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Abstract Masonry arch systems and vaulted structures

constitute a structural typology widely spread in the histor-

ical building heritage. Small displacements of the supports,

due to different causes, among which subsidence of foun-

dation systems or movements of underlying structures can

lead the masonry arch to a condition of collapse because of

gradual change in its geometry. This paper presents a tool,

based on a kinematic approach, for the computation of the

magnitude of the displacements that cause the collapse of

circular arches subject to dead loads, and allows the evalu-

ation of the related thrust value. A parametric study has been

carried out in order to develop a deeper understanding of the

influence of the involved parameters. In addition, analytic

formulations of the maximum allowed displacement and the

associated thrust are proposed. Finally, a case study related

to the behavior of a masonry arch on spreading-induced

abutments is undertaken and discussed.

Keywords Masonry � Limit analysis � Support
displacement

Introduction

The static of masonry arches, when a finite displacement at

the springing occurs, is examined in this paper. This

problem is worthy of interest since small displacements of

the supports in the existing masonry arches and vaults can

take place due to different causes, including the subsidence

of foundation system, viscous phenomena affecting the

mortars, and movements of underlying structures. Conse-

quently, the structure can reach a condition of collapse

because of gradual changes in its geometry. A typical

example is represented by arch or vault supported on piers.

In this case, if displacements of the supports arise, the span

increases, the rise decreases, and a growth of the arch thrust

occurs, giving rise to a further movement of the springing,

up to the failure condition.

The collapse analysis of masonry structures can be

carried out through a static [see for example O’Dwyer

(1999), Block and Ochsendorf (2007), Huerta (2008), and

D’Ayala and Tomasoni (2011)] or a kinematic approach, as

proposed by Como (1992, 1996, 2013), Coccia and Como

(2015), and Coccia et al. (2015). Smars (2000), Ochsendorf

(2002, 2006), and Romano and Ochsendorf (2010) studied

the collapse behaviors of arches subjected to gravity loads

and displacements of the supports, through a static

approach. In Smars (2000), the domain of statically

admissible movements for a chosen mechanism in a semi-

circular voussoir arch is identified. However, the possibility

that the hinges might move as the arch supports spread

apart is not investigated. Romano and Ochsendorf (2010)

analyze the horizontal collapse displacements in Gothic

arches considering a fixed location of the hinges. Studies

by Ochsendorf (2002, 2006) on semi-circular arches,

developed with a static approach, showed that the hinge

locations are not fixed, but they may move during the

displacements of the supports toward the crown of the arch.

In the present paper, the collapse behavior of arches

subjected to displacements of the supports is analyzed, in

an innovative way, with a kinematic approach, applied in

the deformed configuration of the structure. The possibility

of the variation of the hinge position is accounted for. The

masonry is modeled as a no-tension material with infinite
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compression strength and sufficient friction to prevent the

sliding, as introduced by Heyman (1966, 1995). In this

framework, the collapse load of a masonry structure is

related to a failure mechanism, kinematically compatible

according to the limit analysis assumptions.

State of the art: limit analysis theorems
in the undeformed configuration

The kinematic approach has been applied for arches anal-

ysis, in the undeformed configuration, according to the

hypotheses of no-tension masonry material characterized by

infinite strength in compression (Heyman 1966, 1995;

Como 2013). Furthermore, the elastic strains are supposed

to be negligible, and infinite shear strength is assumed, in

order to avoid sliding failures. Consequently, in each sec-

tion of the arch, compressive stresses only are allowed, and

then the eccentricity of the axial load (e) must be contained

within the thickness (t, Fig. 1a). Furthermore, due to the

hypotheses of negligible elastic deformation and no-pene-

tration of the material (infinite strength in compression), the

only admissible state of deformation of the element is the

rotation around one of its edge (upper or lower) or the

detachment (Fig. 1b). Under these conditions, the stresses

are admissible if the line of pressure is completely inside the

masonry arch, and a mechanism is admissible if no internal

deformation of the material takes place. The deformed

shape of the structure coincides with the movement of a set

of rigid bodies linked together with internal hinges.

In the following section, the limit analysis is applied to

the evaluation of the minimum thrust of the arch in the

undeformed configuration.

Minimum thrust in the undeformed arch

As an example, in the continuous arch reported in Fig. 2,

when virtual displacements at the supports occurs, the line of

pressure becomes tangent to the structure in a finite number

of points. These points can be seen as internal hinges, and the

structure can accommodate the span increase with a kine-

matically admissible mechanism. In particular, three hinges

are formed, one at the extrados in the keystone and the other

two at the intrados (Fig. 2a). In general, the positions of these

hinges coincide with the joints, provided that the tensile

strength of these sections is lower than that of the brick.

In the undeformed configuration, kinematic and static

theorems can be applied to find the exact position of the

hinges and the value of the minimum thrust (Como 1996,

1998, 2013). According to these theorems, the thrust in the

settlement mechanism is the lowest of all the statically

admissible ones (static theorem), and the highest of all the

kinematically admissible ones (kinematic theorem). The

thrust is statically admissible if it generates a line of pressure

inside the structure (Fig. 2a), and kinematically admissible if

the internal work done for a kinematically admissible virtual

mechanism is equal to zero. In Fig. 2a is shown a kinemat-

ically admissible mechanism for an arch subjected to an

increase of the span, and in Fig. 2b is highlighted the cor-

responding virtual deformed configuration.

The actual value of the thrust is the only one that is both

statically and kinematically admissible.

The procedure for the evaluation of the minimum thrust

is here summarized.

The application of the principle of virtual work for the

admissible virtual mechanism du, shown in Fig. 2a, leads

to the equation:Z
g � duvðxÞ dxþ l � h � du ¼

Z

V

r�e dV r 2 S; 8du 2 M

which can be written as

g; duh i þ l h; duh i ¼ r; e duð Þh i r 2 S, 8du 2 M ð1Þ

where M is the class of the kinematically admissible mech-

anisms; g is the gravity load, e(du) is the strain related to the
virtual displacement du; l is the multiplier of the unitary

thrust h; r and S are the vector and the class of the admissible

stresses in equilibrium, respectively, with g and lt.

Fig. 1 a Admissible equilibrium state, b admissible state of deformation
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If the stresses r are admissible, the internal work in

Eq. (1) is less than or equal to zero. Since the elastic

deformation e(du) is assumed as negligible in the body,

only the admissible eccentric axial compression load works

for the displacement due to the crack opening. This internal

work is equal to zero only if the eccentric normal stresses

pass through the hinges (crack tips, Fig. 2a). The actual

settlement mechanism is defined by a line of pressure

passing right through the hinges that define the mechanism.

According to the kinematic theorem (Como 1996), the

position of the hinges (xi) is obtained maximizing Eq. (2),

obtained from Eq. (1), by imposing a null value of the

internal work:

l xið Þ ¼ � g; du xið Þh i
h; du xið Þh i ð2Þ

For the continuous circular arch, the Eq. (2) can be

written as a function of the angle h that defines the sym-

metric position of the intrados hinges (Fig. 2a):

l hð Þ¼
4 r3e�r3i
� �

senðhÞ�1ð Þþri cosðhÞ 3p�6hð Þ r2e�r2i
� �

12 re�ri sen(hÞð Þ cp

ð3Þ

where ri and re are the internal and external radii, respec-

tively, c is the specific weight, and p is the arch width.

Therefore, the minimum thrust is

Hmin ¼ max
h

l hð Þð Þ � h ð4Þ

Deformed configuration of the arch
after the horizontal displacement at the springing

The above described procedure is now extended to the case

of large displacements. In particular, the limit analysis is

applied with reference to the deformed shape of the

structure. The generic deformed configuration depends on

the value of the support displacements and on the hinge

locations, supposed to be always in the joints.

The class of admissible mechanisms considers a sym-

metric location of hinges with respect to the symmetry axis

of the arch. Indeed, if the keystone is present, four hinges

can form (two at the extrados in the keystone and two at the

intrados in the haunch—Fig. 3a), or three hinges can open

if there is no keystone (one hinge at the extrados and two at

the intrados—Fig. 3b), in order to accommodate the dis-

placements of the supports.

The search of the deformed configuration is performed

through the kinematics of rigid bodies, obtained by

assembling the voussoirs localized between two consecu-

tive hinges.

The symmetric mechanism of the arch subjected to a

finite horizontal displacement of the supports (u) is shown

in Fig. 4, for both arches with and without keystone. The

rigid bodies, named 1 and 3 in Fig. 4, are characterized by

a rigid translation along the horizontal and vertical direc-

tion, respectively, while, the blocks named 2 move with a

rigid translation u and a rigid rotation u. This rotation and

the vertical displacement v of the keystone are determined

through the geometric construction of Fig. 4. In particular,

the intersection between the vertical straight line passing

through the upper hinge and the circle with center in the

hinge at the intrados and radius equal to the distance

between the two hinges at the edges of the body named 2 is

imposed (Fig. 4).

The deformed configurations in the hypothesis of large

displacements can be univocally determined once the val-

ues of the horizontal displacements of the supports (u) and

the positions xi of the internal hinges are known. All the

following analyses will be carried out with reference to the

arch without the keystone (Fig. 4b), but the same proce-

dure can be adopted for the other cited case (Fig. 4a).

Fig. 2 Virtual displacements at the springing: a admissible equilibrium and mechanism, b configuration after the virtual displacement
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Hinge location

In the undeformed configuration, small movements of the

supports cause the formation of a three-hinged arch in the

central portion of the structure (‘‘State of the art: limit

analysis theorems in the undeformed configuration’’ sec-

tion). When the displacements of the supports increase, the

hinges can move in a different position. This phenomenon

can take place only if the internal works of the stresses r
for a kinematic virtual displacement dumh, corresponding

to the movement of the hinge and reported in Fig. 5a, are

equal to zero. The line of pressure is always uniquely

determined by the position of the hinges defining the

deformed configuration. For a fixed value of the support

displacement, if this curve is tangent to another point of the

structure (Fig. 5b), then the position of the intrados hinges

changes. In this situation, indeed, the internal works of the

stresses r for the virtual displacements dumh, correspond-

ing to the closure of the old hinges and opening of the new

ones, are equal to zero.

Therefore, the equation of principle of virtual work is

g uð Þ; dumh u; xhð Þh i ¼ 0 dumh u; xhð Þ 2 M ð5Þ

where xh is the position of the new hinge.

The configurations of the arch before and after the

movement of the hinge are reported in Fig. 6.

Limit analysis theorems in the deformed
configuration

In the new deformed configuration, the masonry arch can

sustain the weight until the line of pressure reaches the

extrados at the springing, and two hinges are formed (A

and B in Fig. 7b), giving rise to a collapse mechanism

characterized by five hinges.

In the deformed configuration, defined by the support

displacement, u, the Eq. (6) is necessary and sufficient to

guarantee the existence of an admissible equilibrium state:

g u; xið Þ; ducoll u; xið Þh i� 0 ð6Þ

where the generic virtual collapse mechanism ducoll is

reported in Fig. 7.

Fig. 3 Hinge locations: a with keystone, b without keystone

Fig. 4 Deformed configurations: a with keystone, b without keystone
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The proofs of the conditions of necessity and sufficiency

of Eq. (6) in the case of undeformed arch are reported in

Como (2013).

To prove the condition of necessity in our case, applied

in the deformed configuration with fixed constraints, the

principle of virtual work has to be written:

g u; xið Þ; ducoll u; xið Þh i ¼ r u; xið Þ; de u; xið Þh i ð7Þ

If the stress state is admissible, the internal work should be

lower than or equal to zero, and therefore, the inequality (6)

must be true.

The proof of the condition of sufficiency must be made

assuming, ad absurdum, that under the gravity load g, the

structure is not in a condition of admissible equilibrium.

The virtual displacement and the virtual deformation can

be written, respectively, as

ducoll u; xið Þ ¼ v tð Þdt de u; xið Þ ¼ _e tð Þdt ð8Þ

where v(t) is the speed of the movement.

Taking into account the inertial forces produced in the

body due to the acceleration _v and the Eq. (8), the equation

of principle of virtual work becomes

g u; xið Þ; v tð Þh i � q _v; vh i ¼ r u; xið Þ; _e tð Þh i ð9Þ

The kinetic energy of the body and its rate of change are

T ¼ 1

2
qv; vh i dT

dt
¼ q _v; vh i ð10Þ

During the motion, the internal work is equal to zero,

and the Eq. (6) becomes

g u; xið Þ; v tð Þh i ¼ dT

dt
ð11Þ

The variation of the kinetic energy in the time must be

positive since the body begins to move. Then, from

Eq. (11) it is obtained that

g u; xið Þ; v tð Þh i[ 0 ð12Þ

Fig. 5 Mechanism and line of pressure for the movement of the hinges for a fixed support displacement

Fig. 6 Deformed configurations before and after the movement of

the hinges

Fig. 7 Mechanism and line of pressure for the collapse displacement of the arch
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which is in contradiction with the Eq. (6). Consequently, if

the Eq. (6) is verified, the body is in an admissible

equilibrium.

Collapse displacement

The collapse displacement ucoll can be evaluated using

Eq. (6), i.e., by imposing that the work of gravity load, for

the mechanism of Fig. 7, is equal to zero:

g ucoll; xið Þ; ducoll ucoll; xið Þh i ¼ 0 ð13Þ

Therefore, for the displacement ucoll, as per the virtual

works principle, the internal work is equal to zero:

r ucoll; xið Þ; deducoll ucoll; xið Þh i ¼ 0; ð14Þ

and the line of pressure is internal to the structure and

passes through the hinges (Fig. 7b).

Anyway, for each value of the support displacement u,

the hinge position has to be checked since a different

mechanism can occur. Indeed, if three hinges (in the arch

without keystone) are aligned on a straight line (Fig. 8), the

structure becomes unstable since the gravitational loads of

the central portion of the arch perform positive work for the

virtual vertical displacement reported in Fig. 8.

If this geometric condition takes place, the related sup-

port displacement is the collapse one and the mechanism of

Fig. 7 can be never reached. The whole procedure is

summarized in Fig. 9.

Minimum thrust

In the deformed configuration, the thrust of the arch can be

calculated by assuming a virtual horizontal displacement

du of the supports, as shown in Fig. 10. The principle of

virtual work [Eq. (1), in the undeformed configuration],

rewritten in the deformed configuration, becomes

g u; xið Þ; du u; xið Þh i þ lr t; du u; xið Þh i ¼ r u; xið Þ; de u; xið Þh i
ð15Þ

The arch is in a condition of admissible equilibrium, so

the line of pressure passes through the hinges, and the

internal work is equal to zero. The value of the thrust can

be evaluated for each value of the displacement u:

lr uð Þ ¼ g u; xið Þ; du u; xið Þh i
t; du u; xið Þh i ð16Þ

In the following sections, after the model validation with

experimental outcomes, the described procedure is applied

to a semi-circular arch. Furthermore, a parametric survey is

carried out in order to analyze the influence of the main

geometric properties on the minimum thrust and on the

ultimate displacement.

Comparison with experimental results

The developed kinematic model is validated through a

comparison with the small-scale test carried out by Och-

sendorf (2002). The arch is characterized by 16 voussoirs

cast as individual concrete blocks with a 50-mm radial

thickness. The mean radius R is equal to 220 mm, and the

thickness–radius ratio (t/R) is 0.23. During the test the

intrados hinges opened initially for an angle b = 56.25�
(Fig. 11), and did not move at the displacement increasing.

The experimental collapse took place for a displacement

value of 30 mm (span increase equal to 15.4 %). The hinge

positions evaluated with the proposed analytic model are in

a perfect agreement with the experimental outcome, as

shown in Fig. 11. Furthermore, the analytic value of the

ultimate displacement is equal to 32.24 mm, related to a

span increase of 16.53 %. This value is about 6.8 % higher

with respect to the measured one. The span increase

developed by Ochsendorf with a static procedure, is

16.9 %. It is worth highlighting that the proposed kine-

matic approach, and the static one proposed by Ochsendorf

should give the same results (Como 2013). The very small

difference (16.53 against 16.9 %) depends on the approx-

imation in the displacement step value used in the incre-

mental analysis.

The minimum thrusts are evaluated with the proposed

kinematic approach in both the undeformed and deformed

configurations, from Eqs. (4) and (16), respectively. The

minimum thrust in the undeformed configuration is equal

to 0.14 W (where W is the arch weight), while for the

collapse displacement, it is 0.30 W with an increase of

114 %.

Parametric survey

A parametric survey is carried out in order to analyze the

influences of the main geometric parameters on the global

response of a semi-circular arch.Fig. 8 Collapse displacement for the alignment of the hinges

cFig. 9 Flow chart of the procedure to determine the collapse

displacement of an arch on spreading supports
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First of all, it will be shown that the main parameter

affecting the structural behavior is the ratio between the

thickness and the mean radius (t/R). With this as our aim, in

Fig. 12, the collapse displacements, expressed in a nondi-

mensional way with respect to the thickness, versus the

mean radius, are plotted in the case of an arch with 16

voussoirs (Fig. 12a) and a continuous structure (Fig. 12b).

Different values of the t/R have been considered, starting

from the minimum literature value equal to 0.11 (Como

2013; Ochsendorf 2002). It can be clearly noted that the

nondimensional displacement depends on t/R (and in par-

ticular increases with it), while it is practically independent

of the mean radius in both the cases.

The same result is obtained for the thrust, expressed in a

nondimensional form with respect to the weight, as shown

in Fig. 13a for an arch with 16 voussoirs and Fig. 13b for a

continuous structure.

From the above reported results, it can be concluded that

the ratio between the thickness and the radius can be

assumed as the main parameter affecting the ultimate

condition of the arch. For this reason, a parametric survey

is carried out, in order to evaluate the influence of t/R on

the kinematic (hinge position and collapse displacement)

and static (thrust at ultimate displacement) conditions.

Hinge position

The influences of the t/R ratio on the hinge location at

intrados (defined by the angle b from the crown) are shown

in Fig. 14 for both the deformed and undeformed config-

urations of a continuous arch.

For both the cases, when the t/R ratio varies, the intrados

hinge (b, Fig. 14) moves. In particular, it can be noted that

the b angle increases from about 54� to 64� (i.e., the hinge
moves toward the support) when t/R increases from 0.11 to

about 0.4, while it decreases (again from 64� to 54�), for
higher values of the t/R ratio.

In the deformed configuration, the hinge position at the

intrados changes with respect to the undeformed configu-

ration if the t/R parameter is lower than 0.42, and moves

slightly toward the center.

The case of arches with a different number of voussoirs

is further considered. In Fig. 15, the hinge position at the

intrados is again plotted versus the nondimensional thick-

ness, as a function of the voussoirs number. The behavior

of the continuous arch (Fig. 14) is superimposed to the

other patterns, with the continuous black line. The

Fig. 10 Mechanism for a virtual displacement of the support in the

deformed configuration of the arch

Fig. 11 Comparison with the experimental test carried out by Ochsendorf (2002)
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undeformed configuration is represented in Fig. 15a, while

the deformed one is shown in Fig. 15b. The hinge position

is obviously, for the assumed hypothesis (‘‘Deformed

configuration of the arch after the horizontal displacement

at the springing’’ section) strictly connected to the number

of voussoirs. In particular, it can be noted that this angle

can remain fixed in a large ranges of t/R ratios, in both the

cases of deformed and undeformed conditions.

Minimum thrust in the undeformed configuration

The influence of the nondimensional thickness t/R on the

minimum thrust (Hmin) is now evaluated, in the hypothesis

of arches with different number of voussoirs. The results of

the parametric analysis are shown in Fig. 16a, where the

thrust is reported in a nondimensional form, divided by the

weight of the arch (W). It can be clearly noted that the

thrust is practically independent of the voussoirs numbers,

and it decreases in nonlinear way when t/R increases.

Finally, a simplified formulation has been obtained

through a regression with the ordinary least squares

method, based on the analytic outcomes of Fig. 16a

Hmin=W ¼ 0:22 t=Rð Þ2�0:463 t=Rð Þ þ 0:2383
h i

ð17Þ

Fig. 12 Influence of the mean radius on the nondimensional collapse displacement

Fig. 13 Influence of the mean radius on the nondimensional thrust

Fig. 14 Influences of t/R on the hinge intrados position (b) for a

continuous arch
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The formulation appears really effective, as shown in

Fig. 16b where the results from Eq. (17) are compared with

the ones obtained with the proposed model. It can be

clearly noted that the dots lie on the bisector line.

According to the Eq. (17), it can be stated that when the

arch thickness increases, the line of pressure becomes more

vertical in the springing. Indeed, in presence of piers or

abutments, the possibility of overturning of these elements

is lower for thick arches.

Thrust–displacement curves for the arch

In Fig. 17, the curves of thrust–displacement for the ana-

lyzed arches are plotted in a nondimensional form with

respect to the relative collapse value. It can be noticed the

increase of the slopes occurs when t/R increases.

The variation of the collapse displacement ucoll,

expressed in a nondimensional form with respect to the

thickness t, with t/R is shown in Fig. 18a for arches with

different number of voussoirs. A significant increase of this

parameter occurs for t/R varying between 0.11 and 0.2–0.3.

Slight variations of ucoll/t take place for higher values of t/

R. The number of voussoirs influences the collapse dis-

placement mainly when t/R ranges between 0.25 and 0.5.

Once again, a simplified formulation has been obtained

through a regression with the ordinary least squares

method, with reference to the analytic outcomes of

Fig. 18a:

ucoll=t ¼ �365:44 t=Rð Þ6þ1022:5 t=Rð Þ5�1167:8 t=Rð Þ4

þ 702:36 t=Rð Þ3�238:84 t=Rð Þ2

þ 44:62 t=Rð Þ � 2:766 ð18Þ

The nondimensional collapse displacements evaluated

with the limit analysis procedure and from Eq. (18) are

pointed out in Fig. 18b. It can be noted that all the dots

related to the continuous arch are placed on the bisector

line, i.e., the results of Eq. (18) practically coincide with

the theoretical ones. Nevertheless, the formulation is more

effective for a number of voussoirs higher than 25–30.

Finally, the variation of the thrust at the collapse dis-

placement, expressed in a nondimensional form with

Fig. 15 Influences of t/R on the hinge intrados position (b) for arches with voussoirs; a undeformed configuration; b deformed configuration

Fig. 16 a Influence of t/R on the nondimensional minimum thrust in the undeformed condition, b numerical results (limit analysis) versus

analytic ones (Eq. 15)
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respect to the weight, with t/R is shown in Fig. 19a for

arches with different number of voussoirs. A significant

increase of this parameter, for t/R varying between 0.11

and 0.55, can be noted. Slight variations take place for

higher values of t/R. The number of voussoirs influences

the thrust at the collapse displacement, mainly when t/R is

higher than 0.35.

A simplified formulation is developed through a

regression with the ordinary least squares method, with

reference to the analytic outcomes of Fig. 19a:

H ucollð Þ=W ¼� 0:21 t=Rð Þ4þ4:16 t=Rð Þ3þ4:7 t=Rð Þ2

þ 0:18 t=Rð Þ þ 0:17 ð19Þ

The nondimensional thrusts obtained with the limit

analysis procedure and from Eq. (19) are pointed out in

Fig. 19b. Again in these cases, the dots are placed on the

bisector line, mainly for voussoirs number higher than

25–30.

The masonry arch on spreading supports

The proposed model is finally applied to a typical case of a

masonry arch on spreading-induced supports, subjected to

the gravity load.

In this situation, the global failure condition can be

governed by the arch or by the column, as a consequence of

the arch thrust and of the springing displacement. In par-

ticular, the arch behavior and its collapse displacement can

be evaluated as proposed above. The column is subjected,

besides the vertical load equal to the weight, to the hori-

zontal out-of-plane action, equal to the arch thrust. Out-of-

plane bending due to axial load eccentricity and lateral

loads have a strong impact on the stability of masonry

members. Yokel (1971) has developed a solution for the

deflection and stability of compressed members made with

no-tension materials and elastic behavior in compression.

Schultz and Mueffelman (2003) have improved Yokel’s

model by adding the out-of-plane bending. Figure 20

shows the geometric characteristics of the column, the

Fig. 17 Nondimensional

thrust–displacement curves for

the arch

Fig. 18 Influence of t/R on the nondimensional collapse displacement in the deformed condition: numerical results (limit analysis) versus

analytic ones (Eq. 16)
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reference system XY centered in the compressed edge of

the base section and the vertical and horizontal loads,

named P and H, respectively. The uncracked and cracked

zones of the column are also shown, together with the

stress distribution on the generic cross section.

The authors evaluate the displacement of the column

through the solution of the differential equation:

d2y

dx2
¼

2P
9Eb

uo þ y xð Þ � M xð Þ
P

h i2 ð20Þ

where E is the Young’s modulus, b is the member width,

and M(x) is the bending moment function.

As an example, for the structure with an arch charac-

terized by t/R = 0.11, by assuming a Young’s modulus of

3000 MPa, lateral load (shear)–displacement diagrams are

constructed and plotted in Fig. 21, for different column

heights. In order to analyze the global behavior, the thrust–

displacement relationship shown in Fig. 17 for the arch

characterized by the ratio t/R being equal to 0.11, modified

in a dimensional form, is superimposed in Fig. 21.

If the curves related to the behavior of the columns and

of the arch intersect themselves, an equilibrium condition

can be found; otherwise, the collapse of one of the two

members takes place.

When the height of the piers (H) ranges between 3 and

6 m, a point of equilibrium, shown with a red circle, is found

as intersection between the shear–displacement curve of the

pier and the thrust–displacement curve of the arch. When

H is higher than six, the two curves do not intersect, and no

equilibrium condition exists. In this case, two collapse

modes can be achieved. In particular, if the arch collapse

thrust (highlighted by the black cross in Fig. 21) is lower than

the maximum load bearable by the piers (represented with

the dashed line), the arch governs the failure of the system.

This situation takes place, in our case, for heights equal to 7,

8, and 9 m (Fig. 21). On the contrary, the collapse is due to

the piers when their maximum load is smaller than the arch

collapse thrust (H = 10, Fig. 21).

Finally, the above discussed results are compared in

Table 1with the ones obtainedwith a classical limit analysis,

i.e., without considering the abutment displacement. The

importance of accounting for this parameter, mainly for high

columns, can be clearly noted. As a matter of fact, in the

analyzed case, while the classical limit analysis application

leads always to a verified structure, this is not the case if the

abutment displacements are considered.

Conclusion

In this paper, the static of masonry arches when a finite

displacement at the springing occurs has been analyzed

according to the approach of the kinematic theorem of the

collapse state.

Fig. 19 Influences of t/R on the nondimensional thrusts at collapse displacement: numerical results (limit analysis) versus analytic ones (Eq. 17)

Fig. 20 Deflected shape of the pier
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As the displacements of the supports increase, the hinges

are not considered fixed, but can move in a different

position toward the crown, closing without energy dissi-

pation and opening again in a new location. A parametric

analysis has been carried out in order to evaluate the

influence of the geometric parameters on the collapse dis-

placement and on the relative thrust, and it is shown that

the ratio between the thickness and the mean radius

(t/R) plays a fundamental role.

Furthermore, analytic formulations of the maximum

admitted displacement and the related thrust value for the

case of the circular arch, calibrated with the results of the

proposed model, have been suggested. The main results

can be summarized as follows:

– the collapse displacement increases substantially for

t/R varying between 0.11 and 0.2–0.3 and slightly for

higher values;

– the thrust rises greatly with the displacement, even up

to five times higher than the initial minimum thrust in

the ordinary range of t/R. The thrust at the collapse

displacement increases for t/R varying between 0.11

and 0.55; slight variations takes place for higher values

of t/R;

– the number of voussoirs influences both the displace-

ment and the thrust at the failure condition because

of variation of position of the hinges and the

resulting changes in geometry, mainly for high value

of t/R. The minimum thrust in the undeformed

configuration is practically independent of the vous-

soirs’ numbers, and it decreases in a nonlinear way

when t/R increases.

Finally, a practical application of the proposed model to

a masonry arch on spreading abutment, subjected to the

gravity load, is provided, in order to highlight the failure

Fig. 21 Lateral load (shear)–displacement curves of the pier, thrust–displacement curve of the arch analyzed

Table 1 The masonry arch on spreading abutment

t/R 0.11

Span 3.78 m

Hpier 3 4 5 6 7 8 9 10

Bpier 0.8 m

Weight of the arch

on the pier

16.59 m

earc -0.18 m

Weight of the pier 57.6 76.8 96 115.2 134.4 153.6 172.8 192

Minimum thrust (kN) 6.30

Stabilizing moment Ms

(kN m)

32.66 40.34 48.02 55.70 63.38 71.06 78.74 86.42

Overturning moment Mo

(kN m)

18.91 25.22 31.52 37.83 44.13 50.43 56.74 63.04

Ms/Mo 1.73 1.60 1.52 1.47 1.44 1.41 1.39 1.37

Collapse in the proposed

model?

No No No No Yes, collapse in

the arch

Yes, collapse in

the arch

Yes, collapse in

the arch

Yes, collapse in the

piers
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modes and to remark the cases in which the springing

displacements need to be considered.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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