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Abstract

This article is devoted to shape optimization design of pure bendemgsbander singl
loading condition. Compliance minimization with material volume coimgtrthe maximu
stress minimization problem, and the maximum displacement aredecetsi In the case pf
trusses, it has been shown that the former two problems have thesamed topology. Th
possibility of extending this result for pure bending beam problems is examiredpresent
work. First, the comparison of the optimum design results betweenmimamum
displacement, the conventional mean compliance, and the maximumistcassed out b
an example of optimal cross-sectional design of a continuous beam.géoemetric average
displacement (GAD) is introduced. in optimization models of lineal&gtic structures. The
elevated accuracy in results achieved with GAD is shown in this article.
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Introduction

Structural optimization is one of the most challenging reseavpits in the field of

computational mechanics. It has received more and more attentionlydoecause of its

great potential application in many industrial areas. Its irapo# lies in the fact that the
appropriate result of structural design is generally the mogidedactor that influences the
product efficiency.

Structural optimization, especially topology optimization, is beusgd increasingly in
aerospace vehicles, maritime carriers, wind turbine blades, andusarmechanical
equipment where high strength, high stiffness, and low weightimpertant. In such
applications, the problem of selecting a suitable optimization modddden investigated for
a long time. In the vast literature on structural optimization madguably the two most
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studied problems are stress-constrained weight minimization ane@riahatolume-
constrained compliance minimization. Indeed, Cox (1965) succeeded to pedveegults
attained via compliance minimization model would be equivalent to Mgleiss (stress-
constrained weight minimization result) in 1965.It has been showrgdiloe ago that these
seemingly different problems possess equal optimal topologiedt]reshen the truss is
subject to a single loading condition and the allowable stressessiom and compression
are equal (Dorn et al. 1964; Hemp 1973). This result has been ekiepdehtziger (1996)
for cases where the allowable stresses in tension and compression are not equal.

Despite these successes, most of the topology optimization problerasnvegleled to
minimize the compliance of the structures, following the methods atityytdendsge and
Kikuchi. The optimization problems of minimum compliance have been wsdetied in the
relevant literature (Xie et al. 2012; Bendsge 1989; Eschenauer and 200aff Sethian and
Wiegmann 2000; Xie and Steven 1993; Gerzen and Barthold 2012; Gain and Paulino 2012;
Lee et al. 2012; Bruggi and Duysinx 2012).

Given all that, in most static structure design examplesulfmate goal is to find the
structures with maximum stiffness, or with minimum weight urgiess constraint. Most of
the current designs were modeled by minimum compliance and achieveeédired results
by solving the minimum compliance problems. Although many good rekalie been
attained in this way, stiffness is more accurately charaeid by the maximum displacement
of a structure under load. Moreover, Mela and Koski (2012) have sugdglestdtie stress-
constrained minimum weight problem and the compliance minimizatairiggn do not have
equal optimal topologies of truss under multiple loading conditions.

The main purpose of the present paper is to show that the maximesa stinimization
problem and the compliance minimization problem have equal optimaltsresiulpure
bending beam under a single loading condition. Compared to them, the maximum
displacement minimization problem does not have equal optimal results, and it sEangtes

find the appropriate index as approximation of the maximum displacement.

The paper is organized as follows: the optimal design regtdieed via the different models
is presented and discussed in detail in the ‘Methods’ section. Timeresailt of the paper is
presented in.the ‘Results and discussion’ section, where a cantileaen is minimized
separately for the maximum displacement, maximum stress, iemog| and so on. To
illustrate the application of the proposed index as appropriate ap@tixmnof the maximum
displacement in the static structure optimization, a power indexader is solved in the
‘Results and discussion’ section. Finally, the results are su@edawith discussion in the
‘Conclusions’ section.

Methods

Cross-sectional design of the cantilever beam

Problem description

In order to present the differences in optimal design resutténedl via the maximum
displacement, maximum stress, and conventional mean compliance methreadgjlever
beam was studied with varying square cross sections, withxendsandx = L, wherex is
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the abscissa measured along the beam axis and subjectedttipatedsconstant line loag
as shown in Figure la. The equation of bending moment and bending ntbaggam are
given in Figure 1b. The objective of this example is to obtain thellert mechanical
performance of the cantilever beam by changing the cross-sectiorsabbmeg thex-axis.

Figure 1 A Cantilever beam with varying sections(a) A cantilever beam under uniformly
distributed load.lf) Equation of bending moment.

The exact differential equation of the deflection (displacemenh@y-axis) curve can be
described as

2

El (x)% =M(X) = —%qxz. (1)

Here,v is the displacement of any point along #eaxis, q is the load line density, arklis
Young's modulus of the material. Here, moments of ingpt)acan also be stated as

1(X) = A1(2X)' )

Here, A(X) is the continuously differentiable function of the area of theas® cross section
along thex-axis.

Then, the mechanical optimization problem can be formulated as

find: A(X)
min: f(A) 3)

L
s.t.: IO A)x=W,.

Here,f(A) denotes a mechanical behavior index, and the miat@liame is limited byW.
With the Lagrange multiplier method, the solution loé tross-sectional areas of cantilever
beam is attained by

8,(f(M)+A[ oAix=0, o ( [ A(x)dx—WO) =0. )

Here, A is the variation function ofA(x), andoa(f(A))denotes the Fréchet derivativef(h)
with respect toA(x).The constrained optimization problem (3) is transfornieid an
equivalent equation (4) by making use of the Karush#kTucker conditions of the
constrained optimization. The optimal cross-sectionaad dieldsA(x) in problem (3) can be
obtained by solving Equation 4.

Minimization of the maximum displacement
In many practical cases, a commonly used design criteyitrat the maximum displacement

of the structure should not exceed a specified vallmis, maximum displacement is
naturally the ideal objective function of optimizati models. According to the elementary
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theory of the beam, the maximum displacement is locat#teiboundary af = 0 and can be
written as

(A= [ OO g = - 8 )

EAZ

where M (x) is the bending moment produced by a unit load apmiiethe free end of the
beam x = 0) and is of the form

M (X) = =x. (6)

Substituting Equations 5 and 6 into Equation 4 gives

jfilzw +{}ﬂwx=o 7)
o EA
and

[ Adx-w, =0. 8)

SincedA is an arbitrary functioni\(x) can be written as

12q
()IEJ X. (9)

Here, 1 is an unknown variable. Substituting Equation® iBguation 8, the optimal cross-
sectional area fieldd (x) ..andi can be expressed as

Umax

_ 8qL°
2EM?
X (10)
A, (0 =50
and the corresponding displacement function is
_ 3q 2
v, = AEW2 (x=L)". (11)
0

The sectional maximum stress is found at the lonatin the cross section wheyas the
largest and can be written as

1

1 7
2 2 >
g = MY, ax _ 6MA _ 9qL?( x )2 (12)
Vi | A 8. 2lL
W2
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Introducing a dimensionless parameter
X
X=—, 13
1 (13)

the cross-sectional area fields and the correspgndisplacement function can be expressed
in the dimensionless space as

= A (L ___

= a7 = 0%, 14
A, (X) m (14)
oV, (MEWE 3,

——max = = —1 , 15
v, (%) oL 4(X ) (15)

and
3

o, (W2 1

22 B (16)
qL2

Here, the subscriptnax Shows that the optimization objective is to miramithe maximum
displacement.

Minimization of the maximum stress

In many practical cases, a commonly used desidgeriom is that the maximum stress of the
structure should not exceed a specified valuern(gthecriterion). Thus, maximum stress is
naturally the ideal objective function of optimimat models. However, the location of the
maximum stress usually will not be fixed with thieange of material distribution in the
optimization process. Therefore, the maximum stiesm implicit function with respect to
material distribution. Hence, to resolve this pesh] a performance index called geometric
average sectional maximum stress instead of atd@anization of the maximum stress is
proposed, which'is expressed as

b
fo =liM (%IOL (Umax)”dxj%:Iim % IOL (%)“dx : (17)
A2

n-oo n-oo

Theoretically, geometric average displacement (GAE)ds to geometric average stress
whenn tends to infinity (Gentile 2003; Li and Fang 1997)

Substituting Equation 17 into Equation 4 gives

n- oo 2 +1

. L X2n
lim ], (—z T +/1J5Adx: 0, (18)


www.SID.ir

3qx
AZ

Ya
J (19)

SincedA is an arbitrary functiord(x) can be written as
(20)

4n 4

2
(Zj3n+2 X3n+2 = HXE,

A=lim

n-oo

whereH is an unknown variable:

2
Z \3n+2
‘Ilm( j :

Substituting Equation 20 into Equation 8 gives

(21)

_ W,
EYRZE
3L 22)

A (0= 308X

The corresponding displacement function and theasedt maximum stress function are

4/3

14/3
v, = géquv (3x*® - 4Lk + L7

7
/243 gL?
O-Umax =
343W2
As shown in Equation 22, we can obtain an iso-stfée sectional maximum stress function
is constant) design via the maximum stress-basatein®he dimensionless cross-sectional

area fields, displacement function, and the seatioraximum stress function are

(23)

- AU (x) L _7 e
A" W, 3
(24)

V(%)= (3“”3 4%+ 1)

Omax

: 243
g, =.,—.
= \343
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Here, the subscriptnax shows that the optimization objective is to mirsenthe maximum
stress.

Minimization of the compliance

For the cantilever beam in Figure 1, the compliazaealso be expressed as

f(A)=C= jLwd .[O?;q—;;;dx. (25)

Here, the compliance is used as an optimizatioradibe function. The optimal cross-
sectional area field&(x) should obey the following necessary conditions:

L, 39°x* B L v
jo (—p FOAX=0, jo Adx—W, = 0. (26)
The cross-sectional area fields can be obtainesblwng Equation 26, which is
AL = 20 xS @7)

Compared with Equation 22, the compliance mininiiraproblem and the maximum stress
minimization problem have equal optimal resultsthis example. To amplify this highly

simplified conclusion, the contrast between the gitance minimization problem and the
maximum stress minimizaion problem can be formdiaie

S M" 3(6)"| 1 .| 6M 4 L
limJ,| -Z—==* A, [0A 2= =[ 1= ax |7 [ A, dx-W =0
e J0 . 2L | LYo 3 0
A ) A (28)
L[ 12M? L
jo (_—Eag +/1CJ5Adx:O, fo Acdx-W, =0
then
2 2
n \3n+2 2 3n+2
max_llm(ZM J :Hamaxl\/l3 Hgmaleim (Aij
E max 2 } max i (29)
12M 2 )3 < 12 )3
= =H.M?3 H.=
A ( i j : : (EACj

Substituting Equation 29 into Equation 4 gives

[t T8 .
A=A (30)

max


www.SID.ir

Therefore, the first example helps us draw the losian that in this kind of problem (pure
bending beam), the optimal design generated froendbmpliance formulation and the
maximum are identical, same to the truss proble@wx (1965; Dorn et al. 1964; Hemp
1973).

Comparisons of the results

Comparing these results, it shows that the optitmzanodels with compliance (maximum

stress) and the maximum displacement as objectimetibn sometimes does not give the
same optimal results in this kind of problem, arelfind significant differences in the cross-
sectional area fields, displacement, and the sedtimaximum stress function. To be more
specific, from the results, the maximum displaceinwérthe optimal design generated from
maximum displacement decreases by extra 10% in aosgm with the design obtained by
conventional compliance (maximum stress). Furtheggmiie maximum stress of the optimal
design generated from maximum displacement witreite increase of 26% is presented to
demonstrate the validity of this example, as showkfigure 2.

Figure 2 Comparisons of design results of objectivega) Comparisons of displacement
function. p) Comparisons of cross-sectional area fieldsCmparisons of the sectional
maximum stress function.

Results and discussion

The optimization model of the geometric average didacement

In many practical cases, a commonly used desigeriom is the maximum displacement of
the structure which does not exceed a specifiedevédtiffness criterion). Thus, maximum
displacement is naturally the ideal objective fiorctof optimization models. However, the
location of the maximum/ displacement usually changeéth the change of material
distribution in the optimization process, resultinga discontinuous maximum displacement
function, especially for topology optimization. Hen to achieve a good balance between the
optimization performance and numerical cost, aggerdnce index called GADsxp, instead

of a direct optimization of the maximum displacem&nproposed, which is expressed as

. %
UGAD:(@jg(u(x))“dQJ . x00. (31)

Here, §2| denotes the area (or volume) of the design regiod the displacement of a general
point can be described in terms ofx). Theoretically, GAD tends to the maximum
displacement when n tends to infinity (Li and Fang 1997), i.e.,
Uenp O T max@u (x)), xOQ- When n is big enough, GAD is an appropriate

approximation of the maximum displacement.

In order to present the validity of GAD, a cantdéebeam was studied again with varying
square cross sections and subjected to a distiibmiear load, as shown in Figure 3a. The
eqguation of bending moment and bending moment amagre given in Figure 3b.
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Figure 3 Cantilever beam with varying sections subjected to a distributed lire load.
(a) A cantilever beam under uniformly distributeddoé) Equation of bending moment.

First, the conventional compliance formulation gpleed under a given weight constraint.
Then, the same problem in Figure 3 is solved usirey minimization of the maximum
displacement. Finally, to discuss the influencetlod objective functions, a GAD-based
optimization model is carried out to find the maxm stiffness design with the different
power indices (1,2,3,4).

For the cantilever beam in Figure 3, the compliazaealso be expressed as

(32)

f(A)=C= jLM(X)M(X) =[ S

The cross-sectional area fields can be obtainesubgtituting Equation 32 into Equation 4,
which is

A (33)

The corresponding displacement function and theasedt maximum stress function are

5
Ve = 2QL (xln +L-x- xln)
9EW;
7 34
T (34)
O-. = E R
W2

We also obtain an iso-stress design via compligased model as the former example. The
dimensionless cross-sectional area fields, displao¢ function, and the sectional maximum
stress function of compliance are

A (%) =3%°

o é(ilnX—m) %1

()= é - (35)
;= |1

e\ 27

According to Equations 28 to 30, the complianceimipation problem and the maximum
stress minimization problem will have equal optimegults in this example. Wherefore, it is
useless to solve this problem again via the maxirstiess-based model.

For the cantilever beam in Figure 3, the maximugpldicement can also be expressed as
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f, (A=v(X)]_ = j:dez j:%dx. (36)

The cross-sectional area fields can be obtainesubgtituting Equation 32 into Equation 4,
which is

A, (¥)= MZO X3. (37)
3L3

The corresponding displacement function and thBased maximum stress function are

11

21 e 7
v, =£L2(3x3—7L3x+4L3)
™ 686EW,
(38)

.
[27 QL2
O-Vmax = E—Q 3 X.
VVOZ
The dimensionless cross-sectional area fields, displatefoection, and the sectional
maximum stress function of compliance are

- T
A.()="
7
7, (%)= (3% - 7%+ 4) (39)
__[27,
Vina 243

In order to illustrate that GAD is an appropriate ragpnation of the maximum
displacement, the problem is modeled again to mi@r@AD as follows:

1
n 1o, n
flo :(I [ v (x)dxj : (40)
Based on the optimal result generated by the maximigplacement, we can assume the
optimal cross-sectional area fields obtained by GARBGwS:
Ao = H(m)x2, (41)

where the superscript denotes a power index parameter in Equation 40,nand the
evaluated variable. Substituting Equation 41 intadipn 4 gives
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(m+ 2w,

Hm) =%z (42)
2L 2
and the corresponding displacement function is
8QLm+1 5-m 4-m 5m
—-(5-m)L 4-m)L 4
EW2(4-m)(B=m)(m=+ 2F (x G-ML X+ (4-m)L"™) m<
2Qr° .
Voo = 9EV\4)2(XIn +L—x—xInL) x#0 : (43)
) m=4
20L xX£0
9EW?
The geometric average displacement can be reweaien
. 1
&L L5 myze (a<m) j 4
| BN mE o L%~ ]
fon = fao(NM = . , (44)
2q_6 1p X o n n _
ﬁ[tﬁ)(xn _X+1) df(j m—4

and the evaluated variabiein the optimal cross-sectional area fields casdieed by

a.I:C?AD(n’rn) - 0 (45)
om

To facilitate the comparisons, the solutions of dipgéimization models with the compliance
(the maximum stress), the maximum displacement, @A as objective functions are
shown in Table 1 and Figure 4. It can be seenttieatompliance design experiences large
displacement under the applied force, whereas dhgpance and GAD design have only
very slight displacement that implies a much gtiféeesign. To be more specific, the
maximum displacement of the optimal design gendrétemn GAD decreases by an extra
32% in comparison with the design obtained by caengpk. Furthermore, the maximum
stress of the optimal design generated from GAMD,tae compliance with the extra increase
of 21% is presented to demonstrate the validitthaf example. With the increase in power
index n, the material distribution and the displacemestdfiobtained by the GAD-based
model rapidly move close to the convergence of ltesabtained by the maximum
displacement. Since the approximate level tendgability with the increasing power index
n, an appropriate valueis required to be selected in the practical oation process.
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Table 1Results obtained by geometric average displacement for varying

n m A, (cross- Vsap (displacement function) O, (Sectional
sectional area) maximum stress
function)

1 333 A, 24337 V=025~ 16K+ 0.6] Oy =023°
2 309 A -400% Voo =0.18R7- 19K+ 0.9) Oy =0.250
3 297 A =30707 Uy, =015%%-20%+ 10§ Oayp =0.267
4

2.74 B o =378 g =013 - 226+ 125 Oy = 0278
oY) 2-67

m

=367 Vg, =0.12(X°F- 2.3%+ 1.33 g, =0.3%

Figure 4 Comparisons of design results of objectivega) Comparisons of displacement
function. p) Comparisons of cross-sectional area fieldsComparisons of the sectional
maximum stress function.

Conclusions

The classic test problems indicate that for theepbending beam under single loading
condition, the maximum stress minimization problamd the compliance minimization

problem have equal optimal results, and the maxindisplacement minimization problem

and the compliance minimization problem do not hegeal optimal results. This anticipated
result has so far been without the proof that #s¢ problems provide. The implication of the
conclusion is that the designer can rely on finding stress-constrained minimum weight
solution by performing optimization for the compic@ minimization problem, and it is

necessary to propose an appropriate index as apm@mtan of the maximum displacement
for the complex problems. Through a classic examjplevas shown that the solutions
achieved via the model utilizing GAD rapidly movkse to the convergence of results
obtained by the maximum displacement.
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