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Abstract The static stability of an asymmetric sandwich

beam with viscoelastic core on viscoelastic supports at the

ends and subjected to an axial pulsating load and a steady,

one-dimensional temperature gradient is investigated by

computational method. The equations of motion and

associated boundary conditions are obtained using the

Hamilton’s energy principle. Then, these equations of

motion and the associated boundary conditions are non-

dimensionalised. A set of Hill’s equations is obtained from

the non-dimensional equations of motion by the application

of the general Galerkin method. The static buckling loads

are obtained from the Hill’s equations. The effects of shear

parameter, geometric parameters, core loss factors, and

thermal gradient on the non-dimensional static buckling

loads zones have been investigated.

Keywords Viscoelastic core � Sandwich beam �
Viscoelastic supports � Core loss factors � Static stability

and static buckling loads
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Ai (i = 1, 2, 3) Areas of cross-section of a three-
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B Width of beam
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ffiffiffiffiffiffiffi

�1
p

l Beam length
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t Time
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u1
00 o2u1

ox2

g Core loss factor

x xt0
x Frequency of forcing function

w0 Reference temperature

d Thermal gradient parameter

c Coefficient of thermal expansion of

beam material

E(n) Variation of modulus of elasticity of

beam

T(n) Distribution of elasticity modulus

a E1 A1

E3 A3

Introduction

Vibration control of machines and structures incorporating

viscoelastic materials in suitable arrangement is an

important aspect of investigation. The use of viscoelastic

layers constrained between elastic layers is known to be

effective for damping of flexural vibrations of structures

over a wide range of frequencies. The energy dissipated in

these arrangements is due to shear deformation in the

viscoelastic layers, which occurs due to flexural vibration

of the structures. The effect of temperature on the modulus

of elasticity is far from negligible, especially in high-speed

atmospheric flights and nuclear engineering applications in

which certain parts have to operate under elevated tem-

peratures. Most engineering materials have a linear rela-

tionship between Young’s modulus and temperature.

Kerwin (1959) was the first to develop a theory for the

damping of flexural waves by a viscoelastic damping layer.

Evan-Iwanowski (1965), Ariarathnam (1986) and Simitses

(1987) gave exhaustive account of literature on vibration

and stability of parametrically excited systems. Review

article of Habip (1965) gives an account of developments

in the analysis of sandwich structures. Articles of Nakra

(1976, 1981, 1984) have extensively treated the aspect of

vibration control with viscoelastic materials. Saito and

Otomi (1979) considered the response of viscoelastically

supported ordinary beams. Bauld (1967) considered the

dynamic stability of sandwich columns with pinned ends

under pulsating axial loads. The effect of translational and

rotational end-flexibilities on natural frequencies of free

vibration of Timoshenko beams was investigated by Abbas

(1984).

Tomar and Jain (1984, 1985) studied the effect of

thermal gradient on the frequencies of rotating beams

with and without pre-twist. Kar and Sujata (1988) studied

the parametric instability of a non-uniform beam with

thermal gradient resting on a pasternak foundation. Lin

and Chen (2003) studied the dynamic stability of a

rotating beam with a constrained damping layer. Ghosh

et al. (2005) studied the dynamic stability of a viscoe-

lastically supported sandwich beam. Dwivedy et al.

(2009) studied the parametric instability regions of a soft

and magneto rheological elastomeric cored sandwich

beam. The dynamic analysis of magneto rheological

elastomeric-based sandwich beam with conductive skins

under various boundary conditions was studied by Nayak

et al. (2011).

Although some studies have been carried out in the past

on the static and parametric instability of a symmetric

sandwich beam under various boundary conditions by Ray

and Kar (1995), as well as effect of temperature gradient on

the frequencies of vibration of beams, it appears to the

author’s knowledge that no work exists concerning the

effect of viscoelastic layer and thermal gradient on the

static stability of a asymmetric sandwich beams under

pulsating axial loads.

Thus, the purpose of this paper is to present the static

stability of an asymmetric beam with viscoelastic core

subjected to a steady, one-dimensional temperature gradi-

ent along its length. Finally, the effect of shear parameter,

geometric parameters, core loss factors, and thermal gra-

dient on the non-dimensional static buckling loads zones is

investigated by computational method and the results are

presented graphically.

Formulation of the problem

Figure 1 shows the system configuration. The top layer of

the beam is made of an elastic material of thickness 2h1 and

Young’s modulus E1 and bottom layer is made of an elastic

material of thickness 2h3 and Young’s modulus E3. The

core is made of a linearly viscoelastic material with shear

modulus G�2 ¼ G2ð1þ jgÞ where G2 is the in-phase shear

modulus, g is the core loss factor and j = H-1. The core

has a thickness of 2h2. The beam is restrained by transla-

tional and rotational springs. The moduli of the springs

are given as k�t1 ¼ kt1 1þ jgt1ð Þ, k�t2 ¼ kt2 1þ jgt2ð Þ, k�r1 ¼
kr1 1þ jgr1ð Þ, k�r2 ¼ kr2 1þ jgr2ð Þ, subscripts t and r refer to

the translational and rotational springs, respectively,

gt1; gt2; gr1. . ., etc. being the spring loss factors.

The beam is subjected to pulsating axial loads P tð Þ ¼
P0 þ P1cosðxtÞ acting along the undeformed axis as

shown. Here x is the frequency of the applied load, P0 and

P1 are, respectively, the static and dynamic load amplitudes

and t is the time. A steady one-dimensional temperature

gradient is assumed to exist in the top and bottom layers.

The following assumptions are made for deriving the

equations of motion:
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1. The deflections of the beam are small and the

transverse deflection w(x, t) is the same for all points

of a cross-section.

2. The layers are perfectly bonded so that displacements

are continuous across interfaces, that is, no slipping

conditions prevail between the elastic and viscoelastic

layers at their interfaces.

3. The elastic layers obey Euler–Bernoulli beam theory.

4. Damping in the viscoelastic core is predominantly due

to shear.

5. A steady one-dimensional temperature gradient is

assumed to exist along the length of the beam.

6. Bending and the extensional effects in the core are

negligible.

7. Extension and rotary inertia effects are negligible.

The expressions for potential energy, kinetic energy and

work done are as follows:

V ¼ 1

2
E1A1

Z L

0

u2
1;xdxþ 1

2
E3A3

Z L

0

u2
3;xdx

þ 1

2
E1I1 þ E3I3ð Þ

Z L

0

w2
;xdxþ 1

2
G�2A2

Z L

0

c2
2dx

þ 1

2
k�t1

w2 0; tð Þ þ 1

2
k�t2

w2 L; tð Þ þ 1

2
k�r1

c2
2 0; tð Þ

þ 1

2
k�r2

c2
2 L; tð Þ ð1Þ

T ¼ 1

2
m

Z L

0

w2
;tdx ð2Þ

Wp ¼
1

2

Z L

0

PðtÞw2
;xdx ð3Þ

where, u1 and u3 are the axial displacements in the top and

bottom layers and c2 is the shear in the layer given by

c2 ¼ u1�u3

2h2
� cw;x

2h2
. u3 is eliminated using the Kerwin

assumption (Kerwin 1959).

The application of the extended Hamilton’s principle

d
Z t2

t1

T � V þWp

� �

dt ¼ 0 ð4Þ

gives the following system of equations of motion

mw;tt þ E1I1 þ E3I3ð Þw;xxxx �
G�2A2c2

2h2ð Þ2
� P tð Þ

 !

w;xx

þ G�2A2c 1þ að Þ
2h2ð Þ2

u1;x ¼ 0 ð5Þ

E1A1 þ a2E3A3

� �

u1;xx �
G�2A2 1þ að Þ2

2h2ð Þ2
u1

þ G�2A2cð1þ aÞ
2h2ð Þ2

w;x ¼ 0 ð6Þ

At x = 0, the associated boundary conditions are,

E1I1 þ E3I3ð Þw;xxx �
G�2A2c2

2h2ð Þ2
� P tð Þ

 !

w;x � k�t1w

þ G�2A2c 1þ að Þ
2h2ð Þ2

u1 ¼ 0 ð7Þ

or

w ¼ 0 ð8Þ

E1I1 þ E3I3ð Þw;xx þ
k�r1 h1 þ h3ð Þ

2h2ð Þ2
h1 þ h3ð Þw;x � 1þ að Þu1

� �

¼ 0

ð9Þ

Fig. 1 System configuration
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or

w;x ¼ 0 ð10Þ

E1A1 þ a2E3A3

� �

u1;x þ
k�r1 1þ að Þ

2h2ð Þ2
1þ að Þu1 � h1 þ h3ð Þw;x

� �

¼ 0

ð11Þ

or

u ¼ 0 ð12Þ

The boundary conditions at x = l are obtained from Eqs.

(7) to (12) by replacing k�t1 and k�r1 by k�t2 and k�r2, respectively.

In the above, w;tt ¼ o2w
ot2 ;w;xx ¼ o2w

ox2 ; etc. Also, a ¼ E1A1

E3A3

where A1 and A3 are cross-sectional areas of the top and

bottom layer, respectively.

Moreover, c ¼ h1 þ 2h2 þ h3; I1 and I3 are the moments

of inertia of the top and bottom layer cross-sections about

relevant axes. u1 is the axial deflection of the middle of top

layer and w;tt ¼ o2w

ot
2 , w;x ¼ ow

ox
are in above equations.

Introducing the dimensionless parameters x ¼ x=l,

w ¼ w=l, u1 ¼ u1=l,

t ¼ t=t0;where t2
0 ¼ ml4= E1I1 þ E3I3ð Þ;x ¼ xt0;

P0 ¼ P0l2
� �

= E1I1 þ E3I3ð Þ;P1 ¼ P1l2
� �

= E1I1 þ E3I3ð Þ;
P tð Þ ¼ P0 þ P1 cos xt;

_g ¼ G�
2
h21l2

h1

E1 1þE31h3
31ð Þ ¼ 1þ jgrð Þ, g being the shear parameter

and _g being the complex shear parameter

h21 ¼ 1=h12 ¼ h2=h1; h31 ¼ h3=h1; h32 ¼ h3=h2; lh1 ¼ l=h1;

E31 ¼ E3=E1, Eq. (5)–(12) reduce to,

w;tt þ w;xxxx þ P tð Þ � 3g� 1þ h12 þ h32

2

� �2
( )

w;xx

þ 3

2
g�h12lh1 1þ h12 þ h32

2

� �

1þ að Þu;x ¼ 0 ð13Þ

u1;xx �
g�

4
h2

12 1þ að Þ 1þ E31h3
31

� �

u1

þ g�

2

h12

lh1

1þ E31h3
31

� �

1þ h12 þ h32

2

� �

w;x ¼ 0: ð14Þ

The non-dimensional boundary conditions at �x ¼ 0 are

as follows

w1;xxx þ P tð Þ � 3g� 1þ h12 þ h32

2

� �2
( )

w1;x � k
�
t1w

þ 3

2
g�h12lh1 1þ h12 þ h32

2

� �

1þ að Þu1 ¼ 0 ð15Þ

or

w ¼ 0 ð16Þ

w;xx � k
�
r1

1þ h31ð Þ
lh1

w;x � k
�
r1 1þ að Þu1 ¼ 0 ð17Þ

or

w;x ¼ 0 ð18Þ

u1;x þ
1

3
k
�
r1

1þ E31h3
31

� �

lh1 1þ h31ð Þ 1þ að Þu1 �
2

3
k
�
r1

1þ E31h3
31

� �

l2h1

w;x ¼ 0

ð19Þ

or

u1 ¼ 0 ð20Þ

In the above equations, k
�
t1 ¼ kt1 1þ jgt1ð Þ ¼ k�

t1
l3

E1I1þE3I3ð Þ ;

k
�
r1 ¼ kr1 1þ jgr2ð Þ ¼ k�

r1
h1þh3ð Þl2

4h2
2

E1I1þE3I3ð Þ, gt1 and gr1 being the

non-dimensional spring loss factors corresponding to the

translational and rotational springs at the left end, and k
�
t1

and k
�
r1 are the non-dimensional spring parameters for the

springs at x = 0.

The boundary conditions at x = 1 can be obtained from

Eqs. (15)–(20) by replacing k�t1 and k�r1 by k�t2 and k�r2,

respectively, where k�t2 and k�r2 are defined similar to k
�
t1 and

k
�
r1:

Approximate solutions

Approximate solutions of Eq. (13) and (14) are assumed as

w ¼
X

i¼N

i¼1

wi xð Þfi tð Þ ð21Þ

u1 ¼
X

k¼2N

k¼Nþ1

u1k xð Þfk tð Þ ð22Þ

where fi (r = 1, 2,…, 2N) are the generalized coordinates

and wi xð Þ and u1k xð Þ are the shape functions to be so

chosen as to satisfy as many of the boundary conditions as

possible (Leipholz 1987). For the above-mentioned

boundary conditions, the shape functions chosen are of the

following general form (Ray and Kar 1995),

wi xð Þ ¼ a0xiþ1 þ a1xiþ2 þ a2xiþ3 ð23Þ

uik xð Þ ¼ b0xk þ b1xkþ1 where k ¼ k � N ð24Þ

for i = 1, 2,…,N and k = N ? 1, N ? 2,…,2N. The spe-

cific values of coefficients a0, a1, a2, b0 and b1 are obtained

by substituting Eqs. (23) and (24) into Eqs. (15), (17) and

(19) and arbitrarily setting a0 and b0 (here a0 ¼ b0 ¼ 1).

Substitution of Eqs. (21) and (22) in the non-dimen-

sional equations of motion and application of general

Galerkin method (Leipholz 1987) leads to the following

matrix equations of motion.
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m½ � €fjg
� �

þ k11½ � fj
� �

þ k12½ � flf g ¼ 0f g ð25Þ

k22½ � flf g þ k21½ � fj

� �

¼ 0f g ð26Þ

For j = 1, 2…N and l = (N ? 1)…2N, the various

matrix elements are given by

mij ¼
Z 1

0

wiwjdx ð27Þ

k11ij ¼
Z 1

0

w00i w00j dxþ 3g� 1þ h12 þ h32

2

� �2

�P tð Þ
" #

�
Z 1

0

w0iw
0
jdxþ k

�
t1wi 0ð Þwj 0ð Þ þ k

�
t2wi 1ð Þwj 1ð Þ

þ k
�
r1w0i 0ð Þw0j 0ð Þ þ k

�
r2w0i 1ð Þw0j 1ð Þ ð28Þ

k12ik ¼ �
3

2
g�h12lh1 1þ að Þ 1þ h12 þ h32

2

� �

�
Z 1

0

w0iu1kdxþ k
�
r1u1k 0ð Þw0i 0ð Þ þ k

�
r2u1k 1ð Þw0i 1ð Þ

ð29Þ

k22kl ¼ 3l2
h1

1þ a2E31h31

1þ E31h3
31

Z 1

0

u01ku01ldxþ 3

4
g�l2h1h2

12 1þ að Þ2

�
Z 1

0

u1ku1ldxþ k
�
r1u1k 0ð Þu1l 0ð Þ þ k

�
r1u1k 1ð Þu1l 1ð Þ

ð30Þ

Also, k21½ � ¼ k21½ �T . From Eq. (26), flf g ¼ � k22½ ��1
k21½ �

fj
� �

. Substitution of this in Eq. (25) leads to,

m½ � €fg
� �

þ k½ � ff g � P1 cos xtð Þ H½ � ff g ¼ 0f g ð31Þ

where ff g ¼ f1;...;fN
� �T

, Hij ¼
R 1

0
w0iw

0
jdx and k½ � ¼ T11½ � �

k12½ � k22½ ��1
k12½ �T with,

T11ij ¼
Z 1

0

w00i w00j dxþ 3g� 1þ h12 þ h32

2

� �2

�P0

" #

�
Z 1

0

w0iw
0
jdxþ k

�
t1wi 0ð Þwj 0ð Þ

þ k
�
t2wi 1ð Þwj 1ð Þ þ k

�
r1w0i 0ð Þw0j 0ð Þ þ k

�
r2w0i 1ð Þw0j 1ð Þ

ð32Þ

Static buckling loads

Substitution of �P1 ¼ 0 and f€fg ¼ f0g in Eq. (31) leads to

the eigenvalue problem ½k��1
H½ � ff g ¼ 1

Po
ff g: The static

buckling loads ð�PoÞcrit for the first few modes are obtained

as the real parts of the reciprocals of the eigenvalues of

½k��1
H½ �.

Numerical results and discussion

Numerical results were obtained for various values of the

parameters such as shear parameter, geometric parameter,

core loss factors and thermal gradient. The following

parameter values have been taken, unless stated otherwise.

g ¼ 0; gt1 ¼ gt2 ¼ 0:1; gr1 ¼ gr2 ¼ 0:01; kt1 ¼ kt2 ¼ 1;000;

kr1 ¼ kr2 ¼ 750; lh1 ¼ 10; g ¼ 0:05;E31 ¼ 1; a ¼ 1;

h31 ¼ h12 ¼ 1; P0 ¼ 0:1; d1 ¼ 1 and d2 ¼ 0:2:

The temperature above the reference temperature at any

point n from the end of the beam is assumed to be

Ww ¼ wW0ð1� nÞ. Choosing Ww0 ¼ wW1, the tempera-

ture at the end n = 1 as the reference temperature, the

variation of modulus of elasticity of the beam (Kar and

Sujata 1988) is denoted by

E nð Þ ¼ E1½1� cW1ð1� nÞ�; 0� cwW1\ 1 ¼ E1TðnÞ

where, c is the coefficient of thermal expansion of the beam

material, d = cW1 is the thermal gradient parameter and

T(n) = ½1� dð1� nÞ].
Here, we are considering a ¼ E1A1

E3A3
¼ E1TðnÞ

E3TðnÞ �
A1

A3
¼

E1½1�d1ð1�nÞ�
E3½1�d2ð1�nÞ� �

A1

A3
¼ E1

E3
�

1
d2
�d1

d2
�ð1�nÞ

1
d2
�ð1�nÞ �

A1

A3
where d1 and d2 are

thermal gradient in the top and bottom layer, respectively.

The static stability of the system has been analyzed as

follows.

Figure 2 addresses the effect of the shear parameter

(g) on the static buckling loads. The non-dimensional static

buckling load almost remains constant for the first two

modes. The static buckling load for the third mode

increases appreciably for higher values of g and the rate of

increase being higher for the higher modes. Hence to

increase the buckling effect of the system, g value should

be more for higher modes.

Fig. 2 Variation of ð �PoÞcritwith g (shear parameter)
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When h31 (as shown in Fig. 3) is increased, static

buckling load decreases slowly for mode 1 and rapidly for

modes 2 and 3. The rate of decrease is maximum for the

highest mode for moderate h31 values. For higher buckling

effect of the system, the value of h31 should be small.

Figure 4 shows the variation of the static buckling load

with lh1. The variation (increment) is a non-linear nature.

With increase in the value of lh1, the static buckling load

increases. Hence for more static stability of the system, the

value of lh1 should be large.

As shown in Fig. 5, the static buckling loads are almost

independent of the core loss factor. This means static sta-

bility does not change with the variation of g.

The static buckling loads ð�PoÞcrit are almost indepen-

dent of the rotational spring constant Kr1 (as shown in

Fig. 6).

Variation of the static buckling load with rotational

spring constant Kr2 for mode 1 and mode 2 almost remains

constant but for mode 3 shows a slight increasing trend, the

rate of increase being higher for the higher mode (as shown

in Fig. 7). Kr2 has very marginal incremental effect for the

static stability of the model for higher modes.

Increase of thermal gradient d (when d1 [ d2Þ reduces

static buckling load for all the mode (as shown in Fig. 8a).

Also similar effects have been observed when

d2 [ d1(shown in Fig. 8b). For more static stability of the

structure, the values of d1 and d2 should be small. The

variation of static buckling load with Kt1 and Kt2 is similar

to those of Kr1 and g, respectively, and those are not shown.

Conclusion

In this paper, a computational analysis of the static stability

of an asymmetric sandwich beam with viscoelastic core is

Fig. 3 Variation of ð �PoÞcrit with h31

Fig. 4 Variation of ð �PoÞcrit with lh1

Fig. 5 Variation of ð �PoÞcrit with g (core loss factor)

Fig. 6 Variation ofð �PoÞcrit with Kr1

Fig. 7 Variation of ð �PoÞcrit with Kr2
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considered. The programming has been developed using

MATLAB. The following are the conclusions drawn from

the study.

For small values, g has a detrimental effect and for large

values, it improves the static stability for higher modes. An

increase in h31 is seen to have a detrimental effect on the

non-dimensional static buckling loads. Hence a symmetric

beam is seen to have better resistance against static buck-

ling. A higher lh1 improves the buckling loads, however for

small values, it has a detrimental effect. Static buckling

loads are almost independent of core loss factor (g), rota-

tional spring constant Kr1, and translational spring con-

stants Kt1 and Kt2. Increase in Kr2 shows slight increasing

trend for mode 3 only. Increase in thermal gradient (d)

reduces static buckling loads for all the modes.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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