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Wave propagation in laminated composite plates
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Abstract

In this article, the dispersion of propagation waves in an arbitrary direction in laminated composite plates is studied
in the framework of elasticity. Three-dimensional field equations of elasticity are considered, and the characteristic
equation is obtained on employing the continuity of displacements and stresses at the layers' interfaces. Obtained
characteristic equation is further simplified by making use of the properties of the block matrices. Some important
particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness
tends to infinity are also discussed. Numerical results are also obtained and represented graphically.
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Introduction
The growing practical applications of laminated composite
materials and their uses because of advanced high strength,
high modulus layered structures must go a careful inspec-
tion to sort out manufacturing defects and in-service
degradation in the design of engineering structures. Com-
posite materials are also becoming indispensible in modern
industries such as aerospace, infrastructure, and energy be-
cause of their ability to customize the physical properties
in addition to light weight, directional stiffness, and long
fatigue life. The potential of such advanced laminated
composites and fiber-reinforced materials as important
structural members, wherein an internal layer provides
structural strength and the outside layer provide protec-
tion against the surrounding media, has motivated an ex-
tensive amount of research in the field of mechanics. To
modify composite structures or in order to meet particular
demands, the design of structures has encouraged the
studies of impact and wave propagation in such materials.
Also the lightweight, high strength, and corrosion resist-

ance of fiber-reinforced polymers (FRP) make them ideally
suited for quick and effective structural repairs. Investiga-
tions on the protection of historical and monumental
buildings made of masonry material through the adoption
of FRP composite provisions have inspired a wide scientific
literature on the subject, with many theoretical as well as
experimental contributions and developments of original
approaches, techniques, and numerical tools in addressing

the problem of masonry constructions; the planning and
design of adequate protection techniques are studied in
Foti (2013a), Baratta and Corbi (2005, 2010, 2011), Baratta
et al. (2008). Foti (2011) studied the behavior fiber-
reinforced concrete structures. They obtained results of
some tests for an approach to a broader testing on the pos-
sibility of using fibers from polyethylene terephthalate
(PET) bottles to increase the ductility of the concrete. The
use of recycled waste PET bottle fibers for the rein-
forcement of concrete is studied by Foti (2013b). A series of
tests have been performed with the aim to define the best
solution in strengthening a deteriorated structure with a
rheoplastic mortar reinforcement by Foti and Vacca (2013)
and three types of possible structural reinforcing renovation
on reinforced concrete pillars have been considered, with
special attention to adhesion between materials with differ-
ent chemical-physical and mechanical characteristics. The
crack patterns obtained on the specimens have been ana-
lyzed to demonstrate the relevance of an appropriate thick-
ness of the reinforcement to obtain an effective mechanical
behavior of the reinforced concrete element over time.
Since composites consist of different materials, they are

inhomogeneous and anisotropic. As a consequence, differ-
ent mechanical properties among the constituents and the
environmental changes can create residual stresses, which
may lead to interface de-bonding in the structures, leading
to failure of the system. Therefore, it is of interest to in-
vestigate the feasibility of non-destructively monitoring
mechanical aging in composites. The study of wave propa-
gation and vibration in plates, half-spaces, and laminates
is an area of considerable recent research activity. The
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propagation of the plane waves in unbounded homoge-
neous layered media is well known, and many methods
have been proposed. On the dynamic behavior of aniso-
tropic plates, extensive review of the plate theories can be
found in Achenbach (1973), Auld (1973), Fedorov (1968),
Nayfeh (1995), and Wooster (1973), and wave propagation
problems in periodically layered anisotropic media have
been considered by the authors Norris (1992, 1993), Wang
and Rokhlin (2002), and Braga and Hermann (1988). Sev-
eral problems on the theories of laminated and composite
plates have been considered, and their dynamic behavior
was studied by authors Reddy (1987, 1990), Liu et al.
(1990), Postma (1955), Rytov (1956), and Sun et al. (1968).
There also have been a reasonable number of investiga-
tions of such advanced materials, and their analysis was
reported by Sve (1971), Jones (1975), Graff (1991), and
Reddy (1997). Nayfeh (1991) developed a transfer matrix
technique to obtain the dispersion relation curves of elastic
wave propagating in multilayered anisotropic media, i.e.,
composite laminate. Detailed review on the wave propaga-
tion in layered anisotropic media/anisotropic laminates is
given by Liu and Xi (2002). Yamada and Nasser (1981)
have studied harmonic wave's propagation direction in
orthotropic composites, and Verma (1999) considered the
similar problem in thermoelastic heat conducting material.
Similar formulations using Floquet's theorem are

employed to analyze the wave motions of two-phase
slender periodic structures that has been made by
Tourafte (1986) and Tassilly (1987). Dispersion equation
has been represented by the vanishing of a 12 × 12 de-
terminant. Yamada and Nasser (1981) considered an
orthotropic, periodically layered composite with two
layers in a unit cell, and the dispersion equation corre-
sponds to a 12 × 12 characteristic determinant. These
approaches lead to important results but had limitation
due to the size of the matrices that must be manipulated
when the unit cell has more than two layers, or when
the layers are anisotropic. In this paper, the above said
limitation has been resolved by simplifying the obtained
characteristic equation using the basic properties of
block matrices. Thus, in order to solve the problem nu-
merically, it is sufficient to consider the 6 × 6 determin-
ant only instead of taking the 12 × 12 determinant, thus
reducing the numerical work considerably. Further, some
of the important particular cases of free waves and the
surface waves are also derived and discussed from the
obtained results.
Following Yamada and Nasser (1981), in this article, the

propagation of waves in layered laminated composites,
where the direction of the corresponding harmonic waves
makes an arbitrary angle with respect to the layers, is exam-
ined. Three-dimensional field equations of elasticity are
considered for this study, and the corresponding character-
istic equation on employing the continuity of displacements

at the layers' interface is obtained. Obtained characteristic
equation is further simplified using the basic properties of
block matrices, and in order to solve the problem numeric-
ally, it is sufficient to consider the determinant of the 6 × 6
matrix instead of taking the determinant 12 × 12 matrix.
Some important particular cases such as of free waves on
reducing plates to single layer and the surface waves when
thickness tends to infinity are also discussed. Numerical re-
sults are also obtained and represented graphically.

Methods
Formulation
Consider a set of Cartesian coordinate system xi = (x1, x2,
x3) in such a manner that x3- axis is normal to the
layering. The coordinate axes x1, x2, and x3 of the model
are chosen as to be analogous with the principal axes x,
y, and z, with z-axis being normal to the plate. The dis-
placement field vector u = (u1, u2, u3) satisfies the basic
field equation of motion for an infinite generally aniso-
tropic medium in the absence of body forces, which is

X3
j¼1

∂τij uð Þ
∂xj

� �
¼ ρ

∂2ui
∂t2

i ¼ 1; 2; 3: ð2:1Þ

Constitutive relations for anisotropic materials

τij ¼ Cijklekl; i; j; k; l ¼ 1; 2; 3: ð2:2Þ

ρ is the density, t is time, ui is the displacement in the
xi direction; τij, and ekl are the stress and strain tensor
respectively; and the fourth order tensor of the elasticity
Cijkl satisfies the (Green) symmetry conditions:

cijkl ¼ cklij ¼ cijlk ¼ cjikl: ð2:3Þ

Strain–displacement relation

eij ¼ 1
2

�
∂ui

�
∂xj þ ∂uj

�
∂xi

�
: ð2:4Þ

In addition, at the interface between two layers the
tractions, displacements must be continuous.
For orthotropic media, the stress equation for an

orthotropic material in the symmetric coordinate system
can be expressed by
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τ11
τ22
τ33
τ23
τ13
τ12

2
6666664

3
7777775
¼

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c55

2
6666664

3
7777775

e11
e22
e33
2e23
2e13
2e12

2
6666664

3
7777775
:

ð2:5Þ
Analysis
For harmonic waves propagating in an arbitrary direc-
tion, the displacement components u1, u2, and u3 are
written as

u1; u2; u3ð Þ ¼ U1 x3ð Þ;U2 x3ð Þ;U3 x3ð Þf geiξ l1x1þl2x2þl3x3�ctð Þ;

ð3:1Þ

where ξ is the wave number, c is the phase velocity ( = ω/ξ),
i ¼ ffiffiffiffiffiffiffi�1

p
;ω is the circular frequency, l1, l2, and l3 are the

direction cosine defining the propagation direction.
Uj are the constants related to the amplitudes of dis-

placement, Floquet's theory requires functions Uj (j = 1,
2, 3) to have the same periodicity as the layering. Hence,
the problem is reduced to that of one pair of layers,
where

Uj ¼ �Uje
�iξ l3þαð Þx3 ; j ¼ 1; 2; 3; ð3:2Þ

where �Uj are constants. On substitution of Equations
(3.2) into Equations (2.1), via (2.2) to (2.4) and specializ-
ing the equations for orthotropic media, it follows that

Mmn αð Þ �Un ¼ 0;m; n ¼ 1; 2; 3; ð3:3Þ

where

M11 ¼ l21 þ l22�c66 þ α2�c55 � ζ2
� 	

;M12 ¼ �c12 þ �c66ð Þl1l2;
M13 ¼ � �c13 þ �c55ð Þl1α;
M22 ¼ l21�c66 þ l22�c22 þ α2�c44 � ζ2

� 	
;

M23 ¼ � �c23 þ �c44ð Þl2α;
M33 ¼ l21�c55 þ l22�c44 þ α2�c33 � ζ2

� 	
; ð3:4Þ

where ζ2 ¼ ρc2

c11
. The existence of nontrivial solutions for

�Uj (j = 1, 2, and 3) demands the vanishing of the deter-
minant in Equation (3.3) and yields the sixth degree
polynomial equation

Δα6 þ F1α
4 þ F2α

2 þ F3 ¼ 0; ð3:5Þ
where

Δ ¼ c33c44c55;

F1 ¼ c22c33 � 2c23c44 � c223
� 	

c55 þ c33c44c66

 �

l22
þ c33 � 2c13c55 � c213

� 	
c44 þ c33c55c66


 �
l21

� c33c44 þ c33c55 þ c44c55ð Þζ2

F2 ¼ c33 � 2c13c55 � c213
� 	

c66 þ c44c55

 �

l41
þ c22c33 � 2c23c44 � c223

� 	
c66 þ c22c55c44


 �
l42

þ ½ð�c212c33 � 2ðc33c44 � c66c23c55 � c12c44c55
þc13c22c55 � 2c44c55c66 � c13c44c66
þc12c33c66 � c12c13c44 � c13c23c66 � c12c23c55
�c12c13c23Þ � c213c22 þ c22c33 � c223�l21l22

þ

ð2c13c55 � c66c33 � c55c44 � c44
�c33 � c66c55 þ c213Þl21
þð2c23c44 þ c223 � c22c33 � c22c55
�c66c44 � c55c44 � c33c66Þl22

þ c33 þ c44 þ c55ð Þζ4

2
6666664

3
7777775
ζ2

F3 ¼ c55l
2
1 þ c44l

2
2 � ζ2

� 	
1þ c66ð Þl21 þ c22 þ c66ð Þl22

� 	
ζ2 � ζ4

�
þ 2c22c66 þ c212 � c22

� 	
c55


 �
l21l

2
2 � c22c66l

4
2 � c66l

4
1g

Equation (3.2) can be rewritten as

U1;U2;U3ð Þ ¼
X8
q¼1

�U1q; �U2q; �U3q
� 	

e�iξ l3þαqð Þx3 ð3:6Þ

For each αq, q = 1, 2,....6, we can use the Equations
(3.3) and express the displacements ratios

D1

D
¼

�U2q

�U1q
¼ γq;

D2

D
¼

�U3q

�U1q
¼ δq; q ¼ 1; 2 ::::6: ð3:7Þ

D1 αq
� 	 ¼ M13 αq

� 	
M23 αq

� 	�M12 αq
� 	

M33 αq
� 	

;

D2 αq
� 	 ¼ M12 αq

� 	
M23 αq

� 	�M13 αq
� 	

M22 αq
� 	

D3 αq
� 	 ¼ 0;D αq

� 	 ¼ M22 αq
� 	

M33 αq
� 	�M2

23 αq
� 	

:

ð3:8Þ
Therefore, the solution is

U1;U2;U3ð Þ ¼
X8
q¼1

1; γq; δq
� �

�U1qe
�iξ l3þαqð Þx3 : ð3:9Þ

In view of the continuity of the displacement compo-
nents, tractions across the interface of the two layers,
the following conditions must be satisfied:

uIj
x3¼0

� ¼ uIIj
x3¼0

þ ; ð3:10Þ

τI3j
x3¼0

�
¼ τII3j

x3 ¼0
�
; ð3:11Þ

where superscripts I and II refer to layers one and two,
respectively; 0+ and 0− are values of x3 near zero.
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Because of the periodicity of the deformation and stress
fields, additional conditions obtained are

uIj
x3¼h1

�
¼ uIIj

x3¼� h2
þ
; ð3:12Þ

τI3 j
x3¼h1

�
¼ τII3 j

x3¼� h2
þ ; j ¼ 1; 2; 3: ð3:13Þ

Following Yamada and Nasser (1981) on substituting
the displacements, stress components into Equations
(3.10) to (3.11) and linear homogeneous equations for
twelve constants UI

11;U
I
12; . . . ;U

II
15 and U II

16 are obtained.
For nontrivial solutions, the determinant of the coeffi-
cients must vanish. This yields the following characteris-
tic equation:

det
Pjk ��Pjk

Qjk ��Qjk

� �
¼ 0 j; k ¼ 1; 2 . . . 6: ð3:14Þ

The entries of the 6 × 6 matrices Pjk ; �Pjk ;Qjk and �Qjk are

P1j ¼ 1; P2j ¼ γIj ; P3j ¼ δIj ; P4j ¼ bI1jc
I
55; P5j ¼ bI2jc

I
44;

P6j ¼ bI3j; �P1j ¼ 1; �P2j ¼ γIIj ; �P3j ¼ δIIj ; �P4j ¼ ηbII1jc
II
55;

�P7j ¼ ηbII2jc
II
44;

�P6j ¼ ηbII3j;Qjk ¼ PjkE
�
k ;

�Qjk ¼ �PjkE
þ
k

ð3:15aÞ
where

E�
j ¼ e�iQ l3þα 1ð Þ

j

� 	
h1=h;Q ¼ ξ h1 þ h2ð Þ;

Eþ
j ¼ e�iQ l3þαIIjð Þh2=h; η ¼ cII11=c

I
11b

mð Þ
1j

¼ l1δ
mð Þ
j � α mð Þ

j b mð Þ
1j ¼ l1δ

mð Þ
j � α mð Þ

j ;

b mð Þ
3j ¼ �c mð Þ

13 l1 þ �c mð Þ
23 l2γ

mð Þ
j � �c mð Þ

33 α mð Þ
j δ mð Þ

j ;

�c mð Þ
jk ¼ c mð Þ

jk =c mð Þ
11 ð3:15bÞ

From Equation (3.14), we have

det Pjk

 �

det ��Qjk

h i
� Qjk

 �

Pjk

 ��1 ��Pjk


 �� �
¼ 0

ð3:16aÞ
which implies that either

det Pjk

 � ¼ 0; ð3:16bÞ

or

det ��Qjk

h i
� Qjk

 �

Pjk

 ��1 ��Pjk


 �� �
¼ 0: ð3:16cÞ

If equation (3.16b) holds true, then the problem re-
duces to a free wave propagation of single plate of thick-

ness h1, and in this case, ��Qjk

h i
� Qjk

 �

Pjk

 ��1 ��Pjk


 �� �
will not exist as Pjk singular. On the other hand, if Pjk is
nonsingular, [Pjk]

−1 exists and accordingly

det ��Qjk

h i
� Qjk

 �

Pjk

 ��1 ��Pjk


 �� �
¼ 0: ð3:17aÞ

Similarly, Equation (3.14) can also be written as

det ��Qjk

h i
det Pjk


 �� ��Pjk

 � ��Qjk

h i�1
Qjk

 �� �

¼ 0;

ð3:17bÞ
which implies that either

det ��Qjk

h i
¼ 0; ð3:17cÞ

or

det Pjk

 �� ��Pjk


 � ��Qjk

h i�1
Qjk

 �� �

¼ 0: ð3:17dÞ

If Equation (3.17b) holds true, then the problem reduces
to a free wave propagation of single plate of thickness h2,

and ��Qjk

h i
� Qjk

 �

Pjk

 ��1 ��Pjk


 �� �
will not exist as �Qjk

is singular.
On the other hand, if �Qjk is nonsingular, therefore

det ��Qjk

h i
� Qjk

 �

Pjk

 ��1 ��Pjk


 �� �
¼ 0: ð3:18Þ

In order to solve the problem numerically, it is suffi-
cient to consider either Equation (3.17a) or Equation
(3.18) for composite plates, and for free plate, Equation
(3.16b) or Equation (3.17b) can be considered.

Particular cases
Free waves
When layer I = II and h1 = h2 (say h), then the thickness
of the layer is 2h, considering the origin at the middle of
the plate, then the above analysis reduces to a single
plate. In this case, the eight roots of Equation (3.5) can
be arranged in four pairs as αj + 1 = − αj, (j = 1, 3, 5).
It is observed from Equation (3.4) that M13 and M23

are odd functions of αj, and the other Mij are even
functions of αj. On employing stresses and free surfaces
conditions,

σ3j ¼ 0; x3 ¼ �h; j ¼ 1; 2; 3; ð4:1Þ

corresponding relations to (3.7), we have

γqþ1 ¼ γq and δqþ1 ¼ �δq ð4:2Þ

Hence, from (3.16)

b1qþ1 ¼ �b1q; b2qþ1 ¼ �b2q; b3qþ1 ¼ b3q; b1j
¼ l1δj � αj; b2j ¼ l2δj � αjγ j; ð4:3Þ
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b3j ¼ �c13l1 þ �c23l2γ j � �c33αjδj;�cjk ¼ cjk=c11; ð4:4Þ

det Pjk

 � ¼ 0: ð4:5aÞ

After simple mathematical manipulations, this equa-
tion reduces to

ΔEα
6 þ AE1α

4 þ AE2α
2 þ A3E ¼ 0 ð4:5bÞ

AE1 ¼ c1c6F11 � c6F
2
13 þ c5F13F23 � c25F33

�
�c2F

2
23 � 2c1c5F12 þ c5F21F23 þ c2c6F33

	
AE2 ¼ F2

23F11 � F22F
2
13 þ c6F11F33 þ c1F11F22

�
�c1F

2
12 þ 2F12F13F23 þ 2c5F12F33 þ c2F22F33

	
AE3 ¼ F11F22 � F2

12

� 	
F33;ΔE ¼ c2c6 � c25

� 	
c1;

where AEj, j = 1,2,3 and ΔE are parameters defined in
Verma (2008).
Equation (4.5) is the corresponding characteristic

equation for free waves in elastic plate. Further, if thick-
ness d(=h1 + h2) → ∞, in Equation (4.5), then the prob-
lem reduces to that of surfaces waves.
On applying appropriate boundary conditions on the

plate outer boundaries, a large variety of important
physical problems can be solved.

Higher symmetry materials
Results for higher symmetry materials such as trans-
versely isotropic, cubic, and isotropic can be obtained as
special cases with the following restrictions for trans-
verse isotropy symmetry:

c33 ¼ c22; c13 ¼ c12; c55 ¼ c66; c22 � c23 ¼ 2c44; ð4:6Þ

for cubic symmetry,

c11 ¼ c22 ¼ c33; c12 ¼ c13 ¼ c23; c44 ¼ c55
¼ c66; and ð4:7Þ

for isotropic symmetry,

c11 ¼ c22 ¼ c33 ¼ λþ 2μ;
c12 ¼ c13 ¼ c23 ¼ λ; c44 ¼ c55 ¼ c66 ¼ μ:

ð4:8Þ

Results and discussion
Using Equation (3.17a), numerical results are presented
to exhibit the dependence of dispersion with the angle
of propagation. The materials chosen for this purpose is
aluminum epoxy composite as layer I (h1 = 0.6) and car-
bon steel as layer II (h2 = 0.4).
Since the distinction among the wave mode types of

thermoelastic waves in anisotropic plates is somewhat arti-
ficial, as the elastic wave modes are generally coupled, they
are referred to as quasi-longitudinal, quasi-transverse, and
quasi-shear horizontal modes. For a wave to propagate in
the direction of higher symmetry, some wave types revert
to pure modes and lead to a simple characteristic equation
of lower order, and consequently, the loss of pure wave
modes for general propagation direction in such cases.
Here, Figure 1 depicts the dispersion curves with the di-
rection cosines of propagation l1 = 0.259, l2 = 0.542, and
l3 = 0.799, whereas dispersion curves with the direc-
tion cosines of propagation l1 = 0.195, l2 = 0.515, and
l3 = 0.834 are shown in Figure 2. Similarly, dispersion

Figure 1 Phase velocity versus wave number for the direction cosine l1 = 0.259, l2 = 0.542, and l3 = 0.799.
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curves with the direction cosines of propagation l1 = 0.125,
l2 = 0.707, and l3 = 0.696 are shown in Figure 3.
The dispersion behavior of wave speed modes with

different angles of propagation is demonstrated in
Figures 1, 2 3. It is observed that at zero wave number
limits, each figure (Figures 1, 2 3) displays three wave
speeds corresponding to one quasi-longitudinal and two
quasi-transverses. It is apparent that the largest value
corresponds to the quasi-longitudinal. At low wave
number limits, modes are found to be highly influenced

and also vary with direction. From these figures, it is
also observed that at low wave number limits, wave
speed modes are dispersive. It is also observed that with
the change in the propagation direction, lower modes
appear to be highly influenced than the higher modes,
where a small change is noticed. Thus, at low values of
the wave number, only the lower modes got affected,
and the little change is observed at the relatively high
values of the wave number. Thus, the low value region
of the wave number is found to be of more physical

Figure 2 Phase velocity versus wave number for the direction cosine l1 = 0.195, l2 = 0.515, and l3 = 0.834.

Figure 3 Phase velocity versus wave number for the direction cosine l1 = 0.125, l2 = 0.707, and l3 = 0.696.
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interest. Further, at high wave number limits, there is
no effect in the laminated composite plates. A small
change is observed in these mode values as wave num-
ber increases, and other higher modes appear; one of
the modes seemed to be associated with quick change
in the slope.

Conclusions
The propagation of waves in layered laminated compos-
ites, where the direction of the corresponding harmonic
waves makes an arbitrary angle with respect to the layers,
is studied. Three-dimensional field equations of elasticity
are considered for this study and the corresponding char-
acteristic equation is obtained on employing the continu-
ity of displacements at the layers' interface. Obtained
characteristic equation is further analytically simplified
using the basic properties of block matrices, and in order
to solve the problem numerically, it is sufficient to con-
sider the determinant of the 6 × 6 matrix instead of taking
the determinant 12 × 12 matrix, which reduces the nu-
merical work considerably. Important cases such as of free
waves and surface waves on reducing plates to single layer
and when thickness tends to infinity are also discussed. It
is found that at zero wave number limits, each figure dis-
plays three wave speeds corresponding to one quasi-
longitudinal and two quasi-transverses. It is apparent that
the largest value corresponds to the quasi-longitudinal. At
low wave number limits, modes are found to be highly
influenced and also vary with the direction. It is observed
that with the change in the propagation direction, lower
modes appear to have more influence than the higher
modes where a small change is noticed. Therefore, at the
lower value region of the wave number, it is found to be of
more physical interest than at high wave number limits,
on the laminated composites plates.
The study may find applications in damage identifica-

tion in laminated composite, as the laminated compos-
ites possess characteristics that make them particularly
useful for applications in nondestructive evaluation of
such defects in plate-like structures and provide a means
of inspection of an otherwise inaccessible area. In order
to use waves in ultrasonic nondestructive applications, it
is necessary to investigate the phenomenon of scattering
of these waves in arbitrary directions.
Future work will be dedicated on enhancing the current

models, especially for the heat-conducting materials in the
context of generalized thermoelasticity, viscoelasticity, and
orthotropic piezoelectric material. Further steps will be
taken to develop a 3D model to observe the wave propaga-
tion behavior along different directions, including models
of damage, to evaluate the sensitivity of auxetic laminates
for damage tolerance applications. From the experimental
point of view, Lamb wave propagation will be shortly eval-
uated for different classes of auxetic laminates with special

stacking layer sequences, for comparison with the devel-
oped models. It is important to realize that, although the
results presented here have been derived for a periodically
layered composite with two layers in a unit cell, Floquet
theory can be applied to the mathematical modeling of
periodically layered structures. This can be done by finding
the appropriate linear combination of Floquet waves that
satisfy a set of boundary conditions prescribed at planes
normal to the layering. Applying appropriate boundary
conditions on the plate outer boundaries, a large variety of
important physical problems can be solved, which in-
clude free waves in layered plates and in periodic media
constructed from a repetition of the layered plate.
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