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Abstract The main purpose of this paper is to investigate

the effect of bidirectional continuously graded nanocom-

posite materials on free vibration of thick shell panels

rested on elastic foundations. The elastic foundation is

considered as a Pasternak model after adding a shear layer

to the Winkler model. The panels reinforced by randomly

oriented straight single-walled carbon nanotubes are con-

sidered. The volume fractions of SWCNTs are assumed to

be graded not only in the radial direction, but also in axial

direction of the curved panel. This study presents a 2-D six-

parameter power-law distribution for CNTs volume frac-

tion of 2-D continuously graded nanocomposite that gives

designers a powerful tool for flexible designing of struc-

tures under multi-functional requirements. The benefit of

using generalized power-law distribution is to illustrate and

present useful results arising from symmetric, asymmetric

and classic profiles. The material properties are determined

in terms of local volume fractions and material properties

by Mori–Tanaka scheme. The 2-D differential quadrature

method as an efficient numerical tool is used to discretize

governing equations and to implement boundary condi-

tions. The fast rate of convergence of the method is shown

and results are compared against existing results in litera-

ture. Some new results for natural frequencies of the shell

are prepared, which include the effects of elastic

coefficients of foundation, boundary conditions, material

and geometrical parameters. The interesting results indi-

cate that a graded nanocomposite volume fraction in two

directions has a higher capability to reduce the natural

frequency than conventional 1-D functionally graded

nanocomposite materials.

Keywords Thick shell panels � Randomly oriented

straight single-walled CNTs � Two-parameter elastic

foundations � Vibration analysis of structures

Introduction

Layered composite materials, due to their thermal and

mechanical merits compared to single-composed materials,

have been widely used for a variety of engineering appli-

cations. However, owing to the sharp discontinuity in the

material properties at interfaces between two different

layers, there may exist stress concentrations causing severe

material failure (Weissenbek et al. 1997). Functionally

graded materials are heterogeneous composite materials, in

which the material properties vary continuously from one

interface to the other. The advantage of using these mate-

rials is that they can survive in high thermal gradient

environment, while maintaining their structural integrity.

Typically, an FGM is made of a ceramic and a metal for the

purpose of thermal protection against large temperature

gradients. The ceramic material provides a high-tempera-

ture resistance due to its low thermal conductivity, while

the ductile metal constituent prevents fracture due to its

greater toughness. FGMs are now developed for general

use as structural elements in extremely high temperature

environments. A listing of different applications can be

found in Forum (1991). Most of the studies on FGMs have
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been restricted to thermal stress analysis, thermal buckling,

fracture mechanics and optimization (Cho and Tinsley

oden 2000; Chunyu et al. 2001; Lanhe 2004). Some

researches (Loy et al. 1999; Pradhan et al. 2000; Han et al.

2001; Ng et al. 2001) are based on the classical shell the-

ory, i.e., neglecting the effect of transverse shear defor-

mation. The application of this theory to moderately thick

or thick shell structures can lead to serious errors. Using the

first and higher order shear deformation theories, some

modifications are done to include the effects of transverse

shear deformation. In this study, the problem formulations

were based on the higher order shear deformation shell

theories. Yang and Shen (2003) proposed a semi-analytical

approach based on Reddy’s higher order shear deformation

shell theory, for free vibration and dynamic instability of

FGM cylindrical panels under combined static and periodic

axial forces and thermal loads. Free vibration and stability

of functionally graded shallow shells according to a 2-D

higher order deformation theory were investigated by

Matsunaga (2008). Free vibration analysis of functionally

graded curved panels was carried out using a higher order

formulation by Pradyumna and Bandyopadhyay (2008).

They used a C0 finite element formulation to carry out the

analysis. Using a 2-D higher order shear deformation the-

ory, vibration and buckling analyses of simply supported

circular cylindrical shells made of functionally graded

materials (FGMs) were studied by Matsunaga (2009). He

used the method of power series expansion of continuous

displacement components to solve the problem. In all of

the above studies the variation of the radius through the

thickness was not considered and the problem formulations

were based on the constant mean radius of curvature.

Two-dimensional theories reduce the dimensions of

problems from three to two by introducing some assump-

tions in mathematical modeling leading to simpler

expressions and derivation of solutions. However, these

simplifications inherently bring errors and therefore may

lead to unreliable results for relatively thick panels. As a

result, three-dimensional analysis of panels not only pro-

vides realistic results, but also allows further physical

insights, which cannot otherwise be predicted by the two-

dimensional analysis. There are some studies on free

vibration analysis of isotropic and composite panels and

shells based on the three-dimensional elasticity formulation

(Chern and Chao 2000).

Structures resting on elastic foundations with different

shapes, sizes, and thickness variations and boundary con-

ditions have been the subject of investigations, and those

play an important role in aerospace, marine, civil,

mechanical, electronic and nuclear engineering problems.

For example, plates and shells are used in various kinds of

industrial applications such as the analysis of reinforced

concrete pavement of roads, airport runways and

foundations of buildings. The Pasternak model (also

referred to as the two-parameter model) was widely used to

describe the mechanical behavior of the foundation, in

which the well-known Winkler model is a special case.

The most serious deficiency of the Winkler foundation

model is to have no interaction between the springs. In

other words, the springs in this model are assumed to be

independent and unconnected. The Winkler foundation

model is fairly improved by adopting the Pasternak foun-

dation model, a two-parameter model, in which the shear

stiffness of the foundation is considered. The evident

importance in practical applications, investigations on the

dynamic characteristics of FGM plates and panels on

elastic foundations are still limited in number. Yas and

Tahouneh (2012) investigated the free vibration analysis of

thick FG annular plates on elastic foundations via differ-

ential quadrature method based on the three-dimensional

elasticity theory and Tahouneh and Yas (2012) investigated

the free vibration analysis of thick FG annular sector plates

on Pasternak elastic foundations using DQM. Tahouneh

et al. (2013) studied free vibration characteristics of

annular continuous grading fiber reinforced (CGFR) plates

resting on elastic foundations using DQM. More recently,

(Tahouneh and Naei 2014) achieved the natural frequen-

cies of thick multi-directional functionally graded rectan-

gular plates resting on a two-parameter elastic foundation

via 2-D differential quadrature method, The proposed

rectangular plates had two opposite edges simply sup-

ported, while all possible combinations of free, simply

supported and clamped boundary conditions were applied

to the other two edges. Farid et al. (2010) presented free

vibration analysis of initially stressed thick simply sup-

ported functionally graded curved panel resting on two-

parameter elastic foundation (Pasternak model), subjected

in thermal environment was studied using the three-di-

mensional elasticity formulation. Tahouneh (2014) inves-

tigated free vibration analysis of continuous grading fiber

reinforced (CGFR) FG annular sector plates on two-pa-

rameter elastic foundations under various boundary con-

ditions, based on the three-dimensional theory of elasticity.

The plates with simply supported radial edges and arbitrary

boundary conditions on their circular edges were

considered.

Recently, nanocomposites have significant importance

for engineering applications that require high levels of

structural performance and multi-functionality. Carbon

nanotubes (CNTs) have demonstrated exceptional

mechanical, thermal and electrical properties. These

materials are considered as one of the most promising

reinforcement materials for high performance structural

and multi-functional composites with vast application

potentials (Esawi and Farag 2007; Thostenson et al. 2001).

Most studies on carbon nanotube-reinforced composites
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(CNTRCs) have focused on their material properties

(Esawi and Farag 2007; Thostenson et al. 2001; Dai 2002;

Kang et al. 2006; Lau et al. 2006). Gojny et al. (2005)

focused on the evaluation of the different types of the

CNTs applied, their influence on the mechanical properties

of epoxy-based nanocomposites and the relevance of sur-

face fictionalization. Fidelus et al. (2005) investigated

thermo-mechanical properties of epoxy-based nanocom-

posites based on low weight fraction of randomly oriented

single-and multi-walled CNTs. Han and Elliott (2007)

determined the elastic modulus of composite structures

under CNTs reinforcement by molecular dynamic simula-

tion and investigated the effect of volume fraction of

SWNTs on mechanical properties of nanocomposites.

Manchado et al. (2005) blended small amounts of arc-

SWNT into isotactic polypropylene and observed the

modulus increase from 0.85 to 1.19 GPa at 0.75 wt%. In

addition, the strength increased from 31 to 36 MPa by 0.5

wt%. Both properties were observed to fall off at higher

loading levels. These investigations and (Mokashi et al.

2007; Zhu et al. 2007) have shown that the addition of

small amount of carbon nanotube in the matrix can con-

siderably improve the mechanical, electrical and thermal

properties of polymeric composites. This behavior, com-

bined with their low density makes them suitable for

transport industries, especially for aeronautic and aero-

space applications where the reduction of weight is crucial

in order to reduce the fuel consumption.

The properties of the CNT-reinforced composites

(CNTRCs) depend on a variety of parameters including

CNT geometry and the inter-phase between the matrix and

CNT. Interfacial bonding in the inter-phase region between

embedded CNT and its surrounding polymer is a crucial

issue for the load transferring and reinforcement phenom-

ena Shokrieh and Rafiee (2010). The traditional approach

to fabricating nanocomposites implies that the nanotube is

distributed either uniformly or randomly such that the

resulting mechanical, thermal, or physical properties do not

vary spatially at the macroscopic level. Experimental and

numerical studies concerning CNTRCs have shown that

distributing CNTs uniformly as the reinforcements in the

matrix can achieve moderate improvement of the

mechanical properties only (Seidel and Lagoudas 2006).

This is mainly due to the weak interface between the CNTs

and the matrix where a significant material property mis-

match exists. The concept of FGM can be utilized for the

management of a material’s microstructure, so that the

vibrational behavior of a plate/shell structure reinforced by

CNTs can be improved. According to a comprehensive

survey of literature, the authors found that there are few

research studies on the mechanical behavior of functionally

graded CNTRC structures. For the first time, Shen (2009)

suggested that the nonlinear bending behavior can be

considerably improved through the use of a functionally

graded distribution of CNTs in the matrix. He introduced

the CNT efficiency parameter to account load transfer

between the nanotube and polymeric phases.

Due to intrinsic complexity of the formulations based on

the three-dimensional elasticity, powerful numerical

methods are needed to solve the governing equations. The

differential quadrature method (DQM) is a relatively new

numerical technique in structural analysis. A review of the

early developments in the differential quadrature method

can be found in papers by (Bert and Malik 1997).

This paper is motivated by the lack of studies in the

technical literature concerning to the three-dimensional

vibration analysis of thick bidirectional nanocomposite

curved panels resting on a two-parameter elastic founda-

tion reinforced by randomly oriented straight single-wal-

led carbon nanotubes CNTs. To the authors’ best

knowledge, research on the vibration of thick curved

panels reinforced by randomly oriented straight single-

walled carbon nanotubes which are graded in both

direction including axial and radial directions has not

been seen until now. The volume fractions of randomly

straight single-walled carbon nanotubes SWCNTs are

assumed to be graded in the thickness and also axial

directions of the curved panels. The direct application of

CNT properties in micromechanics models for predicting

material properties of the nanotube/polymer composite is

inappropriate without taking into account the effects

associated with the significant size difference between a

nanotube and a typical carbon fiber (Odegard et al. 2003).

In other words, continuum micromechanics equations

cannot capture the scale difference between the nano and

micro-levels. In order to overcome this limitation, a vir-

tual equivalent fiber consisting of nanotube and its inter-

phase which is perfectly bonded to surrounding resin is

applied.

This study presents a novel 2-D six-parameter power-

law distribution for CNTs volume fraction of 2-D func-

tionally graded nanocomposite materials that gives

designers a powerful tool for flexible designing of struc-

tures under multi-functional requirements. Various mate-

rial profiles along the radial and axial directions are

illustrated by using the 2-D power-law distribution. The

effective material properties at a point are determined in

terms of the local volume fractions and the material

properties by the Mori–Tanaka scheme. A sensitivity

analysis is performed, and the natural frequencies are cal-

culated for different sets of boundary conditions and dif-

ferent combinations of the geometric, material, and

foundation parameters. Therefore, very complex combi-

nations of the material properties, boundary conditions, and

foundation stiffness are considered in the present semi-

analytical solution approach.

Int J Adv Struct Eng (2016) 8:11–28 13
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Problem description

In this section, a virtual equivalent fiber consisting of a

nanotube and its inter-phase which is perfectly bonded to

surrounding resin is introduced to obtain the mechanical

properties of the carbon nanotube/polymer composite by

using the results of multi-scale FEM Shokrieh and Rafiee

(2010). The equivalent fiber for SWCNT with chiral index

of (10, 10) is a solid cylinder with diameter of 1.424 nm.

The inverse of the rule of mixture is used to calculate

material properties of equivalent fiber (Tsai et al. 2003):

ELEF ¼ ELC

VEF

� EMVM

VEF

;

1

ETEF

¼ 1

ETCVEF

� VM

EMVEF

;

1

GEF

¼ 1

GCVEF

� VM

GMVEF

;

tEF ¼ tC
VEF

� tMVM

VEF

;

ð1Þ

where ELEF, ETEF, GEF, tEF, ELC, ETC, GC, tC, EM , GM , tM ,
VEF and VM are longitudinal modulus of equivalent fiber,

transverse modulus of equivalent fiber, shear modulus of

equivalent fiber, Poisson’s ratio of equivalent fiber, longi-

tudinal modulus of composites, transverse modulus of

composites, shear modulus of composites, Poisson’s ratio

of composites, modulus of matrix, shear modulus of

matrix, Poisson’s ratio of matrix, volume fraction of the

equivalent fiber and volume fraction of the matrix,

respectively. ELC, GC, and ETC are obtained from multi-

scale FEM or molecular dynamics (MD) simulations. It

should be mentioned that the volume fraction of the

equivalent fiber is assumed to be 7.5 % (Shokrieh and

Rafiee 2010) and Poly {(mphenylenevinylene)-co-[(2,5-

dioctoxy-p-phenyle) vinylene]}, referred to as (PmPV), is

selected as a matrix material:

Em ¼ 2:1Gpa; qm ¼ 1150 kg/m3; tm ¼ 0:34:

The material properties adopted for equivalent fiber are

(Shokrieh and Rafiee 2010):

Ecn
1 ¼ 649:12Gpa;

Ecn
1 ¼ 11:27Gpa;

t ¼ 0:284;

Gcn ¼ 5:13Gpa;

qcn ¼ 1400 kg/m3

Composites reinforced with aligned, straight CNTs

Following the standard MT derivation, one can develop the

expression for effective composite stiffness C. This is

obtained by using an equivalent fiber having the effective

CNT properties in the MT approach which is given as (Shi

et al. 2004):

C ¼ Cm þ fr Cr � Cmð ÞArh i fmI þ fr Arh ið Þ�1; ð2Þ

where fr and fm are the fiber and matrix volume fractions,

respectively. Cm is the stiffness tensor of the matrix

material; Cr is the stiffness tensor of the equivalent fiber;

I is the forth order identity tensor and Ar is the dilute strain-

concentration tensor of the rth phase for the fiber which is

given as:

Ar ¼ I þ S Cmð Þ�1
Cr � Cmð Þ

h i�1

; ð3Þ

where S is Eshelby’s tensor, as given by (Eshelby 1957) and

(Mura 1982). The terms enclosed by angle brackets in Eq. (2)

represent the average value of the term over all orientations

defined by transformation from the local fiber coordinates (O-

x01x
0
2x

0
3) to the global coordinates (O-x1x2x3) (Fig. 1).

Assume axis x2 as the direction along the aligned nanotube.

The elastic properties of the nanocomposite are determined

from the average strain obtained in the representative volume

element. The matrix is assumed to be elastic and isotropic,

with Young’s modulus Em and Poisson’s ratio tm. Each
straight CNT is modeled as a long fiber with transversely

isotropic elastic properties and has a stiffness matrix given by

Eq. (1). Therefore, the composite is also transversely iso-

tropic, with five independent elastic constants. The substitu-

tion of nonvanishing components of the Eshelby tensor S for a

straight, long fiber along the x2-direction (Shi et al. 2004) in

Eq. (3) gives the dilute mechanical strain concentration ten-

sor. Then, the substitution of Eq. (3) into Eq. (2) gives the

tensor of effective elastic moduli of the composite reinforced

by aligned, straight CNTs. The axial and transverse Young’s

modulus of the composite can be calculated from the Hill’s

elastic modulus as (Shi et al. 2004):

E1 ¼ n� l2

k
; E2 ¼

4m kn� l2ð Þ
kn� l2 þ mn

; ð4Þ

Fig. 1 Representative volume element (RVE) with randomly ori-

ented, straight CNT

14 Int J Adv Struct Eng (2016) 8:11–28
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where k, l, m and n are its plane-strain bulk modulus nor-

mal to the fiber direction, cross-modulus, transverse shear

modulus, axial modulus and axial shear modulus, respec-

tively, and can be found in the Appendix. As mentioned

before, the CNTs are transversely isotropic and have a

stiffness matrix given below:

Cr ¼

1

EL

�tTL
ET

�tZL
EZ

0 0 0

�tLT
EL

1

ET

�tZT
EZ

0 0 0

�tLZ
EL

�tTZ
ET

1

EZ

0 0 0

0 0 0
1

GTZ

0 0

0 0 0 0
1

GZL

0

0 0 0 0 0
1

GLT

2
666666666666666664

3
777777777777777775

ð5Þ

where EL; ET ; EZ ; GTZ ; GZL; GLT ; tLT ; tLZ ; tTZ are

material properties of the equivalent fiber which can be

determined from the inverse of the rule of mixture.

Composites reinforced with randomly oriented,

straight CNTs

The effective properties of composites with randomly ori-

ented non-clustered CNTs, such as in Fig. 1, are studied in

this section. The resulting effective properties for the ran-

domly oriented CNT composite are isotropic, despite the

CNTs having transversely isotropic effective properties.

The orientation of a straight CNT is characterized by two

Euler angles a and b, as shown in Fig. 1. When CNTs are

completely randomly oriented in the matrix, the composite

is then isotropic, and its bulk modulus k and shear modulus

G are derived as:

k¼ kmþ
fr dr � 3Kmarð Þ
3 fmþ frarð Þ ;G¼Gmþ

fr gr � 2Gmbrð Þ
2 fmþ frbrð Þ ; ð6Þ

where ar;br;dr and gr can be found in the Appendix. The

effective Young’s modulus E and Poisson’s ratio t of the

composite is given by:

E ¼ 9KG

3K þ G
; t ¼ 3K � 2G

6K þ 2G
ð7Þ

Functionally graded carbon nanotube-reinforced

Consider a bidirectional nanocomposite curved panel res-

ted on two-parameter elastic foundations as shown in

Fig. 2. A cylindrical coordinate system (r, h, z) is used to

label the material point of the panel. The inner surface is

continuously in contact with an elastic medium that acts as

an elastic foundation represented by the Winkler/Pasternak

model with Kw and Kg that are Winkler and shear coeffi-

cients of Pasternak foundation, respectively.

One of the well-known power-law distributions which is

widely considered by the researchers is three- or four-pa-

rameter power-law distribution. The benefit of using such

power-law distributions is to illustrate and present useful

results arising from symmetric and asymmetric profiles.

Consider Vc (volume fraction of the CNTs) in form of

f(z) 9 g(r), f(z) and g(r) are both the three-parameter

power-law distribution. They can be used to illustrate

symmetric, asymmetric and classical profiles along the

axial and radial directions of the curved panels, respec-

tively. So by considering Vc as f(z) 9 g(r), one can present

a 2-D six-parameter power-law distribution which is useful

to illustrate different types of volume fraction profiles,

including classical–classical, symmetric–symmetric and

classical–symmetric in both directions.

In order to investigate 3-D dynamic response of thick

bidirectional nanocomposite curved panels resting on a

two-parameter elastic foundation, it is assumed that the

volume fraction of the CNTs follows a 2-D six-parameter

power-law distribution:

Vc¼ ðVb�VaÞ
1

2
�r�R

h

� �
þar

1

2
þr�R

h

� �br
 !cr

þVa

 !

� 1� z

Lz

� �
þaz

z

Lz

� �bz
 !c

z

; ð8Þ

where the radial volume fraction index cr, and the

parameters ar, br and the axial volume fraction index cz,
and the parameters az, bz govern the material variation

profile through the radial and axial directions, respectively.

The volume fractions Va and Vb, which have values that

range from 0 to 1, denote the maximum and minimum

volume fraction of CNTs. With assumption Vb = 1 and

Va = 0.3, some material profiles in the radial

Fig. 2 The sketch of an elastically supported thick bidirectional

nanocomposite cylindrical panel resting on a two-parameter elastic

foundation and setup of the coordinate system

Int J Adv Struct Eng (2016) 8:11–28 15
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[gr = (r - R)/h] and axial (gz = z/Lz) directions are illus-

trated in Figs. 3, 4 and 5. As can be seen from Fig. 3, the

classical volume fraction profiles in the radial and axial

directions are presented as special case of the 2-D power-

law distribution by setting cr ¼ cz ¼ 4; and ar ¼ az ¼ 0. In

Fig. 3, The CNTs volume fraction decreases in the axial

direction from 1 at gz = -0.5 to 0 at gz = 0.5. With

another choice of the parameters az, bz, ar and br, it is
possible to obtain volume fraction profiles along the radial

and axial directions of the panel as shown in Fig. 4. This

figure shows a classical profile versus gr and a symmetric

profile versus gz. As observed, volume fraction on the

lower edge (gz = -0.5) is the same as that on the upper

edge (gz = 0.5). Figure 5 illustrates symmetric profiles

through the radial and axial directions obtained by setting

br ¼ bz ¼ 2; and ar ¼ az ¼ 1. In the following, we have

compared several different volume fraction profiles of

conventional 1-D and 2-D continuously graded nanocom-

posite with appropriate choice of the radial and axial

parameters of the 2-D six-parameter power-law distribu-

tion, as shown in Table 1. It should be noted that the

notation classical–symmetric indicates that the 2-D

nanocomposite curved panel has classical and symmetric

volume fraction profiles in the radial and axial directions,

respectively.

The basic formulations

The mechanical constitutive relation that relates the stres-

ses to the strains is as follows:

rr
rh
rz
szh
srz
srh

2
6666664

3
7777775
¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775

er
eh
ez
czh
crz
crh

2
6666664

3
7777775
:

ð9Þ

Fig. 3 Variations of the classical volume fraction profile in the radial

and axial directions ðcr ¼ cz ¼ 4; ar ¼ az ¼ 0Þ

Fig. 4 Variations of the volume fraction profile along the radial and

axial directions of the curved panels ðcr ¼ cz ¼ 3; ar ¼ 0;
az ¼ 1;bz ¼ 2Þ

Fig. 5 Variations of the symmetric volume fraction profile along the

radial and axial directions of the curved panels ðcr ¼ cz ¼ 3; ar ¼ az
¼ 1; bz ¼ br ¼ 2Þ

Table 1 Various volume fraction profiles, different parameters, and

volume fraction indices of 2-D power-law distributions

Volume fraction

profile

Radial volume fraction

index and parameters

Axial volume

fraction index

and parameters

Classical–classical ar ¼ 0 az ¼ 0

Symmetric–symmetric ar ¼ 1;br ¼ 2 az ¼ 1;br ¼ 2

Classical–symmetric ar ¼ 0 az ¼ 1;bz ¼ 2

Classical radially ar ¼ 0 cz ¼ 0

Symmetric radially ar ¼ 1;br ¼ 2 cz ¼ 0

16 Int J Adv Struct Eng (2016) 8:11–28
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In the absence of body forces, the governing equations

are as follows:

orr
or

þ 1

r

osrh
oh

þ osrz
oz

þ rr � rh
r

¼ q
o2ur

ot2
;

osrh
or

þ 1

r

orh
oh

þ oshz
oz

þ 2srh
r

¼ q
o2uh

ot2
;

osrz
or

þ 1

r

oshz
oh

þ orz
oz

þ srz
r

¼ q
o2uz

ot2

ð10Þ

Strain–displacement relations are expressed as:

er ¼
our

or
; eh ¼

ur

r
þ 1

r

ouh

oh
; ez ¼

ouz

oz
;

chz ¼
ouh

oz
þ 1

r

ouz

oh
; crz ¼

our

oz
þ ouz

or
;

crh ¼
1

r

our

oh
þ ouh

or
� uh

r

ð11Þ

where ur, uh and uz are radial, circumferential and axial

displacement components, respectively. Upon substitution

Eq. (11) into (9) and then into (10), the equations of motion

in terms of displacement components with infinitesimal

deformations can be written as:

c11
o2ur

or2
þ c12 � 1

r2
ouh

oh
þ 1

r

o2uh

oroh
þ 1

r

our

or
� 1

r2
ur

� �

þ c13
o2uz

oroz
þ oc11

or

our

or
þ oc12

or

ur

r
þ 1

r

ouh

oh

� �

þ oc13

or

ouz

oz
þ c66

r

o2uh

ohor
þ 1

r

o2ur

oh2
� 1

r

ouh

oh

� �

þ c55
o2ur

oz2
þ o2uz

ozor

� �
þ 1

r
c11

our

or
þ c12ð

ur

r
þ 1

r

ouh

oh

� �

þ c13
ouz

oz
� c12

our

or
� c22

ur

r
þ 1

r

ouh

oh
Þ � c23

ouz

oz

� �

¼ q
o2ur

ot2
ð12Þ

c66
�1

r2
our

oh
þ 1

r

o2ur

oroh
þ o2uh

or2
þ uh

r2
� 1

r

ouh

or

� �

þ oc66

or

1

r

our

oh
þ ouh

or
� uh

r

� �

þ 1

r
c12

o2ur

ohor
þ c22

1

r

our

oh
þ 1

r

o2uh

oh2

� �
þ c23

o2uz

ohoz

� �

þ c44
o2uh

oz2
þ 1

r

o2uz

ozoh

� �

þ 2c66

r

1

r

our

oh
þ ouh

or
� uh

r

� �
¼ q

o2uh

ot2
ð13Þ

c55
o2ur

oroz
þ o2uz

or2

� �
þ oc55

or

our

oz
þ ouz

or

� �

þ c44

r

o2uh

ohoz
þ 1

r

o2uz

oh2

� �
þ c13

o2ur

ozor
þ c23

1

r

our

oz
þ 1

r

o2uh

ohoz

� �

þ c33
o2uz

oz2
þ c55

r

our

oz
þ ouz

or

� �
¼ q

o2uz

ot2
ð14Þ

The boundary conditions at the concave and convex

surfaces, r = ri and ro, respectively, can be described as

follows:

– At r = ro, ri

srz ¼ srh ¼ 0; rr

¼ �kwur þ kg
o2ur

oz2
þ 1

r2
o2ur

oh2

� �
at r ¼ ri

0 at r ¼ ro

8<
:

ð15Þ

In this investigation, three different types of classical

boundary conditions at edges z = 0 and Lz of the panel can

be stated as follows:

– Simply supported (S):

Ur ¼ Uh ¼ rz ¼ 0 ð16Þ

– Clamped (C):

Ur ¼ Uh ¼ Uz ¼ 0 ð17Þ

– Free (F):

rz ¼ rzh ¼ rzr ¼ 0 ð18Þ

For the curved panels with simply supported at one pair

of opposite edges, the displacement components can be

expanded in terms of trigonometric functions in the

direction normal to these edges. In this work, it is assumed

that the edges h = 0 and h = U are simply supported.

Hence,

urðr; h; z; tÞ ¼
X1
m¼1

Urðr; zÞ sin
mp
U

h
� �

eixt;

uhðr; h; z; tÞ ¼
X1
m¼1

Uhðr; zÞ cos
mp
U

h
� �

eixt;

uzðr; h; z; tÞ ¼
X1
m¼1

Uzðr; zÞ sin
mp
U

h
� �

eixt

ð19Þ

where m is the circumferential wave number, x is the

natural frequency and i (=
ffiffiffiffiffiffiffi
�1

p
) is the imaginary number.

Substituting for displacement components from Eq. (19)

into Eqs. (12, 13, 14), one gets
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Equation (12):

c11
o2Ur

or2
þc12

mp
Ur2

Uh�
mp
Ur

oUh

or
þ1

r

oUr

or
� 1

r2
Ur

� �

þc13
o2Uz

oroz
þoc11

or

oUr

or
þoc12

or

1

r
Ur�

mp
Ur

Uh

� �
þoc13

or

oUz

oz

þc66

r
�mp

U
oUh

or
�1

r

mp
U

� �2
Urþ

mp
Ur

Uh

� �

þc55
o2Ur

oz2
þo2Uz

ozor

� �
þ1

r
ðc11

oUr

or
þc12

1

r
Ur�

mp
Ur

Uh

� ��

þ c13
oUz

oz
�c12

oUr

or
�c22

1

r
Ur�

mp
Ur

Uh

� �
�c23

oUz

oz

�

¼�qx2Ur ð20Þ

Equation (13):

c66 �mp
Ur2

Urþ
mp
Ur

oUr

or
þo2Uh

or2
þUh

r2
�1

r

oUh

or

� �

þoc66

or

mp
Ur

Urþ
oUh

or
�Uh

r

� �

þ1

r
c12

mp
U

oUr

or
þc22

mp
Ur

Ur�
1

r

mp
U

� �2
Uh

� �
þc23

mp
U

oUz

oz

� �

þc44
o2Uh

oz2
þmp
Ur

oUz

oz

� �
þ2c66

r

mp
Ur

Urþ
oUh

or
�Uh

r

� �

¼�qx2Uh ð21Þ

Equation (14):

c55
o2Ur

oroz
þ o2Uz

or2

� �
þ oc55

or

oUr

oz
þ oUz

or

� �

þ c44

r
�mp

U
oUh

oz
� 1

r

mp
U

� �2
Uz

� �
þ c13

o2Ur

ozor

þ c23
1

r

oUr

oz
�mp
Ur

oUh

oz

� �
þ c33

o2Uz

oz2
þ c55

r

oUr

oz
þ oUz

or

� �

¼�qx2Uz ð22Þ

The geometrical and natural boundary conditions stated in

Eq. (15) can also be simplified as follows

Equation (15):

oUr

oz
þ oUz

or
¼ mp

Ur
Ur þ

oUh

or
� Uh

r
¼ 0;

c11
oUr

or
þ c12

Ur

r
� mp

Ur
Uh

� �
þ c13

oUz

oz

þkwUr � kg
o2Ur

oz2
� mp

Ur

� �2
Ur

� �
¼ 0

at r ¼ ri

c11
oUr

or
þ c12

Ur

r
� mp

Ur
Uh

� �
þ c13

oUz

oz
¼ 0 at r ¼ ro

8>>>>>>>>><
>>>>>>>>>:

ð23Þ

The boundary conditions stated in Eqs. (16, 17, 18) can

also be simplified; however, for the sale of brevity, they are

not shown here.

2-D DQM solution of governing equations

It is difficult to solve analytically the equations of motion,

if it is not impossible. Hence, one should use an approx-

imate method to find a solution. Here, the differential

quadrature method (DQM) is employed. One can compare

DQM solution procedure with the other two widely used

traditional methods for plate analysis, i.e., Rayleigh–Ritz

method and FEM. The main difference between the DQM

and the other methods is how the governing equations are

discretized. In DQM, the governing equations and

boundary conditions are directly discretized, and thus

elements of stiffness and mass matrices are evaluated

directly. But in Rayleigh–Ritz and FEMs, the weak form

of the governing equations should be developed and the

boundary conditions are satisfied in the weak form.

Generally by doing so larger number of integrals with

increasing amount of differentiation should be done to

arrive at the element matrices. In addition, the number of

degrees of freedom will be increased for an

acceptable accuracy.

The basic idea of the DQM is the derivative of a func-

tion, with respect to a space variable at a given sampling

point, is approximated as a weighted linear sum of the

sampling points in the domain of that variable. In order to

illustrate the DQ approximation, consider a function f ðn; gÞ
defined on a rectangular domain 0� n� a and 0� g� b.

Let in the given domain, the function values be known or

desired on a grid of sampling points. According to DQM

method, the rth derivative of the function f ðn; gÞ can be

approximated as:

orf ðn; gÞ
onr

jðn; gÞ ¼ ðni; gjÞ

¼
XNn

m¼1

A
nðrÞ
im fmj for i ¼ 1; 2; . . .;Nn

and r ¼ 1; 2; . . .;Nn � 1

ð24Þ

where Nn represents the total number of nodes along the n-
direction. From this equation one can deduce that the

important components of DQM approximations are the

weighting coefficients ðAnðrÞ
ij Þ and the choice of sampling

points. In order to determine the weighting coefficients, a

set of test functions should be used in Eq. (24). The

weighting coefficients for the first-order derivatives in n-
direction are thus determined as (Bellman and Casti 1971):

18 Int J Adv Struct Eng (2016) 8:11–28
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An
ij ¼

1

a

MðniÞ
ðni � njÞMðnjÞ

for i 6¼j

�
PNn

j¼1
i 6¼j

An
ij

for i¼j

8>>>><
>>>>:

; i; j ¼ 1; 2; . . .;Nn; ð25Þ

where

MðniÞ ¼
YNn

j¼1;i 6¼j

ðni � njÞ ð26Þ

The weighting coefficients of the second-order derivative

can be obtained in the matrix form (Bellman and Casti

1971):

Bn
ij

h i
¼ An

ij

h i
An
ij

h i
¼ An

ij

h i2
ð27Þ

In a similar manner, the weighting coefficients for the g-
direction can be obtained.

The natural and simplest choice of the grid points is

equally spaced points in the direction of the coordinate

axes of computational domain. It was demonstrated that

non-uniform grid points gives a better result with the same

number of equally spaced grid points (Bellman and Casti

1971). It is shown (Shu and Wang 1999) that one of the

best options for obtaining grid points is Chebyshev–Gauss–

Lobatto quadrature points:

ni
a
¼ 1

2
1� cos

ði� 1Þp
ðNn � 1Þ

	 
� �
;

gj
b
¼ 1

2
1� cos

ðj� 1Þp
ðNg � 1Þ

	 
� �
for i ¼ 1; 2; . . .;Nn;

ð28:1; 2Þ

j ¼ 1; 2; . . .;Ng;where Nn and Ng are the total number of

nodes along the n- and g-directions, respectively. At this
stage, the DQ method can be applied to discretize the

equations of motion (20, 21, 22). As a result, at each

domain grid point (ri,zj) with i = 2,…, Nr - 1 and

j = 2,…, Nz - 1, the discretized equations take the fol-

lowing forms.

Equation (20):

Equation (21):

c66ð Þij � 1

r2i

mp
U

Urij þ
mp
Uri

XNr

n¼1

Ar
inUrnj

 

þ
XNr

n¼1

Br
inUhnj þ

Uhij

r2i
� 1

ri

XNr

n¼1

Ar
inUhnj

!

þ oc66

or

� �

ij

mp
Uri

Urij þ
XNr

n¼1

Ar
inUhnj �

Uhij

ri

 !

þ 1

ri
c12ð Þij

mp
U

XNr

n¼1

Ar
inUrnj þ c22ð Þij

mp
Uri

Urij �
1

ri

mp
U

� �2
Uhij

� � 

þ c23ð Þij
mp
U

XNz

n¼1

Az
jnUzin

!

þ c44ð Þij
XNz

n¼1

Bz
jnUhin þ

mp
Uri

XNz

n¼1

Az
jnUzin

 !

þ
2 c66ð Þij

ri

mp
Uri

Urij þ
XNr

n¼1

Ar
inUhnj �

Uhij

ri

 !

¼ �qijx
2Uhij

ð30Þ

c11ð Þij
XNr

n¼1

Br
inUrnj þ c12ð Þij

mp
Ur2i

Uhij �
mp
Uri

XNr

n¼1

Ar
inUhnj þ

1

ri

XNr

n¼1

Ar
inUrnj �

Urij

r2i

 !

þ c13ð Þij
XNr

n¼1

XNz

v¼1

Az
jvA

r
inUznv þ

oc11

or

� �

ij

XNr

n¼1

Ar
inUrnj þ

oc12

or

� �

ij

1

ri
Urij �

mp
Uri

Uhij

� �

þ oc13

or

� �

ij

XNz

n¼1

Az
jnUzin þ

c66ð Þij
ri

�mp
U

XNr

n¼1

Ar
inUhnj �

1

ri

mp
U

� �2
Urij þ

mp
Uri

Uhij

 !

þ c55ð Þij
XNz

n¼1

Bz
jnUrin þ

XNr

n¼1

XNz

v¼1

Az
jvA

r
inUznv

 !

þ 1

ri
ðc11Þij

XNr

n¼1

Ar
inUrnj þ c12ð Þij

Urij

ri
� mp
Uri

Uhij

� �
þ c13ð Þij

XNz

n¼1

Az
jnUzin � c12ð Þij

XNr

n¼1

Ar
inUrnj

 

� c22ð Þij
Urij

ri
� mp
Uri

Uhij

� �
� c23ð Þij

XNz

n¼1

Az
jnUzin

!

¼ �qijx
2Urij ð29Þ
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Equation (22):

c55ð Þij
XNr

n¼1

XNz

v¼1

Az
jvA

r
inUrnvþ

XNr

n¼1

Br
inUznj

 !
þ oc55

or

� �

ij

�
XNz

n¼1

Az
jnUrinþ

XNr

n¼1

Ar
inUznj

 !

þ
c44ð Þij
ri

�mp
U

XNz

n¼1

Az
jnUhin�

1

ri

mp
U

� �2
Uzij

 !

þ c13ð Þij
XNr

n¼1

XNz

v¼1

Az
jvA

r
inUrnv

þ c23ð Þij
1

ri

XNz

n¼1

Az
jnUrin�

mp
Uri

XNz

n¼1

Az
jnUhin

 !

þ c33ð Þij
XNz

n¼1

Bz
jnUzinþ

c55ð Þij
ri

XNz

n¼1

Az
jnUrinþ

XNr

n¼1

Ar
inUznj

 !

¼�qijx
2Uzij ð31Þ

where Ar
ij, A

z
ij and Br

ij, B
z
ij are the first- and second-order DQ

weighting coefficients in the r- and z-directions, respec-

tively. The DQ method can also be applied to discretize the

boundary conditions at r = ri and ro as follows.

Equation (23):

XNz

n¼1

Az
jnUrin þ

XNr

n¼1

Ar
inUznj ¼ 0;

mp
Uri

Urij þ
XNr

n¼1

Ar
inUhnj �

Uhij

ri
¼ 0;

c11ð Þij
XNr

n¼1

Ar
inUrnj þ c12ð Þij

Urij

ri
� mp
Uri

Uhij

� �

þ c13ð Þij
XNz

n¼1

Az
jnUzin

kwUrij � kg
XNz

n¼1

Bz
jnUrin �

mp
Uri

� �2

Urij

 !( )
d1i ¼ 0 ð32Þ

where i = 1 at r = ri and i = Nr at r = ro, and

j = 1,2,…,Nz; also dij is the Kronecker delta. The boundary
conditions at z = 0 and Lz stated in Eqs. (16, 17, 18),

become Eq. (16):

• Simply supported (S):

Urij ¼ Uhij ¼ 0;

c13ð Þij
XNr

n¼1

Ar
inUrnj þ c23ð Þij

Urij

ri
� mp
Uri

Uhij

� �

þ c33ð Þij
XNz

n¼1

Az
jnUzin ¼ 0 ð33Þ

Equation (17):

• Clamped (C):

Urij ¼ Uhij ¼ Uzij0 ð34Þ

Equation (18):

• Free (F):

c13ð Þij
XNr

n¼1

Ar
inUrnj þ ðc23Þij

Urij

ri
� mp
Uri

Uhij

� �

þ c33ð Þij
XNz

n¼1

Az
jnUzin ¼ 0;

XNz

n¼1

Az
jnUhin þ

mp
Uri

Uzij ¼ 0;

XNz

n¼1

Az
jnUrin þ

XNr

n¼1

Ar
inUznj ¼ 0

ð35Þ

In the above equations i = 2,…,Nr - 1; also j = 1 at

z = 0 and j = Nz at z = Lz.

In order to carry out the eigenvalue analysis, the domain

and boundary nodal displacements should be separated. In

vector forms, they are denoted as {d} and {b}, respec-

tively. Based on this definition, the discretized form of the

equations of motion and the related boundary conditions

can be represented in the matrix form as:Equations of

motion, Eqs. (29, 30, 31):

Kdb½ � Kdd½ �½ �
bf g
df g

( )
� x2 M½ � df g ¼ 0f g ð36Þ

Boundary conditions, Eq. (32) and Eqs. (33, 34, 35):

Kbd½ � df g þ Kbb½ � bf g ¼ 0f g ð37Þ

Eliminating the boundary degrees of freedom in Eq. (36)

using Eq. (37), this equation becomes

K½ � � x2 M½ � df g ¼ 0f g; ð38Þ

where K½ � ¼ Kdd½ � � Kdb½ � Kbb½ ��1
Kbd½ �. The above eigen-

value system of equations can be solved to find the natural

frequencies and mode shapes of the curved panel.

Numerical results and discussion

Convergence and comparison studies

Due to lack of appropriate results for free vibration of

CGCNTR cylindrical panels reinforced by oriented CNTs

for direct comparison, validation of the presented formu-

lation is conducted in two ways. Firstly, the results are

20 Int J Adv Struct Eng (2016) 8:11–28
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compared with those of FGM composite cylindrical panels

and then, the results of the presented formulations are

given in the form of convergence studies with respect to Nr

and Nz, the number of discrete points distributed along the

radial and axial directions, respectively. To validate the

proposed approach its convergence and accuracy are

demonstrated via different examples. The obtained natural

frequencies based on the three-dimensional elasticity for-

mulation are compared with those of the power series

expansion method for both FGM curved panels with and

without elastic foundations (Matsunaga 2008; Pradyumna

and Bandyopadhyay 2008; Farid et al. 2010). In these

studies the material properties of functionally graded

materials are assumed as follows:

• Metal (Aluminum, Al):

Em ¼ 70 � 109 Pa; qm ¼ 2702 Kg=m
3; tm ¼ 0:3

• Ceramic (Alumina, Al2O3):

Ec ¼ 380 � 109 Pa; qc ¼ 3800 Kg=m
3; tc ¼ 0:3

Subscripts M and C refer to the metal and ceramic

constituents which denote the material properties of the

outer and inner surfaces of the panel, respectively. To

validate the analysis, results for FGM cylindrical shells are

compared with similar ones in the literature, as shown in

Table 2. The comparison shows that the present results

agreed well with those in the literatures. Besides the fast

Table 2 Comparison of the normalized natural frequency of an FGM composite curved panel with four edges simply supported

ðX11 ¼x11RU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmh=D

p
;D ¼ Emh

3
�
12ð1� t2mÞÞ

P (volume fraction index) R/Lz

0.5 1 5 10 50

0 Nr = Nz = 5 69.9774 52.1052 42.7202 42.3717 42.2595

Nr = Nz = 7 69.9722 52.1052 42.7158 42.3718 42.2550

Nr = Nz = 9 69.9698 52.1003 42.7159 42.3700 42.2553

Nr = Nz = 11 69.9700 52.1003 42.7160 42.3677 42.2552

Nr = Nz = 13 69.9700 52.1003 42.7160 42.3677 42.2553

Pradyumna and Bandyopadhyay (2008) 68.8645 51.5216 42.2543 41.908 41.7963

0.2 Nr = Nz = 5 65.1470 47.9393 39.1282 38.8010 38.7020

Nr = Nz = 7 65.4449 48.0456 39.1008 38.7366 38.6834

Nr = Nz = 9 65.4526 48.1340 39.0836 38.7568 38.6581

Nr = Nz = 11 65.4304 48.1340 39.0835 38.7568 38.6580

Nr = Nz = 13 65.4304 48.1340 39.0835 38.7568 38.6581

Pradyumna and Bandyopadhyay (2008) 64.4001 47.5968 40.1621 39.8472 39.7465

0.5 Nr = Nz = 5 60.1196 43.5539 36.1264 35.8202 34.7341

Nr = Nz = 7 60.2769 43.7128 36.1401 35.7964 35.0677

Nr = Nz = 9 60.3574 43.7689 36.0944 35.7890 35.7032

Nr = Nz = 11 60.3574 43.7688 36.0943 35.7891 35.7032

Nr = Nz = 13 60.3574 43.7689 36.0944 35.7891 35.7032

Pradyumna and Bandyopadhyay (2008) 59.4396 43.3019 37.287 36.9995 36.9088

1 Nr = Nz = 5 54.1034 38.5180 31.9860 30.7065 30.6336

Nr = Nz = 7 54.6039 39.1477 32.1140 31.6982 31.5397

Nr = Nz = 9 54.7141 39.1620 32.0401 31.7608 31.6877

Nr = Nz = 11 54.7141 39.1621 32.0401 31.7608 31.6878

Nr = Nz = 13 54.7141 39.1621 32.0401 31.7608 31.6877

Pradyumna and Bandyopadhyay (2008) 53.9296 38.7715 33.2268 32.9585 32.875

2 Nr = Nz = 5 46.9016 34.7702 27.6657 27.4295 27.3725

Nr = Nz = 7 47.9865 34.6980 27.5733 27.3389 27.2669

Nr = Nz = 9 48.5250 34.6852 27.5614 27.3238 27.2663

Nr = Nz = 11 48.5250 34.6851 27.5614 27.3239 27.2663

Nr = Nz = 13 48.5250 34.6851 27.5614 27.3239 27.2662

Pradyumna and Bandyopadhyay (2008) 47.8259 34.3338 27.4449 27.1789 27.0961
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rate of convergence of the method being quite evident, it is

found that only 13 grid points (Nr = Nz = 13) along the

radial and axial directions can yield accurate results. Fur-

ther validation of the present results for isotropic FGM

cylindrical panel is shown in Table 3. In this table, com-

parison is made for different Lz/R and Lz/h ratios, and it is

observed there is good agreement between the results.

As another example, the convergence and accuracy of the

method are investigated by evaluating the first three natural

frequency parameters of the FG curved panel resting on

Pasternak foundations. The non-dimensional forms of the

elastic foundation coefficients are defined as Kw = kwR/Gc

and Kg = kg/(GcR) in which Gc is the shear modulus of

elasticity of the ceramic layer. The results are prepared for

different thickness-to-mean radius ratios and different val-

ues of the DQ grid points along the radial and axial

directions, respectively, are shown in Table 4. Also, one can

see that excellent agreement exists between the results.

Parametric studies

After demonstrating the convergence and accuracy of the

present method, parametric studies for 3-D vibration

analysis of thick curved panels resting on a two-parameter

elastic foundation reinforced by randomly oriented straight

single-walled carbon nanotubes for various CNTs volume

fraction distribution, length-to-mean radius ratio, elastic

coefficients of foundation and different combinations of

free, simply supported and clamped boundary conditions

along the axial direction of the curved panel, are computed.

The boundary conditions of the panel are specified by the

letter symbols, for example, S–C–S–F denotes a curved

Table 3 Comparison of the

normalized natural frequency of

an FGM composite curved

panel for various LZ/R and LZ/h

ratios

P (volume fraction index)

0 0.5 1 4 10

LZ/h = 2 LZ/R = 0.5

Matsunaga (2008) 0.9334 0.8213 0.7483 0.6011 0.5461

Farid et al. (2010) 0.9187 0.8013 0.7263 0.5267 0.5245

Nr = Nz = 5 0.9342 0.8001 0.7149 0.5878 0.5133

Nr = Nz = 7 0.9249 0.8011 0.7250 0.5783 0.5298

Nr = Nz = 9 0.9250 0.8018 0.7253 0.5790 0.5301

Nr = Nz = 11 0.9249 0.8017 0.7253 0.5789 0.5300

Nr = Nz = 13 0.9250 0.8018 0.7252 0.5790 0.5301

Matsunaga (2008) LZ/R = 1 0.9163 0.8105 0.7411 0.5967 0.5392

Farid et al. (2010) 0.8675 0.7578 0.6875 0.5475 0.4941

Nr = Nz = 5 0.8942 0.7531 0.6746 0.5741 0.4913

Nr = Nz = 7 0.8851 0.7671 0.6912 0.5599 0.5074

Nr = Nz = 9 0.8857 0.7666 0.6935 0.5531 0.5065

Nr = Nz = 11 0.8857 0.7667 0.6934 0.5531 0.5063

Nr = Nz = 13 0.8856 0.7667 0.6935 0.5532 0.5064

LZ/h = 5 LZ/R = 0.5

Matsunaga (2008) 0.2153 0.1855 0.1678 0.1413 0.1328

Farid et al. (2010) 0.2113 0.1814 0.1639 0.1367 0.1271

Nr = Nz = 5 0.2230 0.1997 0.1542 0.1374 0.1373

Nr = Nz = 7 0.2176 0.1823 0.1624 0.1362 0.1233

Nr = Nz = 9 0.2130 0.1817 0.1639 0.1374 0.1296

Nr = Nz = 11 0.2128 0.1816 0.1640 0.1377 0.1296

Nr = Nz = 13 0.2129 0.1817 0.1640 0.1374 0.1295

Matsunaga (2008) LZ/R = 1 0.2239 0.1945 0.1769 0.1483 0.1385

Farid et al. (2010) 0.2164 0.1879 0.1676 0.1394 0.1286

Nr = Nz = 5 0.2066 0.1765 0.1567 0.1476 0.1409

Nr = Nz = 7 0.2133 0.1843 0.1688 0.1377 0.1288

Nr = Nz = 9 0.2154 0.1848 0.1671 0.1392 0.1301

Nr = Nz = 11 0.2155 0.1847 0.1675 0.1392 0.1299

Nr = Nz = 13 0.2155 0.1847 0.1671 0.1392 0.1302
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panel with edges h = 0 and U simply supported (S), edge

z = 0 clamped (C) and edge z = Lz free (F).

The non-dimensional natural frequency, Winkler and

shearing layer elastic coefficients are as follows:

Xmn ¼ xmn10h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

p
;

Kw ¼ kwR

Gm

; Kg ¼
kg

GmR
;

ð39Þ

where qm, Em and Gm represent the mass density, Young’s

modulus and shear modulus of the matrix, respectively.

The effect of the Winkler elastic coefficient on the

fundamental frequency parameters for different boundary

conditions is shown in Figs. 6, 7 and 8. It is observed that

the fundamental frequency parameters converge with

increasing Winkler elastic coefficient of the foundation.

According to these figures, the lowest frequency parameter

is obtained by using classical–classical volume fraction

profile. On the contrary, the 1-D FG panel with symmetric

volume fraction profile has the maximum value of the

frequency parameter. Therefore, a graded CNTs volume

fraction in two directions has higher capabilities to reduce

the frequency parameter than conventional 1-D nanocom-

posite. It is also observed from Figs. 6, 7 and 8, for the

large values of Winkler elastic coefficient, the shearing

layer elastic coefficient has less effect and the results

become independent of it, in other words the non-dimen-

sional natural frequencies converge with increasing Win-

kler foundation stiffness.

The influence of shearing layer elastic coefficient on the

non-dimensional natural frequency for S–C–S–C, S–C–S–

S and S–F–S–F bidirectional nanocomposite curved panel

resting on a two-parameter elastic foundation, is shown in

Figs. 9, 10 and 11. It is observed that the variation of

Winkler elastic coefficient has little effect on the non-di-

mensional natural frequency at different values of shearing

layer elastic coefficient. It is clear that with increasing the

shearing layer elastic coefficient of the foundation, the

frequency parameters increase to some limit values and for

Table 4 Comparison of the first three non-dimensional natural fre-

quency parameters of panel on an elastic foundation ð-mn ¼
xmnh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qC=EC

p
;P ¼ 1;U ¼ 60�;Nr ¼ Nz ¼ 13Þ

LZ/R h/R Kw, Kg -11 -22 -33

1 0.1 1, 0.1 Present 0.2201 0.4411 0.6462

Farid et al. (2010) 0.2200 0.4403 0.6427

100, 10 Present 0.2241 0.4475 0.6679

Farid et al. (2010) 0.2243 0.4475 0.6681

0.5 1, 0.1 Present 0.8043 1.8601 2.9796

Farid et al. (2010) 0.8041 1.8599 2.9796

100, 10 Present 0.9500 1.8964 2.9956

Farid et al. (2010) 0.9503 1.8963 2.9956

2 0.1 1, 0.1 Present 0.1715 0.3430 0.5121

Farid et al. (2010) 0.1712 0.3434 0.5122

100, 10 Present 0.174 0.3477 0.5202

Farid et al. (2010) 0.174 0.3475 0.5200

0.5 1, 0.1 Present 0.5769 1.3408 2.1825

Farid et al. (2010) 0.5772 1.3409 2.1827

100, 10 Present 0.7664 1.4034 2.2027

Farid et al. (2010) 0.7664 1.4037 2.2023

Fig. 6 Variations of fundamental frequency parameters of a bidirec-

tional S–C–S–C nanocomposite curved panels resting on a two-

parameter elastic foundation with Winkler elastic coefficient for

different volume fraction profiles (Kg = 100, R/h = Lz/R = 3.5,

cr = 2, U = 135�)

Fig. 7 Variations of fundamental frequency parameters of a bidirec-

tional S–C–S–S nanocomposite curved panels resting on a two-

parameter elastic foundation with Winkler elastic coefficient for

different volume fraction profiles (Kg = 100, R/h = Lz/R = 3.5,

cr = 2, U = 135�)
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the large values of shearing layer elastic coefficient, the

frequency parameters become independent of it.

The variations of fundamental frequency parameters of

bidirectional nanocomposite curved panels resting on an

elastic foundation with length-to-mean radius ratio (Lz/R)

for different types of volume fraction profiles are depicted

in Figs. 12, 13 and 14. It can also be inferred from these

figures that the frequency is greatly influenced in that

fundamental frequency parameter decreases steadily as

length-to-mean radius ratio (Lz/R) becomes larger and

remains almost unaltered for the large values of length-to-

mean radius ratio. As can be seen from this figure, for the

all length-to-mean radius ratio (Lz/R), classical–classical

volume fraction profile has the lowest frequencies followed

by classical–symmetric, classical, symmetric–symmetric

and symmetric profiles.

The variations of fundamental frequency parameters of

bidirectional nanocomposite curved panels with length-to-

Fig. 8 Variations of fundamental frequency parameters of a bidirec-

tional S–F–S–F nanocomposite curved panels resting on a two-

parameter elastic foundation with Winkler elastic coefficient for

different volume fraction profiles (Kg = 100, R/h = Lz/R = 3.5,

cr = 2, U = 135�)

Fig. 9 Variations of fundamental frequency parameters of a bidirec-

tional S–C–S–C nanocomposite curved panels resting on a two-

parameter elastic foundation with the shearing layer elastic coefficient

(R/h = Lz/R = 3.5, cr = cz = 2, ar = az = 0, U = 135�)

Fig. 10 Variations of fundamental frequency parameters of a bidi-

rectional S–C–S–S nanocomposite curved panels resting on a two-

parameter elastic foundation with the shearing layer elastic coefficient

(R/h = Lz/R = 3.5, cr = cz = 2, ar = az = 0, U = 135�)

Fig. 11 Variations of fundamental frequency parameters of a bidi-

rectional S–F–S–F nanocomposite curved panels resting on a two-

parameter elastic foundation with the shearing layer elastic coefficient

(R/h = Lz/R = 3.5, cr = cz = 2, ar = az = 0, U = 135�)
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mean radius ratio (Lz/R), and the volume fraction index

through the radial direction of the panels for S–F–S–F

boundary conditions are shown in Fig. 15, by considering

ðar ¼ az ¼ 0; cz ¼ 2;Kw ¼ Kg ¼ 100Þ for classical–classi-

cal 2-D nanocomposite curved panels. Confirming the

effect of length-to-mean radius ratio on the natural fre-

quency already shown in the Figs. 12, 13 and 14, it is found

that the frequency parameter decreases by increasing the

radial volume fraction index ðcrÞ. This behavior is also

observed for other boundary conditions, not shown here for

brevity.

Conclusion remarks

In this research work, free vibration of thick bidirectional

nanocomposite curved panels resting on a two-parameter

elastic is investigated based on three-dimensional theory of

Fig. 12 Variations of fundamental frequency parameters of two-

dimensional continuously graded S–C–S–C nanocomposite curved

panels resting on an elastic foundation with Lz/R ratio for different

volume fraction profiles (Kw = Kg = 100, R/h = 3.5, cz = 2,

U = 135�)

Fig. 13 Variations of fundamental frequency parameters of two-

dimensional continuously graded S–C–S–S nanocomposite curved

panels resting on an elastic foundation with Lz/R ratio for different

volume fraction profiles (Kw = Kg = 100, R/h = 3.5, cz = 2,

U = 135�)

Fig. 14 Variations of fundamental frequency parameters of two-

dimensional continuously graded S–F–S–F nanocomposite curved

panels resting on an elastic foundation with Lz/R ratio for different

volume fraction profiles (Kw = Kg = 100, R/h = 3.5, cz = 2,

U = 135�)

Fig. 15 Variations of fundamental frequency parameters of bidirec-

tional nanocomposite curved panels with length-to-mean radius ratio

(Lz/R), and the volume fraction index through the radial direction of

the panels for S–F–S–F boundary condition (Kw = Kg = 100, R/

h = 3.5, cz = 2, ar = az = 0, U = 135�)
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elasticity. The elastic foundation is considered as a

Pasternak model with adding a shear layer to the Winkler

model. Three complicated equations of motion for the

curved panel under consideration are semi-analytically

solved by using 2-D differential quadrature method. Using

the 2-D differential quadrature method along the radial and

axial directions, allows one to deal with curved panel with

arbitrary thickness distribution of material properties and

also to implement the effects of the elastic foundations as a

boundary condition on the lower surface of the curved

panel efficiently and in an exact manner. The volume

fractions of randomly oriented straight single-walled car-

bon nanotubes (SWCNTs) are assumed to be graded not

only in the radial direction, but also in axial direction of the

curved panel. The direct application of CNTs properties in

micromechanics models for predicting material properties

of the nanotube/polymer composite is inappropriate with-

out taking into account the effects associated with the

significant size difference between a nanotube and a typical

carbon fiber. In other words, continuum micromechanics

equations cannot capture the scale difference between the

nano and micro-levels. In order to overcome this limitation,

a virtual equivalent fiber consisting of nanotube and its

inter-phase which is perfectly bonded to surrounding resin

is applied. In this research work, an equivalent continuum

model based on the Eshelby–Mori–Tanaka approach is

employed to estimate the effective constitutive law of the

elastic isotropic medium (matrix) with oriented straight

CNTs. The effects of elastic foundation stiffness parame-

ters, various geometrical parameters on the vibration

characteristics of CGCNTR curved panel, are investigated,

and also, different types of volume fraction profiles along

the radial and axial directions of the panels and elastic

coefficients of foundation of bidirectional curved panels

resting on a two-parameter elastic foundation are studied.

Moreover, vibration behavior of 2-D continuously graded

nanocomposite panels are compared with conventional

one-dimensional nanocomposite panels. From this study,

some conclusions can be made:

• It is observed, for the large values of Winkler elastic

coefficient, the shearing layer elastic coefficient has

less effect and the results become independent of it, in

other words the non-dimensional natural frequencies

converge with increasing Winkler foundation stiffness.

• The results show that the variation of Winkler elastic

coefficient has little effect on the non-dimensional

natural frequency at different values of shearing layer

elastic coefficient. It is clear that with increasing the

shearing layer elastic coefficient of the foundation, the

frequency parameters increase to some limit values and

for the large values of shearing layer elastic coefficient;

the frequency parameters become independent of it.

• The frequency parameter decreases rapidly with the

increase of the length-to-mean radius ratio and then

remains almost unaltered for the long cylindrical panel

(Lz/R[ 5).

• The interesting results show that the lowest magnitude

frequency parameter is obtained by using a classical–

classical volume fraction profile. It can be concluded

that a graded CNTs volume fraction in two directions

has higher capabilities to reduce the natural frequency

than a conventional 1-D nanocomposite.

• It is found that the frequency parameter decreases by

increasing the radial volume fraction index ðcrÞ.
• For the all length-to-mean radius ratio (Lz/R), classical–

classical volume fraction profile has the lowest fre-

quencies followed by classical–symmetric, classical,

symmetric–symmetric and symmetric profiles.

Based on the achieved results, using 2-D six-parameter

power-law distribution leads to a more flexible design so

that maximum or minimum value of natural frequency can

be obtained in a required manner.
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Appendix

The Hill’s elastic moduli are found as (Shi et al. 2004):

er ¼ k ¼ EmfEmfm þ 2krð1þ tmÞ½1þ frð1� 2tmÞ�g
2ð1þ tmÞ½Emð1þ fr � 2tmÞ þ 2fmkrð1� tm � 2t2mÞ�

;

l ¼ Emftmfm½Em þ 2krð1þ tmÞ� þ 2frkrð1� t2mÞg
ð1þ tmÞ½Emð1þ fr � 2tmÞ þ 2fmkrð1� tm � 2t2mÞ�

;

n ¼ E2
mfmð1þ fr � fmtmÞ þ 2fmfrðkrnr � l2r Þð1þ tmÞ2ð1� 2tmÞ
ð1þ tmÞ½Emð1þ fr � 2tmÞ þ 2fmkrð1� tm � 2t2mÞ�

þ Em½2f 2mkrð1� tmÞ þ frnrð1þ fr � 2tmÞ � 4fmlrtm�
Emð1þ fr � 2tmÞ þ 2fmkrð1� tm � 2t2mÞ

;

p ¼ Em½Emfm þ 2prð1þ tmÞð1þ frÞ�
2ð1þ tmÞ½Emð1þ frÞ þ 2fmprð1þ tmÞ�

;

k ¼ Em½Emfm þ 2mrð1þ tmÞð3þ fr � 4tmÞ�
2ð1þ tmÞfEm½fm þ 4frð1� tmÞ� þ 2fmmrð3� tm � 4t2mÞg

;
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ar ¼
3 KmþGmð Þþkrþ lr

3 krþGmð Þ

br ¼
1

5

4Gmþ2krþ lr

3 Gmþ krð Þ þ 4Gm

Gmþpr
þ
2 Gm

3KmþGmð ÞþGm 3Kmþ7Gmð Þ
h i

Gm 3KmþGmð Þþmr 3Kmþ7Gmð Þ

2
4

3
5

dr ¼
1

3
nrþ2lrþ

2krþ lð Þ 3Kmþ2Gm� lrð Þ
Gmþ kr

	 


gr ¼
1

5

2

3
nr� lrð Þþ 8Gmpr

Gmþpr
þ2 kr� lrð Þ 2Gmþ lrð Þ

3 Gmþ krð Þ

	 


þ1

5

8mrGm 3Kmþ4Gmð Þ
3Km mrþGmð ÞþGm 7mrþGmð Þ
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