.15 - - - - 2 2 3 2 2 2 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1

0.175 - - - - - - - 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

0.2 - - - - - - - 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

B, Beck's problem; L, Leipholz's problem; H, Hauger's problem.

Table 2 Numbers of the first two critical modes for all three problems

h/R L/R = 0.1 L/R = 0.25 L/R = 0.5 L/R = 1 L/R = 5 L/R ≥ 10

B L H B L H B L H B L H All the three problems All the three problems

0.01 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 2, 3 2, 3 2, 3 2, 3 2, 3 1, 2 1, 2

0.03 1, 2 1, 2 2, 3 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 2, 3 2, 3 2, 3 1, 2 1, 2

0.05 - - - 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 4, 5 4, 5 2, 3 1, 2 1, 2

0.075 - - - 2, 3 2, 3 2, 3 1, 2 1, 2 1, 2 - - - 1, 2 1, 2

0.1 - - - - - - - - - - - - 1, 2 1, 2

0.125 - - - - - - - - - - - - 1, 2 1, 2

0.15 - - - - - - - - - - - - 1, 2 1, 2

0.175 - - - - - - - - - - - - - 1, 2

0.2 - - - - - - - - - - - - - 1, 2

B, Beck's problem; L, Leipholz's problem; H, Hauger's problem.
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for longer shells, ncr tends to increase when the
loading function's degree rises, and the increase in
ncr is the most rigorous for L/R = 1. In other words,
L/R = 1 is the most sensitive case towards changing
the load function (to Leipholz's and Hauger's
loadings).

– For short shells (L/R ≤ 1), critical longitudinal mode
numbers tend to increase when the loading degree
increases. However, they remain constant for longer
shells.

– When h/R increases and L/R decreases, the effect of
shear deformations on the vibration gets increased.
Since this effect is prevalent in higher modes, in
large values of h/R and small values of L/R, the
number of critical modes approaches higher modes,
i.e., higher-than-5 modes. It is quite obvious that the

critical load obtained in those cases based on the
FST theory is not accurate enough since shear
theories of higher degrees are needed to account for
higher modes Park and Kim (2000). For instance, for
a shell under Beck's loading, with h/R = 0.075 and
L/R = 1, the nondimensional frequencies for the first
11 modes are demonstrated in Figure 7. For more
convenience, Ωb has been plotted instead of Ωs

using Equation 22. Also, the below-mentioned
results can be observed.

– In the 0 < h/R ≤ 0.03 interval, all answers have
sufficient precision with the FST theory since the
instability longitudinal mode numbers are low, and
thus flexural deformations are much more
significant than shear deformations [2]. In the 0.03
< h/R ≤ 0.05 interval, answers for L/R ≥ 0.25 are

Figure 7 Nondimensional frequencies for the first 11 modes for a shell. The shell has the following components: h = 0.01 m, E = 2.03 ×
1011 Pa, ν = 0.3, ρ = 7, 850 kg/m3, h/R = 0.075, L/R = 1.

Figure 8 Variation of βscr against L/R for different h/R ratios in Beck's problem.
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valid. In the 0.05 < h/R ≤ 0.15 interval, answers for
L/R ≥ 5 are valid. Finally, in the h/R > 0.15 interval,
answers for L/R ≥ 10 are valid.

– For thin shells (0 < h/R ≤ 0.03), critical longitudinal
mode numbers increase (to second and third) from
L/R = 0.5 to L/R = 1 and decrease (to first and
second) onwards. Expressed in another way, flutter
in thin shells occurs in the second and third modes
only for L/R of about unity and occurs in the first
and second modes for other L/R ratios. All the
same, for shells with h/R > 0.03, flutter always takes
place in the first and second modes.

– For L/R ≥ 5, for a specified L/R ratio, ncr decreases
with h/R, and conversely, for a specified h/R ratio,
ncr decreases with L/R. Altogether, for large h/R and
L/R ratios, flutter always occurs in ncr of unity,

which signifies that the structure is approaching the
beam-like model.

The critical nondimensional load parameters and βscr
of shells with the geometric parameters stated in
Equation 24 are depicted against L/R and h/R in Figures 8,
9, and 10 and Figures 11, 12 and 13, respectively.
It was observed in the outcomes that with a specified

h/R and L/R, βs is independent of the thickness. The rea-
son is that in case h/R and L/R are both constant, h, R,
and L will all be changed to the same extent when h
changes. Thus, for h0 other than 0.01 m

βs h=R; L=R; h
0ð Þ ¼ βs h=R; L=R; 0:01ð Þ ð24Þ

Figure 9 Variation of βscr against L/R for different h/R ratios in Leipholz's problem.

Figure 10 Variation of βscr against L/R for different h/R ratios in Hauger's problem.
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From Figures 8, 9, 10, 11, 12, and 13, the following
results can be drawn:

– In a constant h/R, the nondimensional load βscr gets
decreased with L/R. However, in a constant L/R, βscr
gets increased with h/R.

– By increasing L/R ratio, for L/R > 10, βscr
magnitudes approach an envelope curve, which
is in fact the curve pertaining to the equivalent
beam.

– Since βscr is independent of h/R in beams, it can
be deduced that, in Figures 11, 12, and 13, the
ranges which are constant with h/R can be
considered as beam-like ranges, i.e., the ranges
in which the structure can be analyzed with a
simple equivalent beam model. This eliminates
the complicated shell differential equations
which are much more difficult to solve than

beam equations Park and Kim (2000). It can be
easily observed that this range is almost
independent of the loading scheme, i.e., almost
the same in Beck's, Leipholz's, and Hauger's
loadings. It can also be observed that the FST
theory is valid for all h/R and L/R ratios in
beam-like ranges.

Tables 3 and 4 include the ratio of βscr in Leipholz's
problem to that in Beck's problem and the ratio of
βscr in Hauger's problem to that in Beck's problem,
respectively.
It can be observed from Tables 3 and 4 that the so-

defined ratios in very thin and short shells (h/R < 0.03,
L/R ≤ 0.5) and very long and moderately thick (beam-
like) shells are almost equal.
Also, it was observed in the numerical results that the

nondimensional frequency parameter is the same, i.e.,

Figure 11 Variation of βscr against h/R for different L/R ratios in Beck's problem.

Figure 12 Variation of βscr against h/R for different L/R ratios in Leipholz's problem.
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beam-like ranges.

Conclusions
Inclusive work on the dynamic stability of cantilever cy-
lindrical shells considering all types of follower loads
and wide ranges of length and thickness ratios does not
meet the needs. In this paper, dynamic stability of
clamped-free cylindrical shells was studied to bring out
the geometric regions in which the structure acts as a
general shell or a beam. In developing the equations of
motion, FST theory was used and rotary inertias were
considered. The results for the equivalent beam were in
complete agreement with those in the literature. Results
consisted of tables containing critical longitudinal mode
numbers and critical circumferential mode numbers,
and also diagrams showing flutter load parameters
against vast intervals of length and thickness ratios.
Raising the load function degree increased critical

circumferential mode numbers and critical longitudinal
mode numbers in specific ranges of thickness and
length ratios. The flutter load parameter decreased by
increasing the length ratio and decreasing the thickness
ratio. In some ranges of small length ratios, results
obtained based on FST theory should be more carefully
dealt with since the critical longitudinal mode numbers
are obtained to be higher than 5, in which FST seems
not to be accurate enough. For long and moderately
thick shells, ranges of thickness ratios exist in which
the shell can be analyzed with a simple equivalent beam
model, which is almost independent of the loading
scheme. For very short and thin shells, and also for
beam-like (long and moderately thick) shells, the ratios of
Leipholz's to Beck's, and Hauger's to Beck's nondimen-
sional critical loads are the same as their corresponding
values in beams. Moreover, the nondimensional frequency
parameters in beam-like shells are equal in all three
problems.

Figure 13 Variation of βscr against h/R for different L/R ratios in Hauger's problem.

Table 3 Ratio of βscr (Leipholz) to βscr (Beck)
L/R h/R

0.01 0.03 0.05 0.075 0.1 0.125 0.15 0.175 0.2

0.1 2.00 1.81

0.25 2.00 1.95 1.88

0.5 2.20 1.81 1.52

1 1.75 2.15 1.92

5 1.24 1.38 1.25 1.30 1.14 1.47 1.38

10 1.37 1.36 1.25 1.28 1.40 1.22 1.17 1.17 1.18

20 1.48 1.36 1.67 1.52 1.40 1.32 1.32 1.33 1.35

40 1.66 1.76 1.51 1.52 1.40 1.57 1.98 1.97 1.96

60 1.70 1.59 1.39 1.60 1.98 1.97 1.96 1.95 1.93

80 1.70 1.47 1.37 1.99 1.97 1.96 1.94 1.91 1.89

100 1.71 1.42 1.33 1.98 1.96 1.93 1.91 1.88 1.85

Table 4 Ratio of βscr (Hauger) to βscr (Beck)
L/R h/R

0.01 0.03 0.05 0.075 0.1 0.125 0.15 0.175 0.2

0.1 3.50 2.71

0.25 3.67 3.55 3.29

0.5 3.20 3.05 2.72

1 2.00 2.92 4.32

5 1.88 2.00 1.92 1.90 1.71 1.78 1.92

10 2.06 2.09 2.01 1.95 2.07 2.01 1.89 1.86 1.85

20 2.21 2.16 2.43 2.56 2.19 2.06 2.02 2.01 2.00

40 2.42 2.73 2.44 2.09 2.20 2.26 2.92 3.64 3.62

60 2.44 2.63 2.10 2.60 2.88 3.68 3.63 3.59 3.53

80 2.44 2.32 2.20 2.87 3.68 3.62 3.55 3.47 3.40

100 2.47 2.14 2.10 3.70 3.63 3.54 3.44 3.35 3.25
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Abbreviations
A: Cross-section area of the shell; Aij: Zeroth-order integral of Qij with respect
to thickness; Bij: First-order integral of Qij with respect to thickness;
Dij: Second-order integral of Qij with respect to thickness; E: Young's
modulus; H: Shell thickness; I: Beam area moment of inertia; Ii: Shell i'th order
rotary inertia; K: Kinetic energy of the system; Ks: Shear correction factor;
L: Length of the shell; M: Axial stress moment resultant per unit length of the
shell cross section circumference; n: Number of circumferential waves on the
shell; N: Axial stress resultant per unit length of the shell cross-section
circumference; P: Resultant concentrated follower load; Q: Transverse (normal
to thickness) shear stress resultant per unit length of the shell cross section
circumference; Sij: stiffness coefficients used in ABD matrix; R: Shell radius;
t: Time duration; u: Displacement along x axis; v: Displacement along θ axis;
w: Displacement along z axis; u0: Displacement of the middle surface along x
axis; v0: Displacement of the middle surface along θ axis; w0: Displacement of
the middle surface along z axis; U: Strain energy stored in the system;
V: Potential of the conservative external forces; x: Coordinate along the shell
generating axis; z: Coordinate along the shell thickness; βb: Beam
nondimensional load parameter; βbcr: Critical beam nondimensional load
parameter; βs: Shell nondimensional load parameter; βscr: Critical shell
nondimensional load parameter; εij: Translational strain component;
φx: Change of slope of the normal to the middle surface around θ axis;
φθ: Change of slope of the normal to the middle surface around x axis;
ψji: Weight function used in Galerkin method; μ: Mass per unit length;
ν: POISSON'S ratio; Ωb: Beam nondimensional frequency parameter;
ω: Natural frequency (eigenvalue of the equivalent equation system);
ωi
j: Rotational strain component; ρ: Mass density; θ: Circumferential

coordinate.
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