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Abstract 

This article is devoted to shape optimization design of pure bending beams under single 
loading condition. Compliance minimization with material volume constraint, the maximum 
stress minimization problem, and the maximum displacement are considered. In the case of 
trusses, it has been shown that the former two problems have the same optimal topology. The 
possibility of extending this result for pure bending beam problems is examined in the present 
work. First, the comparison of the optimum design results between the maximum 
displacement, the conventional mean compliance, and the maximum stress is carried out by 
an example of optimal cross-sectional design of a continuous beam. Then, geometric average 
displacement (GAD) is introduced in optimization models of linearly elastic structures. The 
elevated accuracy in results achieved with GAD is shown in this article. 

Keywords 
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Introduction 

Structural optimization is one of the most challenging research topics in the field of 
computational mechanics. It has received more and more attention recently because of its 
great potential application in many industrial areas. Its importance lies in the fact that the 
appropriate result of structural design is generally the most decisive factor that influences the 
product efficiency. 

Structural optimization, especially topology optimization, is being used increasingly in 
aerospace vehicles, maritime carriers, wind turbine blades, and various mechanical 
equipment where high strength, high stiffness, and low weight are important. In such 
applications, the problem of selecting a suitable optimization model has been investigated for 
a long time. In the vast literature on structural optimization model, arguably the two most 
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studied problems are stress-constrained weight minimization and material volume-
constrained compliance minimization. Indeed, Cox (1965) succeeded to prove that results 
attained via compliance minimization model would be equivalent to Michell's truss (stress-
constrained weight minimization result) in 1965.It has been shown a long time ago that these 
seemingly different problems possess equal optimal topologies (result), when the truss is 
subject to a single loading condition and the allowable stresses in tension and compression 
are equal (Dorn et al. 1964; Hemp 1973). This result has been extended by Achtziger (1996) 
for cases where the allowable stresses in tension and compression are not equal. 

Despite these successes, most of the topology optimization problems were modeled to 
minimize the compliance of the structures, following the methods adopted by Bendsøe and 
Kikuchi. The optimization problems of minimum compliance have been widely studied in the 
relevant literature (Xie et al. 2012; Bendsøe 1989; Eschenauer and Olhoff 2001; Sethian and 
Wiegmann 2000; Xie and Steven 1993; Gerzen and Barthold 2012; Gain and Paulino 2012; 
Lee et al. 2012; Bruggi and Duysinx 2012). 

Given all that, in most static structure design examples, the ultimate goal is to find the 
structures with maximum stiffness, or with minimum weight under stress constraint. Most of 
the current designs were modeled by minimum compliance and achieved the desired results 
by solving the minimum compliance problems. Although many good results have been 
attained in this way, stiffness is more accurately characterized by the maximum displacement 
of a structure under load. Moreover, Mela and Koski (2012) have suggested that the stress-
constrained minimum weight problem and the compliance minimization problem do not have 
equal optimal topologies of truss under multiple loading conditions. 

The main purpose of the present paper is to show that the maximum stress minimization 
problem and the compliance minimization problem have equal optimal results of pure 
bending beam under a single loading condition. Compared to them, the maximum 
displacement minimization problem does not have equal optimal results, and it is necessary to 
find the appropriate index as approximation of the maximum displacement. 

The paper is organized as follows: the optimal design results attained via the different models 
is presented and discussed in detail in the ‘Methods’ section. The main result of the paper is 
presented in the ‘Results and discussion’ section, where a cantilever beam is minimized 
separately for the maximum displacement, maximum stress, compliance, and so on. To 
illustrate the application of the proposed index as appropriate approximation of the maximum 
displacement in the static structure optimization, a power index parameter is solved in the 
‘Results and discussion’ section. Finally, the results are summarized with discussion in the 
‘Conclusions’ section. 

Methods 

Cross-sectional design of the cantilever beam 

Problem description 

In order to present the differences in optimal design results attained via the maximum 
displacement, maximum stress, and conventional mean compliance methods, a cantilever 
beam was studied with varying square cross sections, with ends x = 0 and x = L, where x is 
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the abscissa measured along the beam axis and subjected to a distributed constant line load q, 
as shown in Figure 1a. The equation of bending moment and bending moment diagram are 
given in Figure 1b. The objective of this example is to obtain the excellent mechanical 
performance of the cantilever beam by changing the cross-sectional areas along the x-axis. 

Figure 1 A Cantilever beam with varying sections. (a) A cantilever beam under uniformly 
distributed load. (b) Equation of bending moment. 

The exact differential equation of the deflection (displacement of the y-axis) curve can be 
described as 

2
2

2

1
( ) ( ) .

2

v
EI x M x qx

x

∂ = = −
∂

 (1) 

Here, v is the displacement of any point along the x-axis, q is the load line density, and E is 
Young's modulus of the material. Here, moments of inertia I(x) can also be stated as 

2( )
( ) .

12

A x
I x =  (2) 

Here, A(x) is the continuously differentiable function of the area of the square cross section 
along the x-axis. 

Then, the mechanical optimization problem can be formulated as 

00

find: ( )

min: ( )

s.t.: ( ) .
L

A x

f A

A x dx W=∫

  (3) 

Here, f(A) denotes a mechanical behavior index, and the material volume is limited by W0. 
With the Lagrange multiplier method, the solution of the cross-sectional areas of cantilever 
beam is attained by 

( )A 00 0
( ( )) 0, ( ) 0.

L L
f A Adx A x dx Wδ λ δ δλ+ = − =∫ ∫  (4) 

Here, δA is the variation function of A(x), and δA(f(A))denotes the Fréchet derivative of f(A) 
with respect to A(x).The constrained optimization problem (3) is transformed into an 
equivalent equation (4) by making use of the Karush-Kuhn-Tucker conditions of the 
constrained optimization. The optimal cross-sectional area fields A(x) in problem (3) can be 
obtained by solving Equation 4. 

Minimization of the maximum displacement 

In many practical cases, a commonly used design criterion is that the maximum displacement 
of the structure should not exceed a specified value. Thus, maximum displacement is 
naturally the ideal objective function of optimization models. According to the elementary 
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theory of the beam, the maximum displacement is located in the boundary of x = 0 and can be 
written as 

3

max 20 0

( ) ( ) 6
( ) ,

L LM x M x qx
v A dx dx

EI EA
= =∫ ∫  (5) 

where ( )M x  is the bending moment produced by a unit load applied on the free end of the 
beam (x = 0) and is of the form 

( ) .M x x= −  (6) 

Substituting Equations 5 and 6 into Equation 4 gives 

3

30

12
0

L qx
Adx

EA
λ δ 

− + = 
 

∫  (7) 

and 

00
0.

L
Adx W− =∫  (8) 

Since δA is an arbitrary function, A(x) can be written as 

1/3
12

.
q

A x
Eλ

 =  
 

 (9) 

Here, λ is an unknown variable. Substituting Equation9 into Equation 8, the optimal cross-
sectional area fields �����

��� . and λ can be expressed as 

max

6

3

0
2

8
=

2
2

( )v

qL

EM
W

A x x
L

λ

=
 (10) 

and the corresponding displacement function is 

max

4
2

2
0

3
( ) .

4v

qL
v x L

EW
= −  (11) 

The sectional maximum stress is found at the location on the cross section where y is the 
largest and can be written as 

max

1 7 1
2 2 2

max
32
2

0

6 9

8v

My MA qL x

I A L
W

σ  = = =  
 

 (12) 
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Introducing a dimensionless parameter 

,
x

x
L

=�  (13) 

the cross-sectional area fields and the corresponding displacement function can be expressed 
in the dimensionless space as 

max

max

0

( )
( ) 2 ,v

v

A x L
A x x

W
= =

�
� � �  (14) 

max

max

2
0 2

6

( ) 3
( ) ( 1) ,

4
v

v

v x EW
v x x

qL
= = −

�
� � �  (15) 

and 

max

max

3
12

0 2
7

2

( ) 9
.

8
v

v

x W
x

qL

σ
σ = =

�
� �  (16) 

Here, the subscript vmax shows that the optimization objective is to minimize the maximum 
displacement. 

Minimization of the maximum stress 

In many practical cases, a commonly used design criterion is that the maximum stress of the 
structure should not exceed a specified value (strength criterion). Thus, maximum stress is 
naturally the ideal objective function of optimization models. However, the location of the 
maximum stress usually will not be fixed with the change of material distribution in the 
optimization process. Therefore, the maximum stress is an implicit function with respect to 
material distribution. Hence, to resolve this problem, a performance index called geometric 
average sectional maximum stress instead of a direct optimization of the maximum stress is 
proposed, which is expressed as 

max

1

1

max 30 0
2

1 1 6
( ) ( ) .lim lim

n
L Ln nn

n n

M
f dx dx

L L
A

σ σ
→∞ →∞

 
   = =    

 
∫ ∫  (17) 

Theoretically, geometric average displacement (GAD) tends to geometric average stress 
when n tends to infinity (Gentile 2003; Li and Fang 1997). 

Substituting Equation 17 into Equation 4 gives 

2

30 1
2

0,lim
n

L

nn

x
Z Adx

A

λ δ
+→∞

 
 − + =
 
 

∫  (18) 
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where 

( )
1 1

2

30
2

3 3 1 3
( ) .

2

nn
L nq qx

Z dx
L L

A

−
 
 =
 
 
∫  (19) 

Since δA is an arbitrary function, A(x) can be written as 

2
4 4

3 2
3 2 3,lim

n
n

n

n

Z
A x Hx

λ
+

+

→∞

 = = 
 

 (20) 

where H is an unknown variable: 

2
3 2

.lim
n

n

Z
H

λ
+

→∞

 =  
 

 (21) 

Substituting Equation 20 into Equation 8 gives 

max

0
7/3

4/30
7/3

7

3
7

( ) .
3

W
H

L
W

A x x
Lσ

=

=
 (22) 

The corresponding displacement function and the sectional maximum stress function are 

max

max

14/3
4/3 1/3 1/3

2
0

7

2

3

2
0

81
(3 4 )

98

243
.

343

qL
v x L x L

EW

qL

W

σ

σσ

= − +

=
 (23) 

As shown in Equation 22, we can obtain an iso-stress (the sectional maximum stress function 
is constant) design via the maximum stress-based model. The dimensionless cross-sectional 
area fields, displacement function, and the sectional maximum stress function are 

max

max

max

max

4/3

0

4/3

( ) 7
( )

3

81
( ) (3 4 1)
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243
.
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A x L
A x x

W
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σ
σ

σ

σσ

= =

= − +

=

�
� � �
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�

  (24) 
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Here, the subscript σmax shows that the optimization objective is to minimize the maximum 
stress. 

Minimization of the compliance 

For the cantilever beam in Figure 1, the compliance can also be expressed as 

2 4

20 0

( ) ( ) 3
( ) .

2 2

L LM x M x q x
f A C dx dx

EI EA
= = =∫ ∫  (25) 

Here, the compliance is used as an optimization objective function. The optimal cross-
sectional area fields A(x) should obey the following necessary conditions: 

2 4

030 0

3
( ) 0, 0.

L Lq x
Adx Adx W

EA
λ δ− + = − =∫ ∫  (26) 

The cross-sectional area fields can be obtained by solving Equation 26, which is 

4/30
C 7/3

7
( )

3

W
A x x

L
=  (27) 

Compared with Equation 22, the compliance minimization problem and the maximum stress 
minimization problem have equal optimal results in this example. To amplify this highly 
simplified conclusion, the contrast between the compliance minimization problem and the 
maximum stress minimizaion problem can be formulated as 

( )
max max

max max

1 1

03 2 30 0 0
2 2

2

C C 030 0
C

3 6 1 6
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2
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L L L

n
n

n
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M M
Z Adx Z dx A dx W

L L
A A

M
Adx A dx W
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σ σ

σ σ

λ δ

λ δ

−
+

→∞

     
     − + = − =     
           


  − + = − = 
 

∫ ∫ ∫

∫ ∫

 
(28) 

then 

max max max

max max

2 2
23 2 3 2
3

1 1
22 3 3
3

C C
C C

.

12 12

lim lim
n nn

n n

C

ZM Z
A H M H

M
A H M H

E E

σ σ σ
σ σλ λ

λ λ

+ +

→∞ →∞


    = = =           


     = = =       

 (29) 

Substituting Equation 29 into Equation 4 gives 

max

max

C

C

.
H H

A A

σ

σ

=
 =

 (30) 
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Therefore, the first example helps us draw the conclusion that in this kind of problem (pure 
bending beam), the optimal design generated from the compliance formulation and the 
maximum are identical, same to the truss problems (Cox 1965; Dorn et al. 1964; Hemp 
1973). 

Comparisons of the results 

Comparing these results, it shows that the optimization models with compliance (maximum 
stress) and the maximum displacement as objective function sometimes does not give the 
same optimal results in this kind of problem, and we find significant differences in the cross-
sectional area fields, displacement, and the sectional maximum stress function. To be more 
specific, from the results, the maximum displacement of the optimal design generated from 
maximum displacement decreases by extra 10% in comparison with the design obtained by 
conventional compliance (maximum stress). Furthermore, the maximum stress of the optimal 
design generated from maximum displacement with the extra increase of 26% is presented to 
demonstrate the validity of this example, as shown in Figure 2. 

Figure 2 Comparisons of design results of objectives. (a) Comparisons of displacement 
function. (b) Comparisons of cross-sectional area fields. (c) Comparisons of the sectional 
maximum stress function. 

Results and discussion 

The optimization model of the geometric average displacement 

In many practical cases, a commonly used design criterion is the maximum displacement of 
the structure which does not exceed a specified value (stiffness criterion). Thus, maximum 
displacement is naturally the ideal objective function of optimization models. However, the 
location of the maximum displacement usually changes with the change of material 
distribution in the optimization process, resulting in a discontinuous maximum displacement 
function, especially for topology optimization. Hence, to achieve a good balance between the 
optimization performance and numerical cost, a performance index called GADUGAD, instead 
of a direct optimization of the maximum displacement, is proposed, which is expressed as 

1

GAD

1
( ( )) ,

n
nU u x d x

 
= ∈  
 

∫
Ω

Ω Ω.

Ω

 (31) 

Here, |Ω| denotes the area (or volume) of the design region, and the displacement of a general 
point can be described in terms of u(x). Theoretically, GAD tends to the maximum 
displacement when n tends to infinity (Li and Fang 1997), i.e., 

GAD max( ( )),nU u x x→∞ → ∈ Ω . When n is big enough, GAD is an appropriate 
approximation of the maximum displacement. 

In order to present the validity of GAD, a cantilever beam was studied again with varying 
square cross sections and subjected to a distributed linear load, as shown in Figure 3a. The 
equation of bending moment and bending moment diagram are given in Figure 3b. 
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Figure 3 Cantilever beam with varying sections subjected to a distributed linear load. 
(a) A cantilever beam under uniformly distributed load. (b) Equation of bending moment. 

First, the conventional compliance formulation is applied under a given weight constraint. 
Then, the same problem in Figure 3 is solved using the minimization of the maximum 
displacement. Finally, to discuss the influence of the objective functions, a GAD-based 
optimization model is carried out to find the maximum stiffness design with the different 
power indices n (1,2,3,4). 

For the cantilever beam in Figure 3, the compliance can also be expressed as 

2 6

c 2 20 0

( ) ( )
( ) .

2 6

L LM x M x Q x
f A C dx dx

EI EL A
= = =∫ ∫  (32) 

The cross-sectional area fields can be obtained by substituting Equation 32 into Equation 4, 
which is 

20
C 3

3
( ) .

W
A x x

L
=  (33) 

The corresponding displacement function and the sectional maximum stress function are 

( )
5

2
0

7

2

3

2
0

2
ln ln

9

1
.

27

x L
C

C

QL
v x L x x

EW

QL

W

σ

= + − −

=
 (34) 

We also obtain an iso-stress design via compliance-based model as the former example. The 
dimensionless cross-sectional area fields, displacement function, and the sectional maximum 
stress function of compliance are 

max

max

2( ) 3

2
( ln 1) 1

9( )
2

1
9

1
.

27

C

x

A x x

x x x
v x

x
σ

σσ

=

 − + ≠= 
 =


=

�

� � �

� � �

� �

�

�

 
(35) 

According to Equations 28 to 30, the compliance minimization problem and the maximum 
stress minimization problem will have equal optimal results in this example. Wherefore, it is 
useless to solve this problem again via the maximum stress-based model. 

For the cantilever beam in Figure 3, the maximum displacement can also be expressed as 
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max

4

20 0

( ) ( ) 2
( ) ( ) .

L L

v x L

M x M x Qx
f A v x dx dx

EI ELA=
= = =∫ ∫  (36) 

The cross-sectional area fields can be obtained by substituting Equation 32 into Equation 4, 
which is 

max

4
0 3
7

3

7
( ) .

3
v

W
A x x

L

=  (37) 

The corresponding displacement function and the sectional maximum stress function are 

11

3

max

max

7 4 7

3 3 3
2

0

7

2

3

2
0

27
(3 7 4 )

686

27
.

243

v

v

QL
v x L x L

EW

QL
x

W

σ

= − +

=

  (38) 

The dimensionless cross-sectional area fields, displacement function, and the sectional 
maximum stress function of compliance are 

max

max

max

4
3

7
3

7
( )

3

27
( ) (3 7 4)

686

27
.

243

v

v

v

A x x

v x x x

xσ

=

= − +

=

� � �

� � � �

� �

 (39) 

In order to illustrate that GAD is an appropriate approximation of the maximum 
displacement, the problem is modeled again to minimize GAD as follows: 

1

GAD 0

1
( ) .

nLn nf v x dx
L

 =  
 
∫  (40) 

Based on the optimal result generated by the maximum displacement, we can assume the 
optimal cross-sectional area fields obtained by GAD as follows: 

2
GAD ( ) ,

m
nA H m x=  (41) 

where the superscript n denotes a power index parameter in Equation 40, and m is the 
evaluated variable. Substituting Equation 41 into Equation 4 gives 
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0
2

2

( 2)
( ) ,

2
m

m W
H m

L
+

+=  (42) 

and the corresponding displacement function is 

( )

1
5 4 5

2 2
0
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GAD 2
0
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9

m
m m m

x L

QL
x m L x m L m

EW m m m

QL
x L x x xv

EW
m

QL
x

EW

+
− − −

− − + − < − − +
  + − − ≠=  

 =
 ≠
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 (43) 

The geometric average displacement can be rewritten as 

( )

( )

1
6 1 5

2 2 0
0

GAD GAD 1
6 1

2 0
0

8 1
(5 ) (4 ) 4
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( , ) ,

2 1
ln 1 4
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nnm
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nnx

QL
x m x m dx m

EW m m m L
f f n m

QL
x x dx m

EW L

−


  − − + − <  − − +  = =
  − + =  

 

∫

∫
�

� � �
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 (44) 

and the evaluated variable m in the optimal cross-sectional area fields can be solved by 

GAD ( , )
0.

nf n m

m

∂ =
∂

 (45) 

To facilitate the comparisons, the solutions of the optimization models with the compliance 
(the maximum stress), the maximum displacement, and GAD as objective functions are 
shown in Table 1 and Figure 4. It can be seen that the compliance design experiences large 
displacement under the applied force, whereas the compliance and GAD design have only 
very slight displacement that implies a much stiffer design. To be more specific, the 
maximum displacement of the optimal design generated from GAD decreases by an extra 
32% in comparison with the design obtained by compliance. Furthermore, the maximum 
stress of the optimal design generated from GAD, and the compliance with the extra increase 
of 21% is presented to demonstrate the validity of this example. With the increase in power 
index n, the material distribution and the displacement field obtained by the GAD-based 
model rapidly move close to the convergence of results obtained by the maximum 
displacement. Since the approximate level tends to stability with the increasing power index 
n, an appropriate value n is required to be selected in the practical optimization process. 
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Table 1 Results obtained by geometric average displacement for varying n 
n m 

GADA�  (cross-
sectional area) 

GADv�  (displacement function) 
GADσ�  (sectional 

maximum stress 
function) 

1 3.33 3.33
GAD 4.33A x=� �  ( )1.67

GAD 0.25 1.67 0.67v x x= − +� � �  0.5
GAD 0.23xσ =� �  

2 3.09 3.09
GAD 4.09A x=� �  ( )1.91

GAD 0.18 1.91 0.91v x x= − +� � �  0.68
GAD 0.25xσ =� �  

3 2.97 2.97
GAD 3.97A x=� �  ( )2.03

GAD 0.15 2.03 1.03v x x= − +� � �  0.77
GAD 0.26xσ =� �  

4 2.74 2.74
GAD 3.74A x=� �  ( )2.26

GAD 0.13 2.26 1.26v x x= − +� � �  0.95
GAD 0.27xσ =� �  

∞(vmax) 2.67 
max

2.673.67vA x=� �  ( )2.33
GAD 0.12 2.33 1.33v x x= − +� � �  

max
0.33v xσ =� �  

Figure 4 Comparisons of design results of objectives. (a) Comparisons of displacement 
function. (b) Comparisons of cross-sectional area fields. (c) Comparisons of the sectional 
maximum stress function. 

Conclusions 

The classic test problems indicate that for the pure bending beam under single loading 
condition, the maximum stress minimization problem and the compliance minimization 
problem have equal optimal results, and the maximum displacement minimization problem 
and the compliance minimization problem do not have equal optimal results. This anticipated 
result has so far been without the proof that the test problems provide. The implication of the 
conclusion is that the designer can rely on finding the stress-constrained minimum weight 
solution by performing optimization for the compliance minimization problem, and it is 
necessary to propose an appropriate index as approximation of the maximum displacement 
for the complex problems. Through a classic example, it was shown that the solutions 
achieved via the model utilizing GAD rapidly move close to the convergence of results 
obtained by the maximum displacement. 
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