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Abstract This paper deals with the detection of crack in

frame structures based on Euler–Bernoulli beams theorem

by the Spectral Element Method. The effect of cracking is

modeled using Castigliano’s theorem and laws of fracture

mechanics as mass-less rotational and translational springs

which are embedded in different locations of the steel

frame structure in both beam and column. The crack

location is revealed precisely without prior knowledge of

their positions in frame structure. This means that there is

no necessity to know the location and the node number

which is assigned to crack. Finally the effect of crack when

it is embedded simultaneously in both beam and column

members, is also studied.

Keywords Wave propagation � Crack detection � Spectral

element method � Steel frame structure

Introduction

Cracks in structures are a potential source of collapses in

buildings especially at the time of earthquakes. Crack

existence in column reduces the structural strength of the

buildings and leads the whole structure to be in danger of

failure. So this issue makes the damage detection such a

prominent problem in civil engineering.

Wave propagation analysis is a good technique for

damage detection with even if the small ones, but it also

depends on the numerical method that will be derived for

analyzing. Finite Element Method (FEM) has been used as

a much more popular numerical method in comparison to

other numerical methods such as boundary element

method, transition matrix method and so on. This method is

an open area of research yet, as Lee (2009) achieved to find

multiple cracks using the vibration amplitudes by finite

element method, it has been also found to be able detecting

the crack locations accurately. In addition, Ovanesova and

Suarez (2004) represented wavelet transformation using

conventional finite element method. They used 50 finite

elements for each beam–column member to obtain struc-

tural responses of damaged frames. But for impulsive loads

with high frequency contents, using FEM is not effective,

because it correspondingly needs to increase the number of

elements to capture all the higher modes. So, it is necessary

to use finer elements until the deformed solution converges

to an accepted value. Hence, Doyle (1997) proposed a

method in frequency domain as FFT-based Spectral Ele-

ment Method (SEM) for solving this problem. In SEM the

governing partial differential equations (PDE) are trans-

ferred to ordinary differential equations (ODE), next by

Discrete Fourier Transform (DFT) the ODEs are all

transformed into frequency domain. Finally, using Inverse

Discrete Fourier Transform (IDFT) it is possible to obtain

the responses into time domain. In this method the struc-

tures without any discontinuities can be modeled with just

one element, and it is also possible to find displacements in

any point of element without any extra nodes, so these

advantageous have made this method unique in comparison

to other numerical methods.

Palacz and Krawczuk (2002) represented wave propa-

gation analysis for damage detection by Fourier Spectral
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Element Method (FSEM), where damage was modeled as

non-propagating crack in rod and substituted by a dimen-

sionless spring using Castigliano’s theorem. Then Kra-

wczuk et al. (2006) determined the differences obtained by

all the three other modified theories of rods plus to ele-

mentary one, and two different excited signals with high

and low frequency contents have been used for finding

damages in which they were similar to that of the afore-

mentioned cracks. Krawczuk et al. (2003) developed this

kind of cracks to that of the Timoshenko beam, they found

this method more sufficient in comparison to other

numerical methods for damage detection.

A delamination in beam as the other different kinds of

damages has been also studied by Ostachowicz et al.

(2004) by wave propagation analyses using SEM, but they

asserted that for more sophisticated situations, it is just

possible to show that there is damage, while determining

the place of the damages lead to difficulty. That made it

impossible to clearly discover the place of delaminations in

beam. So they inevitably recommended using of genetic

algorithm or neural networks for distinguishing the loca-

tion and magnitude of a delamination in beam (Krawczuk

and Ostachowicz 2002).

Gopalakrishnan et al. (2008) developed wave propaga-

tion in composite and inhomogeneous media by SEM,

where different types of damage have been represented.

Prior researches just have involved give information

about the crack locations in rods, beams and plates, but

none has mentioned to the frame one. So this research aims

to model crack by Castigliano’s theorem and laws of

fracture mechanics in 2-D frame structures based on Euler–

Bernoulli’s beam theorem using SEM. On the other hand

the peak amounts of the incident waves throughout the

elements have been traced to monitor the existence of

likely damages in both beam and column. Eventually, the

exact locations of the cracks with different damage rates

monitored and then embedded simultaneously in both

beam and column where their location in beam considered

being constant while varying in the column element, to

study the effects of the crack in displacement responses of

the frame structure.

Local flexibility

To study about the structural health monitoring for

detecting the potential likely crack-like damages, a suitable

model of the crack is diagnosed important. So the Casti-

gliano’s theorem is employed for a square cross-section

beam–column element containing the transverse crack,

where it is just included in the vertical plane. In this

research work, beam–column elements are modeled by

Euler–Bernoulli beams theorem, as it is expected that the

shear deformations are not considered, so the crack is

simulated by a translational and rotational springs, as

shown in Fig. 1.

In the general case there are six nodal loads including

the axial force, shearing forces, bending moments and also

the torque. But in this specific case we only consider two

independent nodal loading such as axial force and bending

moment as shown in Fig. 2.

As aforementioned, flexibility at the crack location can

be calculated using Castigliano’s theorem (Russell 2002)

by the following expression:

Cij ¼
o2U

oPioPj

i ¼ 1; 2 ; j ¼ 1; 2 ð1Þ

where U denotes the elastic strain energy and P are the

nodal loads.

U ¼ 1

E

Z

A

ðK2
I;1 þ K2

I;2ÞdA ð2Þ

K2
I;1 and K2

I;2 are the stress intensity factors corre-

sponding to the first mode of deformation of the crack in

relation with the axial force and bending moment,

respectively.

Axial flexibility

The stress intensity factor in relation with the axial force P1

can be calculated as:

KI;1 ¼
P1

A

ffiffiffiffiffiffi
pa
p

F1
a=b
� �

ð3Þ

where a and b are shown in Fig. 3.

And the correction function F1 can be expressed as

(Tada et al. 2000):

F1
a=b
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b

pa
tan

pa
2b

r

�
0:752þ 2:02 a =b

� �
þ 0:37 1� sin pa

2b

� �3

cos pa
2b

ð4Þ

CT ¼
2p

E d2b2

Zd
2

�d
2

Za

0

a F2
1

a=b
� �

dxdy ¼ 2p
E db2

Za

0

a F2
1

a=b
� �

dx

�a ¼ a

b
; �a ¼ a

b
! CT ¼

2p
E d

Z �a

0

�a F2
1 �að Þ d�a ð5Þ

hT ¼ EACT ð6Þ

where CT is the axial flexibility due to the existence of the

crack on the rod cross-section and hT is the dimensionless

flexibility.
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Bending flexibility

Similar to that of the axial flexibility, the stress intensity

factor in relation with the bending moment P2 can be also

expressed as:

KI;2 ¼
6P2

db2

ffiffiffiffiffiffi
pa
p

F2
a=b
� �

ð7Þ

where a, b and d are shown in Fig. 3.

F2
a=b
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b

p a
tan

pa
2b

r
0:923þ 0:199 1� sin pa

2b

� �4

cos pa
2b

ð8Þ

CR ¼
72p

E d2b4

Zd
2

�d
2

Za

0

a F2
2

a=b
� �

dxdy ¼ 72p
E db4

Za

0

a F2
2

a=b
� �

dx

�a ¼ a

b
; �a ¼ a

b
! CR ¼

72p
E db2

Z�a

0

�a F2
2 �að Þ d�a

hR ¼
EICR

L
ð10Þ

where CR is the bending flexibility due to the existence of

the crack on the beam cross-section, L is the length of the

element and hR is the dimensionless flexibility.

Rod spectral element

Rod spectral element method based on elementary rod

theory with longitudinal displacement function uðxÞ,
material characteristics: q as volumetric density, E as

Young modulus, and A as the cross-section area, where kr

and xn are the rod’s wave number and natural frequency,

respectively, is represented as (Doyle 1997):

uðxÞ ¼ Cr
1e�ikrx þ Cr

2e�ikrðL�xÞ ð11Þ

kr ¼ xn

ffiffiffiffiffiffi
qA

EA

r
ð12Þ

where Cr
1 and Cr

2 are the forward and backward propagat-

ing wave amplitudes, respectively.

Fig. 1 Model of the cracked

beam section with rotational and

translational Springs

Fig. 2 Cracked beam–column

element with axial force and

bending moment

Fig. 3 Cross-section of the beam–column element at crack location
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Rod spectral element with two finite elements

The solution is similar to Eq. (11) with the main difference

that it is divided to the left and right part of the cracked rod,

so by considering u1ðxÞ and u2ðxÞ as the spectral dis-

placements for the left and right part of the rod, respec-

tively, read:

u1ðxÞ ¼ Ar
1e�ikrx þ Br

1e�ikrðL1�xÞ x 2 ð0; L1Þ
u2ðxÞ ¼ Ar

2e�ikrðL1þxÞ þ Br
2e�ikrðL2�xÞ x 2 ð0; L2Þ

ð13Þ

The crack is considered to be located at L1 from the left

part of the rod. So by assuming L as the whole length of the

rod, L2 ¼ L� L1.

The nodal spectral forces can be achieved by the relation

between the axial forces and the displacement fields asso-

ciated with the left part of the rod [x ¼ 0 for u1ðxÞ] and the

right part of the rod [x ¼ L2 for u2ðxÞ]:

Fa ¼ EA
ou1ðx ¼ 0Þ

ox

Fb ¼ EA
ou2ðx ¼ L2Þ

ox

ð14Þ

Next, by considering the boundary conditions in asso-

ciation with the spectral displacements uðxÞ for the left and

right part of the cracked rod and the longitudinal dimen-

sionless flexibility hL are as follows:

u1ðx ¼ 0Þ ¼ qr
1 ð15Þ

u2ðx ¼ 0Þ � u1ðx ¼ L1Þ ¼ hL

ou1ðx ¼ L1Þ
ox

ou2ðx ¼ 0Þ
ox

¼ ou1ðx ¼ L1Þ
ox

ð16Þ

u2ðx ¼ L2Þ ¼ qr
2 ð17Þ

And then by taking into account the nodal spectral

forces, we are able to obtain the dynamic stiffness in a

matrix form as:

Fa

Fb

� �
¼ Fr½ �

Ar
1

Br
1

Ar
2

Br
2

8>><
>>:

9>>=
>>;
¼ Fr½ � T r½ ��1

qr
1

0

0

qr
2

8>><
>>:

9>>=
>>;
) Kdyn

¼ Fr½ � T r½ ��1

ð18Þ

where Fr½ � and T r½ � as the spectral force and displacement

matrix for the rod spectral element, respectively are given

in ‘‘Appendix’’.

Euler–Bernoulli beam spectral element

Beam spectral element method with transverse displace-

ment function wðxÞ, material characteristics: q as volu-

metric density, E as Young modulus, I as geometrical

moment of inertia and A as the cross-section area, where kb

is the beam’s wave number, is represented as (Doyle 1997):

wðxÞ ¼ Cb
1e�ikbx þ Cb

2e�kbx þ Cb
3e�ikbðL�xÞ þ Cb

4e�kbðL�xÞ

ð19Þ

kb ¼
ffiffiffiffiffiffiffiffiffiffiffi
qAx2

EI

4

r
i ð20Þ

where Cb
1 ; Cb

2 and Cb
3 ; Cb

4 are the forward and backward

propagating wave amplitudes, respectively.

Beam spectral element with two finite elements

Similar to that of the rod spectral element with two finite

elements, beam is also subdivided into two left and right

parts of the cracked beam, where w1ðxÞ and w2ðxÞ are

considered to be the transverse spectral displacements

relevant to these two parts:

w1ðxÞ ¼ A1e�ikbx þ B1e�kbx þ C1e�ikbðL1�xÞ

þD1e�kbðL1�xÞ x 2 ð0; L1Þ
w2ðxÞ ¼ A2e�ikbðxþL1Þ þ B2e�kbðxþL1Þ

þC2e�ikbðL2�xÞ þ D2e�kbðL2�xÞ x 2 ð0; L2Þ

ð21Þ

In a similar manner, identical to the rod spectra element,

we consider nodal spectral forces to the left and right parts

of the element to that of the beam one. So here the nodal

spectral forces included the shear and bending forces in

relation to the transverse displacement field as follows:

V ¼ EI
o3w

ox3

� �
M ¼ EI

o2w

ox2

� �
ð22Þ

V1ðx ¼ 0Þ ¼ V1 V2ðx ¼ L2Þ ¼ �V2

M1ðx ¼ 0Þ ¼ �M1 M2ðx ¼ L2Þ ¼ M2

ð23Þ

The boundary conditions for the left and right parts of

the beam spectral element with bending dimensionless

flexibility hb can be considered as:

At the left end of the beam element:

w1ðx ¼ 0Þ ¼ qb
1

ow1ðx ¼ 0Þ
ox

¼ qb
2 ð24Þ

At the crack location:

w2ðx ¼ 0Þ ¼ w1ðx ¼ L1Þ
ow2ðx ¼ 0Þ

ox
� ow1ðx ¼ L1Þ

ox
¼ hb

o2w1ðx ¼ L1Þ
ox2

o2w2ðx ¼ 0Þ
ox2

¼ o2w1ðx ¼ L1Þ
ox2

o3w2ðx ¼ 0Þ
ox3

¼ o3w1ðx ¼ L1Þ
ox3

ð25Þ

At the right end of the beam element:

w2ðx ¼ L2Þ ¼ qb
3

ow2ðx ¼ L2Þ
ox

¼ qb
4 ð26Þ
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Finally, by relating nodal spectral forces and boundary

conditions, it is possible to obtain the dynamic stiffness in

matrix form as follows:

Va

Ma

Vb

Mb

8>><
>>:

9>>=
>>;
¼ Fb
	 


Ab
1

Bb
1

Cb
1

Db
1

Ab
2

Bb
2

Cb
2

Db
2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ Fb
	 


Tb
	 
�1

qb
1

qb
2

0

0

0

0

qb
3

qb
4

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

) Kdyn ¼ Fb
	 


Tb
	 
�1 ð27Þ

where Fb
	 


and Tb
	 


as the spectral force and displacement

matrix for that of the beam spectral element, respectively

are given in ‘‘Appendix’’.

Stiffness matrix of frame structures

The frame elements are composed by elementary rods in

conjunction with Euler–Bernoulli beams which can be

assembled in a way similar to conventional FEM.

The internal force and displacement matrix for each

beam–column element can be represented as follows:

By relating internal forces and the nodal displacements

in a matrix form, it is possible to obtain the stiffness matrix

of the frame structure.

fF̂g ¼ ½K̂� fÛg
½K̂�12�12 ¼ ½R�

T½ �K� ½R�
ð30Þ

R ¼

cos a sin a 0 0 0 0

� sin a cos a 0 0 0 0

0 0 1 0 0 0

0 0 0 cos a sin a 0

0 0 0 � sin a cos a 0

0 0 0 0 0 1

2
6666664

3
7777775

ð31Þ

where ½K̂� is the 12� 12 complex matrix for one-bay frame

structure, and ½R� is the rotation matrix to transform the

local stiffness matrix of the beam–column members to that

of the global one.

Numerical examples

Here the ability of the SEM in crack detection in one-bay

portal frame is demonstrated. The material characteristics

and the dimensions of the beam and column members of

the frame structure which is subjected to sinusoid impul-

sive load are shown in Table 1. This impulsive load is

diagnosed to be in form of the sine wave which is modu-

lated with Hanning window to avoid leakage errors (de

Silva 2007). So it has been seen suitable to use signals

Table 1 Details of the steel frame structure

Parameters Physical Dimensions

Length 4 m

Width 0.2 m

Height 0.2 m

Young’s modulus 210 PaG

Mass density 7,850 kg/m3

u1

w1

u1

u2

w2

u2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

1 0 0 e�ikrL 0 0

0 1 1 0 e�ikbL e�kbL

0 �ikb �kb 0 ikbe�ikbL kbe�kbL

e�ikrL 0 0 1 0 0

0 e�ikbL e�kbL 0 1 1

0 �ikbe�ikbL �kbe�kbL 0 ikb kb

2
666666664

3
777777775

Ar
1

Ab
1

Bb
2

Br
2

Cb
3

Db
4

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð28Þ

P1

V1

M1

P2

V2

M2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

EAikr 0 0 �EAikre
�ikrL 0 0

0 �EIðikbÞ3 �EIðkbÞ3 0 EIðikbÞ3e�ikbL EIðkbÞ3e�kbL

0 �EIðikbÞ2 �EIðkbÞ2 0 �EIðikbÞ2e�ikbL �EIðkbÞ2e�kbL

�EAikre
�ikrL 0 0 EAikr 0 0

0 EIðikbÞ3e�ikbL EIðkbÞ3e�kbL 0 �EIðikbÞ3 �EIðkbÞ3

0 EIðikbÞ2e�ikbL EIðkbÞ2e�kbL 0 EIðikbÞ2 EIðkbÞ2

2
666666664

3
777777775

Ar
1

Ab
1

Bb
2

Br
2

Cb
3

Db
4

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð29Þ
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which last for short period of time and correspondingly

containing wider range of frequency, hence it is used of

signal with 170 KHZ excited frequency, as shown in

Fig. 4.

To make it possible to diagnose the place of crack in

frame structure in both beam and column members we used

the differences between signals obtained from undamaged

and damaged frame. The crack depth which is embedded in

beam member varying from 3 to 5 % of the height of the

beam with an increment of 1 % is as opposed to 5 % of the

height of the column for column member.

Figure 6a shows the vertical displacement response of

the frame structure where the impulsive load is applied in a

vertical position as shown in Fig. 5b. Figure. 6b shows the

horizontal displacement response of the frame structure

where the impulsive load is applied in a horizontal position

as shown in Fig. 5a. These responses are measured at the

place where the impulsive load is applied.

Figure 7 shows the differences between signals obtained

from damaged and undamaged frame structure where

damage is embedded in the beam element, the crack depth

varying from 3 to 5 % with an increment of 1 %. Since, in

displacement responses obtained from cracked structure it

is not specifically able to distinguish the changes by

embedding crack, hence inevitably we avoided represent-

ing them here for brevity and we have just represented their

differences in relation to the undamaged structure respon-

ses. As it is obvious from Fig. 7, when we declined the

crack depth, the amplitude of differences between

responses obtained from damaged and undamaged frame

structure as expected, decreased. Reflected signals from

crack place are obviously shown in Figs. 7, 8 and 9, the

other additional signals are because of existence of crack in

structure which makes it difficult to diagnose the place

where crack is embedded. So to recognize which reflected

signal would be the desired one, to help us to find damage

place, crack in different places of the beam member has

been embedded and the additional signal in which it is

reflected from crack place is also demonstrated in Fig. 8.

In Fig. 9 the ability of the method also in finding

damage in the column member are presented. In this figure

the difference between displacement response of the

Fig. 4 Time history of

impulsive load (a) and its FFT

(b)

Fig. 5 One-bay steel frame under impulsive loads applied in a horizontal (a) and vertical (b) positions
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damaged and undamaged frame structure where crack is

located at 3.5 m away from clamping support with crack

depth equal to 5 % is demonstrated.

On the other part, the location of the crack in relation to

the position of the beam member is shown in Fig. 10. As

aforementioned, one of the most prominent features of the

SEM is its ability to demonstrate all the responses of the

structures without introducing any extra node. So, using

this point and measuring the longitudinal responses in

different positions of the frame structure and extracting the

peak amplitude of the incident waves, it is possible to

recognize the exact place of the crack in both beam and

column members. In Fig. 10a, fluctuations which are

emerged from latter half of the beam member are because

of reflected waves, which make it a little bit difficult to

distinguish the likely damages that are occurred in these

regions. So, to relieve from this problem it is suggested

monitoring the latter half of the beam member also from

the opposite side. In Fig. 10b where the crack is embedded

at 3.5 m away from clamping support, such a problem is

not observed. At distance 4 m away from the place where

the impulsive load is applied, there is clamping support in

which all the responses indeed should be zero, as this figure

also approves this.

Figure 11 represents the horizontal displacement

responses of the frame structure when crack is embedded

simultaneously in both beam and column. The place of the

crack in beam is considered to be constant, equal to 0.5 m,

while in the left column it changed from 0.2 to 1 m and the

right column is assumed to be intact.

At the time when crack embedded simultaneously in both

beam and column and horizontal responses of the frame

structure has been measured, other additional reflected sig-

nals because of existence of crack are also emerged.

By considering the case where the crack location is

constant in beam element and it differs from 0.2 to 1 m in

column, it is concluded that because of existence of crack,

also in column, another wave which is assigned as wave C,

as is shown in Fig. 11, emerged and except its amplitude,

its place associated with time did not differ by changing the

Fig. 6 Vertical (a) and horizontal (b) displacement responses at the

place where the impulsive load is applied

Fig. 7 Differences between horizontal displacement of damaged and

undamaged frame with crack depth equal to 5 % (a), 4 % (b) and 3 %

(c), embedded in beam and located at 0.5 m
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place of crack in column. But wave B which is appeared

because of existence of crack in beam, neither the place nor

the amplitude changed.

By increasing the distance of crack from the place where

the impulsive load is applied, it has been demonstrated that

wave A which was emerged because of existence of crack

in column, took longer time to be revealed. So it can be a

good indicator to diagnose the place of the crack in

column.

Fig. 8 Differences between horizontal displacement of damaged and

undamaged frame with crack depth equal to 5 %, embedded in beam

and located at 1 m (a) and 1.5 m (b)

Fig. 9 Difference between vertical displacement of damaged and

undamaged frame with crack depth equal to 5 %, embedded in

column

Fig. 10 Crack location in beam (a) and column (b)

Fig. 11 Differences between horizontal displacement of damaged

and undamaged frame where crack is located at 0.5 m from end left of

beam, and is also embedded at 3.8 m (a) and 3 m (b) away from

clamping support of column
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Conclusions

A frame structure composed by Euler beams has been

stimulated under an impulsive load for finding crack in

different locations of the steel structure in both beam and

column. So the signal propagated through out the damaged

frame structure in which the crack-like damage has been

modeled as a localized flexibility using Castigliano’s the-

orem and laws of fracture mechanics.

In this research work, first the effects of the different

depths of the crack have been shown, to demonstrate the

ability of the method in finding damages precisely, with

even if the least amounts of failures. Then the existence of

crack, in both beam and column, separately represented.

And the ability of the method in displaying the crack place

in relation to the position of the relevant members is shown

successfully.

Finally by applying crack simultaneously in both in

beam and column, where hitherto no one has mentioned to

this issue neither by SEM nor conventional FEM, the

effects of the crack in both members which has changed the

horizontal displacement responses of the frame in com-

parison to that of the case where the crack has only been

embedded in beam member, is also studied.

In this research work, it is shown that damage in different

places of the frame structure is possible to be obtained, in

other word, it is not limited to the specific places of the

structure. On the other hand, it is not mentioned to the likely

damages which can be occurred at the base of the frame

structure or in the beam–column connections, where addi-

tional research works can be extended to.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix

• Spectral force matrix for the rod spectral element:

Fr½ � ¼ EA
ikr �ikre

�ikrL1 0 0

0 0 �ikre
�ikrðL1þL2Þ ikr

� �
ð32Þ

• Spectral displacement matrix for the rod spectral

element:

T r½ �

¼

1 e�ikrL1 0 0

�e�ikrL1ð1� hLikrÞ �1� hLikr e�ikrL1 e�ikrL2

�ikre
�ikrL1 ikr ikre

�ikrL1 �ikre
�ikrL2

0 0 e�ikrðL1þL2Þ 1

2
6664

3
7775

ð33Þ

• Spectral force matrix for the beam spectral element:

• Spectral displacement matrix for the beam spectral

element:

Fb
	 


¼ EI

ð�ikbÞ3 ð�kbÞ3 ðikbÞ3e�ikbL1 ðkbÞ3e�kbL1 0 0 0 0

�ðikbÞ2 �ðkbÞ2 �ðikbÞ2e�ikbL1 �ðkbÞ2e�kbL1 0 0 0 0

0 0 0 0 �ð�ikbÞ3e�ikbðL2þL1Þ �ð�kbÞ3e�kbðL2þL1Þ �ðikbÞ3 �ðkbÞ3
0 0 0 0 ðikbÞ2e�ikbðL2þL1Þ ðkbÞ2e�kbðL2þL1Þ ðikbÞ2 ðkbÞ2

2
664

3
775 ð34Þ

Tb
	 


¼

1 1 e�ikbL1 e�kbL1 0 0 0 0

�ikb �kb ikbe�ikbL1 kbe�kbL1 0 0 0 0

�e�ikbL1 �e�kbL1 �1 �1 e�ikbL1 e�kbL1 e�ikbL2 e�kbL2

ikbe�ikbL1ð1� hbðikbÞÞ kbe�kbL1ð1� hbkbÞ ikbð�1� hbðikbÞÞ kbð�1� hbðkbÞÞ �ikbe�ikbL1 �kbe�kbL1 ikbe�ikbL2 kbe�kbL2

�ðikbÞ2e�ikbL1 �ðkbÞ2e�kbL1 �ðikbÞ2 �ðkbÞ2 ðikbÞ2e�ikbL1 ðkbÞ2e�kbL1 ðikbÞ2e�ikbL2 ðkbÞ2e�kbL2

�ð�ikbÞ3e�ikbL1 �ð�kbÞ3e�kbL1 �ðikbÞ3 �ðkbÞ3 ð�ikbÞ3e�ikbL1 ð�kbÞ3e�kbL1 ðikbÞ3e�ikbL2 ðkbÞ3e�kbL2

0 0 0 0 e�ikbðL2þL1Þ e�kbðL2þL1Þ 1 1

0 0 0 0 �ikbe�ikbðL2þL1Þ �kbe�kbðL2þL1Þ ikb kb

2
66666666664

3
77777777775

ð35Þ
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