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Abstract Nonlinear finite element (FE) static analyses of

top- and seat-angle connections were performed using

ABAQUS standard to investigate the influence of con-

nection parameters and its properties on prying action de-

veloped due to the interaction between column flange and

top angle’s vertical leg. Contact phenomenon between two

interfaces with finite sliding and bolt pretension in the

initial step of analysis was considered in the FE model. FE

analysis results were compared with the experimental ones

to examine the applicability of the FE model. Then, the

location of plastic hinges in connection assemblages was

investigated at the ultimate state of the connection and a

parametric study was performed varying connection pa-

rameters, material properties of connection assemblages,

and magnitude of bolt pretension to visualize their effects

on prying force and on the position of prying force on top

angle’s vertical leg. Current study shows that plastic hinges

not only develop at top angle’s heel and bolt hole region

but also in the bolt shank that differs from some assump-

tions of power model (Kishi and Chen 1990): (1) top angle

thickness and gage distance from angle heel to bolt hole

center line have an distinct effect on prying action; and (2)

distributed prying force developed near the region of the

top edge of tension angle’s leg adjacent to column flange

can contribute to the failure of the connection. Finally, a

mathematical formulation to identify the location of prying

force action point is proposed.

Keywords Top- and seat-angle connection � Finite
element analysis � Prying action � Location of prying force

Introduction

Nowadays semi-rigid connections are of considerable in-

terest to researchers and design offices because they are

easy to install in steel frames and have considerable energy

dissipating capacity under seismic excitation. Recognizing

the importance of these connections in practice, AISC

(2001, 2005) specifications recommend inclusion of this

group of connections in the Partially Restrained (PR)

construction category. However, detail design guidelines

for this group of connections, especially for angle type of

connections, are not developed yet.

In the AISC-ASD specifications, top- and seat-angle

connections are treated as connections intended only for

transferring beam shear force. However, experimental evi-

dence and the present study on the connections show that

besides transferring beam shear force, this type of connection

transfers fairly considerable beam end moment to the col-

umn.When transferring thismoment through the top angle to

the column, an increase in tensile force is incurred in the bolts

due to local deformation of the top angle’s vertical leg. This

additional tensile force is commonly known as the prying

force (Q in Fig. 4). Recently, researchers have paid serious

attention to this additional force in their mathematical rep-

resentation of connection behavior. Initially, the T-stub

modeling concept has been used for designing extended end

plate connections and modified for use to design angle type

of connections (Faella et al. 1996; CEN 1997). However, the

T-stub model is not accurate enough to represent actual de-

formation pattern of true angle type of connections at failure,

and may not correctly estimate the connection strength.
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Accordingly, in the 80s and 90s, available moment-ro-

tation models were modified and improved by incorporat-

ing more realistic representation of prying action (Kishi

and Chen 1986, 1990; Faella et al. 1996; CEN 1997). Kishi

and Chen’s (1990) connection model (named as power

model) considered bending and shear deformations of the

angle, but disregarded deformation of bolts for deriving the

ultimate moment capacity of angle type of connections. To

establish a rational prediction model for precise represen-

tation of the M–hr curves of the connections, the effect of

prying action on connection behavior should not be ig-

nored. In this context, FE analyses were performed to in-

vestigate the contribution of prying action in moment-

rotation behavior (Ahmed 2002; Komuro et al. 2006). The

places of plastic zones, effect of connection parameters on

prying action and the magnitude and location of prying

action are also examined for tracing a failure mechanism of

the connection. Finally, based on the FE analysis and ex-

perimental results (Azizinamini et al. 1985; Harper 1990),

an equation determining the location of prying force at the

final load level is suggested for general application of es-

timating the ultimate moment capacity of the connection.

FE analysis of connections

A 3D FE mesh of the steel top- and seat-angle connection is

constructed employing ABAQUS/CAE (2005) structural

analysis modeling tool to execute a nonlinear static analysis.

A complete list of connections with geometric details which

are used for FE analysis to study the connection parameter

and property effects on prying action is provided in Table 1.

This list includes connections used by the first author in his

previous study (Ahmed et al. 2001) and an additional

connection designated as ‘‘Test 3’’ which was tested by

Harper in the University of South Carolina (Harper 1990).

Mesh generation of FE model

In the FE analysis modeling, top and seat angles, bolts,

beam and stub column of the tested connection are ideal-

ized by homogeneous steel material and modeled with

eight-node solid (brick) elements, which are identified as

C3D8R elements in ABAQUS. These elements with re-

duced integration are generated considering precise con-

stitutive law of integration and are very suitable for

nonlinear static analysis allowing finite strain and rotation

in large-displacement analysis (ABAQUS 2005). Moder-

ately fine mesh is used to construct the mesh of the con-

nection model to obtain close representations to the

experimental specimens. The mesh of the connection

model strictly followed the geometries of the tested con-

nection. The measurements of all connections including

Test 3 are shown in Table 1. The connection parameters

shown with symbols in Fig. 1 are enlisted in Table 1. The

other connection parameters shown with numeric values in

the same figure are kept unchanged in all connection

models. Because of symmetry, one quarter of the connec-

tion is used for mesh generation of all FE model connec-

tions with half of span length (such as, 1.829 m for Test 3

is illustrated in Fig. 2). Bolts in the mesh are divided into

shank, head and nut elements to consider their individual

affections on connection behavior. The bolt hole diameter

is supplied 1.6 mm (1/16 in.) larger than the diameter of

the bolt in accordance with Azizinamini et al. (1985) and

Harper’s (1990) test data. The total number of elements

and nodes defined in the FE mesh of model Test 3 are 8652

and 16,421, respectively. As an example, the mesh patterns

Table 1 Geometrical Properties of top- and seat-angle connections

FE model Column section Beam section Top and seat angles Bolt diameter

db (mm)
Angle section l (mm) g0t (mm) r (mm) q (mm)

A1, A1m, A1Po, FE5, FE6 W12 9 96 W14 9 38 L6 9 4 9 3/8 203.2 63.5 139.7 88.9 22.23

A2, A2m, FE8 W12 9 96 W14 9 38 L6 9 4 9 1/2

Test 3 W8 9 24 W8 9 21 L6 9 3� 9 3/8 152.4 50.8 88.9 69.9

FE1, FE7 W12 9 96 W14 9 38 L6 9 4 9 3/4 203.2 63.5 139.7 88.9

FE2 W12 9 96 W14 9 38 L6 9 3� 9 3/8 50.8

FE3 W12 9 96 W14 9 38 L6 9 6 9 3/8 114.3

FE4 W12 9 96 W14 9 38 L6 9 4 9 1/2 63.5 19.05

FE9 W12 9 96 W8 9 28 L6 9 4 9 3/8 22.23

FE10 W12 9 96 W8 9 28 L6 9 4 9 1/2

FE11 W12 9 96 W8 9 28 L6 9 4 9 3/4

FE12, FE12Po W12 9 96 W8 9 28 L6 9 3� 9 3/8 50.8

FE13 W12 9 96 W8 9 28 L6 9 6 9 3/8 114.3
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of the connection Test 3 with a bolt in enlarged con-

figuration are shown in Fig. 2. The FE models similar to

the experimental specimens A1, A2 and Test 3 are used for

examination of the applicability of selected FE model of

top- and seat-angle connection.

Mechanical properties

Material properties of angles and bolts for all connection

models are listed in Table 2. Yield and ultimate stresses of

angles, which are collected from experimental data, are 297

and 517 MPa for Test 3, 301 and 467 MPa for A1 and A2

connections, respectively. The properties of angles for the

remaining connection models except models Test 3 and

FE7 are kept same (Table 2) to investigate the effects of

connection parameters, material properties and bolt pre-

tension on prying action. Angle material properties for

model FE7 is assumed to be the nominal values of A36

steel. Yield and ultimate stresses of beam and column of all

connection models are assumed to be 365 and 550 MPa,

respectively. Material properties for bolts of all connection

models except FE8 are assumed to be of the nominal values

of A325 bolts and for model FE8 are assumed to be of the

nominal values of A490 bolts in accordance with AISC-

LRFD specification (2001). This was done because no

coupon test results were included in the research reports of

the tests. A bilinear stress–strain relation with isotropic

hardening characteristics representing plastic behavior of

all connection members is assumed. Young’s modulus of

elasticity, E = 206,000 MPa and Poisson’s ratio m = 0.3

are taken. Here, strain hardening constant is determined

assuming the ultimate strains are 10 and 20 % for bolts and

for the other connection members, respectively.

Contact surface modeling

To precisely analyze the behavior of connecting members,

contact definition with finite sliding option is applied for

the contact surfaces between the vertical legs of angles and

column flange, between the horizontal legs of angles and

corresponding beam flanges, and between the bolts and

bolthole elements during the analysis. Moreover, to con-

sider the frictional resistance between contact surfaces, the

penalty frictional coefficient is assumed as 0.1.

Boundary condition

FE models are analyzed consistent with the experimental

setup of Azizinamini et al. (1985) and Harper (1990), in

which (1) two beams are symmetrically connected to the

column flanges in a cruciform shape (Fig. 1); (2) the ends

of these beams are simply supported; and (3) letting the

center of top plate of stub column move upward so that the

forces corresponding to the prescribed bending moment

Fig. 1 Geometrical

measurements of connection

Test 3

Fig. 2 Mesh pattern of FE model Test 3 with enlarged bolt
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can be distributed among the connection assemblages. In

addition, rollers are used to correct any movement of the

stub column due to slippage and asymmetric movement.

Based on such experimental setup and considering struc-

tural symmetry, one-quarter model of connection com-

posed of stub column, beam, top and seat angles and bolts

is used for FE analysis modeling. Figure 3 demonstrates

the boundary conditions applied to FE model. To enforce

connection symmetry, plane Z–X in the middle of the stub

column is constrained in direction of Y and plane Y–Z in the

middle of the beams and angles in length and stub column

in width is constrained in direction X (Fig. 3). To produce

only vertical reaction forces, the beam end support is as-

sumed to be pin.

Loading method

The analysis was carried out with a monotonically incre-

mental loading scheme for all connection models imitating

experimental loading procedure. The connection models

are analyzed in three loading steps. In the first step, a

prescribed force, 40 % of minimum tensile strength of bolt,

is applied to the pretension node of a predefined section of

the bolt shank. As a result, the length of bolt shank at the

pretension section changes by the amount necessary to

carry the prescribed load. In the second step, the prescribed

bolt load is replaced by changing the length of pretension

section back to the initial length. Bolt pretension force of

all models (excluding A1Po, FE5 and FE6) is prescribed as

40 % of the ultimate strength of bolt. For connection

models A1Po, FE5 and FE6, corresponding values are 0, 20

and 60 % of the ultimate strength of bolt, respectively.

Thus, A1Po connection model designated with subscript

‘Po’ as listed in Table 2 is analyzed considering zero pre-

tension force of bolts. In the third step, bending moment is

introduced to the beam-to-column connection by employ-

ing vertical displacement of the middle section of plane

Z–X of the stub column (Fig. 3). Automatic load increment

scheme is preferred because ABAQUS can select the pre-

cise incremental rate to attain the optimum computational

efficiency.

Results of analysis and discussion

Connection moment M is determined by multiplying re-

action force at the pin support of the beam and minimum

distance between the point of pin support of beam and the

instantaneous center of rotation. The instantaneous center

of rotation for the connection is located at the cross-point

of the horizontal middle plane and the vertical section at

the top of the heel of angle leg adjacent to the compression

beam flange (Fig. 4). Relative rotation of the connection hr
calculated from the results of FE analysis is estimated us-

ing the following equation:

hr ¼
dt � db

h
ð1Þ

where dt and db are the horizontal displacements at the

upper and lower edges of beam flanges, respectively, and

h is the beam section height. In the FE analysis, connection

moment is considered as the ultimate moment capacity

Fig. 3 Boundary conditions of the FE model of top- and seat-angle

connections

Table 2 Mechanical properties of connection angles and bolts used for FE analysis

Test or FE model Angle Bolt

Yield stress fy,t
(MPa)

Ultimate strength fu,t
(MPa)

Yield stress fy,b
(MPa)

Ultimate strength fu,b
(MPa)

Test 3 297 517 635 830

A1, A2 301 467

A1m, A1Po, A2m, FE1–FE6, FE9–FE13, FE12Po 365 550

FE7 250 400

FE8 365 550 830 1035
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when the first element of the top angle bolt or top angle of

the FE model reaches at its ultimate stress level. The

comparison of moment-rotation curves between analytical

and experimental results is shown in Fig. 5 to verify the

current FE analysis method. This comparison reveals that

the computed moment-rotation curves are almost identical

to the corresponding experimental ones in the linear elastic

and early plastic ranges. The little differences in the late

plastic range may have been caused by the following rea-

sons (Ahmed 2002):

1. In the FE analysis, instead of actual nonlinear, an ap-

proximate linear inelastic constitutive behavior of an-

gles and bolts material is used.

2. There might have some discrepancies between the

material properties used for the FE analysis and those

of test specimens.

3. Experimental error may also have contributed to the

deviations.

Therefore, the FE analysis method is precise enough to

investigate the magnitude of prying force and locations of

the prying action and the yielding zones of the connection.

The stress-deformation results of the FE analyses show

that yielding occurs initially at the top of the tension an-

gle’s filet (Fig. 6), and is then propagated in the area

Fig. 4 Deformed configuration of a typical top- and seat-angle

connection

Fig. 5 Comparison of moment-rotation curves between FE analysis and experiment

Fig. 6 Von Mises stress contour plot of top angle at the ultimate state (Mu = 61.6 kNm). a Front view. b Reverse view
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around the tension bolt head. Simultaneously, it is observed

from FE analysis results that stresses higher than the yield

point are generated in the bolt shank near the bolt head

(Fig. 7), which indicates that the nonlinear behavior of the

connection differs from some assumptions of the power

model (Kishi and Chen 1990). With this observation, the

place of formation of the upper plastic hinge in the top

angle’s vertical leg should be revised and an additional

plastic hinge need to be added in the tension bolts to match

with the results of FE analyses for the prediction model

determining ultimate connection moment capacity.

ABAQUS/standard is able to estimate the pressure and its

resultant force of a contact surface. In this study, the dis-

tributed pressure of the contact surface on the back of the top

angle’s vertical leg and its resultant which represents the

relative prying force of the connection (illustrated in Fig. 4,

Detail A) are investigated to determine the magnitude and

location of prying force at the ultimate state of connections.

Figure 8 illustrates nodal force distributions due to the

contact pressure caused on the column-facing surface (back)

of top angle’s vertical leg. The illustrations in Fig. 8

demonstrate the numerical results for three loading stages:

(a) the initial step before the connection moment is intro-

duced (Fig. 8a); (b) near the elastic limit (Fig. 8b); (c) in the

middle of the plastic range (Fig. 8c). In addition, contact

surface pressure distribution on the back of the top angle’s

vertical leg and its location of the resultant at the ultimate

state of connection are demonstrated in Fig. 9.

Figure 8a shows that contact pressure is almost uniformly

developed on the back of the top angle’s vertical leg under

the bolt head area by the bolt tightening force and the contact

nodal forces are moved to the upper area of the left-hand side

of vertical leg as the connection moment increased up to the

plastic range (Fig. 8b, c). The contact pressure distribution

on the column surface facing top angle’s vertical leg is ac-

cumulated at the upper area of the left-hand side of vertical

leg. The resultant force due to the contact pressure is deter-

mined by summing up nodal forces developed on the contact

surface that was defined as slave surface in contact definition

between the two surfaces. This resultant is located in the

contact area at a distance b from the centerline of bolt hole at

the ultimate state of the connection (Fig. 9). It should be

noted that this contact pressure resultant at the ultimate state

of a connection should be considered as the prying force.

Distribution of forces in tension bolt (Ahmed 2002)

Figure 10a shows the distribution of internal forces in

tension bolt for model FE12Po in which initial bolt pre-

tension is ignored. The total tensile force in bolt, which is

shown by solid curvilinear line in Fig. 10a, is the sum-

mation of shear force (developed in top angle’s vertical leg

at the top of filet) illustrated with solid straight line in

Fig. 10a and prying force. It can be observed from the

figure and Table 3 that bolt tensile force (Vt ? Q) for

model FE12 is 1.87 times higher than shear force (Vt) at the

ultimate state. So, it is obvious that the prying force (Q),

which is caused by the deformation of top angle’s vertical

leg, adds extra tensile force in bolt.

In Fig. 10b, solid straight, broken and solid curvilinear

lines represent top angle’s vertical leg shear (beam tension

flange force), summation of shear force at top angle’s

vertical leg and contact force due to bolt pretension, and

bolt tensile force, respectively. Thus, the vertical difference

in between broken and solid curvilinear lines demonstrates

the prying force corresponding to the shear force

(Fig. 10b). It is apparent from Fig. 10 that prying force is

also introduced in the tension bolt in application of pre-

tension force in bolts of model FE12. However, it is dif-

ficult to estimate the prying force working on tension bolts

because bolt tensile force consists of three components:

shear force at top angle’s vertical leg, contact force due to

bolt pretension, and prying force. Shear force is determined

as the transferred force from beam flange; whereas, the

other two forces can be determined as contact force that is

the summation of contact force due to bolt pretension and

prying force. To get the individual forces from the contact

force, it is assumed that the distribution of prying force

corresponding to the shear force for the case considering

bolt pretension is similar to that for the case ignoring

Fig. 7 Stress r11 contour plot of tension bolt at the ultimate state (Mu = 61.6 kNm). a Front view. b Reverse view
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pretension forces in bolts because distribution of prying is

the same in both cases (considering and ignoring preten-

sion forces in bolts) at the initial and ultimate level of

loading (Figs. 10a, b, 11a). Even though, for the case

considering pretension forces in bolts, the prying force may

be little higher in the medium level of loading than in the

case ignoring bolt pretension, it may not exceed 5 % of the

total tensile force of bolt and may be ignored to avoid

complexity of calculation for determining prying force of

the connection considering pretension forces in bolts. It is

also confirmed later in Fig. 11a that distribution of prying

force in both cases considering with/without pretension

forces in bolts is almost the same according to the results

obtained from the post-analysis investigation of the influ-

ence of bolt pretension on prying action. Figure 10b shows

the distribution of forces in tension bolt of model FE12,

which considers pretension forces in bolts. It is seen that

three components of bolt force can be properly estimated.

From this figure, it is observed that the component of

contact force caused by pretensioning of bolts is decreased

nonlinearly with increasing shear force of connection due

to the bending effects of top angle’s vertical leg.

Influence of bolt pretension on prying force

(Ahmed 2002)

Initial pretension forces applied on models A1Po, FE5,

A1m, and FE6 are 0, 20, 40, and 60 % of the ultimate

strength of bolt, respectively, and all the other properties

are kept similar. In Fig. 11, the vertical difference in be-

tween two similar lines such as short dash and short dash

with solid circle defines the magnitude of prying force

corresponding to the shear force (tension flange force) for

each bolt. It can be observed in Fig. 11a that bolt tensile

Fig. 8 Contour plot of nodal

contact force distribution on the

back of top angle’s vertical leg.

a Before the connection

moment being introduced

(M = 0). b Near the elastic

limit (M = 19.6 kNm).

c Middle of the plastic range

(M = 47.8 kNm)

Fig. 9 Contour plot of contact surface pressure distribution on the

back of top angle’s vertical leg at the ultimate state (Mu = 61.6 kNm)

Int J Adv Struct Eng (2015) 7:159–169 165

123

Arch
ive

 of
 SID

also confirmed later in Fig.

Arch
ive

 of
 SID

also confirmed later in Fig.

force in both cases considering with/without pretension

Arch
ive

 of
 SID

force in both cases considering with/without pretension

forces in bolts is almost the same according to the results

Arch
ive

 of
 SID

forces in bolts is almost the same according to the results

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Arch
ive

 of
 SID

Contour plot of contact surface pressure distribution on the
Arch

ive
 of

 SID

Contour plot of contact surface pressure distribution on the

back of top angle’s vertical leg at the ultimate state (

Arch
ive

 of
 SID

back of top angle’s vertical leg at the ultimate state (

www.SID.irwww.SID.ir123www.SID.ir123

www.sid.ir


forces of corresponding models starting from different

levels of pretensioning get closer as external load increases,

and ultimately meet in the same point. Thus, prying force

near the ultimate level of loading is not affected by the

magnitude of pretension force. At the higher level of

loading, contact force due to pretensioning of bolts is en-

tirely neutralized, and only prying force is retained.

Influence of connection parameters on prying force

(Ahmed 2002)

Bolt diameter

To investigate the effect of bending stiffness of bolt on

prying force, comparison has been made between FE4 and

A1m connection models in which bolt diameters (db) are

taken to be 19.05 mm (3/4 in.) and 22.23 mm (7/8 in.),

respectively, and pretension force is taken to be 40 % of

the ultimate strength of bolt keeping the other parameters

and material properties the same. It is observed from

Fig. 11b that prying force develops very similarly in both

connection models at the beginning of loading, but near the

ultimate state, connection model with larger bolt diameter

develops higher prying forces.

Angle thickness

Angle thicknesses (tt) of connection models FE9, FE10 and

FE11 are assigned to be 9.5 mm (3/8 in.), 12.7 mm (1/2 in.),

and 19.1 mm (3/4 in.), respectively, and their other

Fig. 10 Distribution of forces in tension bolt. a FEA model FE12Po. b FEA model FE12

Table 3 Summary of FE analysis results of connections and estimated b distances

Connection ID FE analysis Proposed b Discrepancy

Mu (kNm) Vt (kN) Q (kN) b (mm) Eq. (1) (mm) Eq. (2) (mm) Eq. (1) (%) Eq. (2) (%)

Test 3 54.8 226.0 159.8 23.0 21.85 21.92 -5.0 -4.7

A1 75.2 190.0 238.7 19.4 21.85 21.29 12.6 9.7

A2 109.6 269.3 212.2 29.9 29.21 29.53 -2.3 -1.2

FE1 154.9 363.7 155.3 37.8 38.10 38.10 0.8 0.8

FE2 98.0 254.7 187.3 22.8 21.85 21.92 -4.2 -3.8

FE3 45.7 109.4 253.6 19.8 21.85 18.75 10.4 -5.3

FE4 66.3 167.2 159.5 29.2 29.21 29.53 0.0 1.1

FE5 75.2 190.2 238.5 19.5 21.85 21.29 12.1 9.2

FE6 75.9 191.8 237.0 19.5 21.85 21.29 12.1 9.2

FE7 128.9 306.7 181.4 37.1 38.10 38.10 2.7 2.7

FE8 115.4 285.2 279.1 26.5 29.21 29.53 10.2 11.4

FE9 44.5 180.8 241.6 20.0 21.85 21.29 9.2 6.4

FE10 66.1 260.8 212.3 29.9 29.21 29.53 -2.3 -1.2

FE11 95.6 350.0 162.4 38.0 38.10 38.10 0.3 0.3

FE12 56.7 240.3 208.9 23.1 21.85 21.92 -5.4 -5.1

FE13 26.6 96.8 236.4 19.2 21.85 18.75 13.8 -2.4
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properties are kept the same. The effect of angle thickness on

bolt force is depicted in Fig. 11c. Bolt tensile force in model

FE9 increases most rapidly among the three models. The

analysis results also show that prying force develops faster

for thinner angle, and angle thickness is one of the most

influential parameters to determine the contribution of pry-

ing action to the ultimatemoment capacity of the connection.

Gage distance from the angle heel to the centerline of bolt

hole

The gage distances from the heel to the centerline of

bolt hole on top angle’s vertical leg g0t are taken to be

51 mm (2 in), 64 mm (2.5 in) and 114 mm (4.5 in) for

connection models FE12, FE9, FE13, respectively,

Fig. 11 Influence of bolt pretention, connection parameters and material properties on prying force a Bolt pretension. b Bolt diameter. c Top

angle thickness. d Gage distance from angle heel to the centerline of bolt hole. e Material property of angle. f Material property of bolt
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when the other properties of those connection models

are the same. It is evident from Fig. 11d that prying

force develops rapidly in connection with larger gage

distance g0t which also shows significant effect on pry-

ing action in determining connection’s ultimate moment

capacity.

Influence of mechanical properties of connection

assemblages on prying force (Ahmed 2002)

Angle’s material

All the measurements and material properties between

FEA models FE1 and FE7 are the same except angle’s

material properties. The yield stress fy,t and ultimate

strength fu,t of angles are 365 and 550 MPa, respectively,

for model FE1 and 250 and 400 MPa, respectively, for

model FE7. It is observed from Fig. 11e that connection

model FE7 with thinner angles (fy,t = 250 MPa and

fu,t = 400 MPa) develops a little greater prying force than

that for connection model FE1 with thicker angles

(fy,t = 365 MPa and fu,t = 550 MPa) at the final stages of

loading.

Bolt’s material

All the respective measurements and properties of models

A2 m and FE8 are the same except bolt mechanical proper-

ties. The yield stress fy,b and ultimate strength fu,b of bolts are

assumed to be 635 and 830 MPa for model A2 and 830 and

1035 MPa for model FE8, respectively. It is observed in

Fig. 10f that mechanical properties of bolt have no effect on

prying action throughout the early and late middle loading

ranges. But connection model FE8 with stiffer bolts

(fy,b = 830 MPa and fu,b = 1035 MPa) exhibits a little in-

creased prying force than the connection model A2m with

weaker ones (fy,b = 635 MPa and fu,b = 830 MPa) at the

ultimate state.

Influence of connection parameters on distance b

The location of the resultant of contact surface pressure is

automatically generated by ABAQUS with respect to

global axis. This resultant is known as prying force at the

ultimate stage of loading. Later this location is determined

from the centerline of bolt hole as shown in Table 3 by b.

The table shows that the distance b mostly depends on the

thickness of top angle tt and gage distance g0t from angle

heel to the centerline of bolt hole. Other parameters, which

influence this distance to some extent, are: bolt diameter,

and material properties of angle and bolts (Table 3).

Prediction of distance b and assessment

It is observed that the distance b related to the location of

prying force (i.e., resultant of contact pressure as shown in

Fig. 9) action point from the centerline of bolt hole can be

related to the angle thickness and can be expressed as

If 2:3tt\a then b ¼ 2:3tt else b ¼ a ð2Þ

The distance b of the prying force action point from the

centerline of bolt hole can also be linked to the angle

thickness in combination with gage distance from angle

heel to the centerline of bolt hole and can be determined as

If 2:575tt� 0:05g0t
� �

\a then

b ¼ 2:575tt� 0:05g0t else b ¼ a
ð3Þ

where a is the distance from the centerline of bolt hole to

the top edge of tension angle’s leg adjacent to column

flange (Fig. 4), tt is thickness of top angle and g0t is gage

distance from angle heel to the centerline of bolt hole.

A brief summary of the FE analysis results and the pro-

posed distance of the prying force location b are listed in

Table 3. This table shows that prying force Q can be of as

much as 2.4 times the shear force Vt (i.e., beam flange force),

and it must be considered in the calculation of the design

resistance of the tension fasteners and of the ultimate con-

nection moment. This table also shows that the performance

of Eq. (3) over Eq. (2) estimating b distance demonstrates

superior in eleven cases, equal in three cases and inferior in

only two cases. In addition, the maximum and minimum

discrepancies in b distance calculation byEq. (3) are 11.4 and

-5.3 %, respectively. Corresponding discrepancies obtained

using Eq. (2) are 13.8 and -5.4 %, respectively. However,

Eq. (2) is simpler as it uses only one parameter: tension angle

thickness. But Eq. (3) shows superior results because of in-

clusion ofmore connection parameters to predict the distance

of prying force from the center line of bolt hole of top angle’s

vertical leg. However, overestimation of the value of b using

Eq. (3)may be as high as 11.4 %. Overestimation of distance

b (in other words leads to conservative design) by the pro-

posed equations could slightly decrease the predicted strength

of the connections.

Conclusions

Confirming about the applicability of FE analysis model,

the locations of plastic hinges at the ultimate state and the

effects of prying force developing on the back of the top

angle’s vertical leg is investigated at the different loading

levels of top- and seat-angle connection. Following con-

clusions are reached from this investigation:
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1. The plastic hinges develop at the top of the tension

angle’s filet and in the area around the tension bolt

head of the vertical leg. Simultaneously, the other

plastic hinge is developed in the bolt shank near the

bolt head of the tension bolt, which indicates that the

nonlinear behavior of the connection differs from some

assumptions of Kishi and Chen’s power model.

2. Prying force moves from the bolt head area to the

upper area of the left-hand side of vertical leg as the

connection moment increases from zero to the ultimate

level.

3. Reduction of flange angle thickness or increment of

gage distance from the angle heel to the centerline of

bolt hole can increase the magnitude of prying force.

4. The location of prying force can be determined using

the proposed expressions (Eqs. 2, 3). But Eq. (3) is

recommended because of superior results.

5. Prying force can be of as much as 2.4 times the shear

force at the vertical leg of top angle (i.e., beam flange

force), and it must be considered in the calculation of

the design resistance of the tension fasteners and the

ultimate moment capacity of the connection.
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