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Abstract The present study aims at performing a

mechanical analysis of 2D viscoelastic cracked structural

materials using the Boundary Element Method (BEM). The

mesh dimensionality reduction provided by the BEM and

its accuracy in representing high gradient fields make this

numerical method robust to solve fracture mechanics

problems. Viscoelastic models address phenomena that

provide changes on the mechanical material properties

along time. Well-established viscoelastic models such as

Maxwell, Kelvin–Voigt and Boltzmann are used in this

study. The numerical viscoelastic scheme, which is based

on algebraic BEM equations, utilizes the Euler method for

time derivative evaluation. Therefore, the unknown vari-

ables at the structural boundary and its variations along

time are determined through an ordinary linear system of

equations. Moreover, time-dependent boundary conditions

may be considered, which represent loading phases. The

dual BEM formulation is adopted for modelling the

mechanical structural behaviour of cracks bodies. Three

examples are considered to illustrate the robustness of the

adopted formulation. The results achieved by the BEM are

in good agreement with reported data and numerical sta-

bility is observed.

Keywords Viscoelasticity � Boundary element method �
Fracture mechanics � Nonhomogeneous media

Introduction

The application of structures composed by viscoelastic

materials has increased in the last years. The structural

design of mechanical components by composites and

polymers, in mechanical engineering, and concrete, in civil

engineering, has enlarged the application of such materials

in engineering fields. Viscoelastic materials present elastic

and viscous mechanical properties which cause relaxation,

creep and hysteresis in structures (Zhu et al. 2011, 2013).

In the context of mechanical modelling of viscoelastic

materials, the analytical approaches available are restricted

to a limited class of problems, in which particular boundary

conditions and structural geometries are assumed (Oliveira

and Leonel 2013) As a result, the robust mechanical

modelling, which accounts for complex boundary condi-

tions and structural geometries, requires the application of

numerical techniques.

The Boundary Element Method (BEM) is a numerical

technique widely applied in the literature for modelling

fracture problems (Zhu et al. 2011, 2013; Oliveira and

Leonel 2013). Due to the mesh dimensionality reduction

provided by the BEM, the remeshing procedures during the

crack growth become a less complex task. Moreover, its

accuracy in representing stress concentration make the

BEM a recommendable numerical technique for solving

fracture mechanics problems, especially into the vis-

coelastic domain. Classical BEM formulations solve vis-

coelastic problems using Laplace transform method

coupled to the principle of elastic–viscoelastic correspon-

dence (Liu and Antes 1997; Rizzo and Shippy 1971). This

approach requires a convolutional relation between strain

and stress tensors, which results into a space transformation

(Lee and Westmann 1995).
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A time-dependent BEM formulation was presented by

Syngellakis and Wu (2004, 2008) for the mechanical

analysis of viscoelastic structures subjected to quasi-static

and dynamic effects. In these studies, the principle of

correspondence was applied to the determination of a

fundamental solution, which was utilized for the fracture

modelling of polymers. An integral formulation based on

the Kelvin’s fundamental solution was presented by Ash-

rafi and Farid (2009). Material properties were represented

by time-dependent functions to analyze the viscoelastic

mechanical behaviour of polymers.

The viscoelastic reciprocity principle was utilized by

Cezario et al. (2011) to the development of a time-depen-

dent BEM formulation. Such a formulation is defined

considering the Stieltjes integral and material functions

provided by the Boltzmann’s model. The symmetric

Galerkin BEM was applied by Perez-Gavilan and Aliabadi

(2001) into dynamic analyses of viscoelastic structures in

frequency domain. The mechanical analyses of stationary

rolling contact problems considering linear-viscoelastic

rollers were presented by Gonzalez and Abascal

(2004, 2006). This type of problem is efficiently solved by

BEM once high stress and strain gradients are present at the

contact surface, i.e., at the body’s boundary. The applied

formulation is based on the BEM and the correspondence

principle neglecting all the inertial effects.

The mechanical analysis of viscoelastic materials by the

BEM may be performed through alternative formulations,

as proposed by Mesquita and Coda (2001, 2002, 2003).

Such formulation utilizes integral equations written

exclusively at the bodies’ boundaries, which are obtained

from the weighted residual technique. A time-dependent

differential system of equations is achieved considering

Kelvin–Voigt and Boltzmann models. Then, a proper time

marching procedure is applied to solve the time-dependent

problem. This formulation is simpler, as well as accurate.

Therefore, this BEM formulation was adopted in the pre-

sent study.

Experimental and theoretical researches involving frac-

ture analysis of viscoelastic materials have been observed

in the literature. However, numerical approaches in this

scientific field are relatively limited (Syngellakis 2002). In

the context of BEM models applied into the viscoelastic

fracture mechanics problems, it is worth mentioning (Sla-

dek et al. 1984). In this work, a numerical approach based

on the Laplace transform is presented to determine the

crack opening displacements into a penny shaped crack.

The mechanical material behaviour is represented by the

Kelvin–Voigt model. (Sun and Hsiao 1988) applied a BEM

approach to evaluate displacements and stresses fields

surrounding a crack filled with failed. The mechanical

analysis of viscoelastic anisotropic bodies containing holes,

inclusions and initial defects were performed by Chen and

Hwu (2011). In this work, the correspondence principle

was used considering the sub-region BEM approach. The

displacement discontinuity method (DDM) was utilized by

Wang and Birgisson (2007), Birgisson et al. (2002, 2004)

for mechanical analyses of asphalts. A DDM time-depen-

dent integral approach is presented and applied into quasi-

static cases. The functional of total potential energy was

utilized by Lee and Kim (1995) to determine an expression

for the strain energy released rate. Such functional was

obtained using the direct time domain BEM.

As previously presented, a small amount of researches

are available in the literature concerning the viscoelastic

modelling of fracture mechanics problems by numerical

approaches based on the BEM. Therefore, the present study

aims to contribute into this scientific domain. A numerical

model is presented, which is composed by the coupling of

Maxwell, Kelvin–Voigt and Boltzmann viscoelastic mod-

els to the BEM algebraic equations. The main contribution

of this study is the mechanical analysis of nonhomoge-

neous viscoelastic bodies in fracture conditions. The time-

dependent problem is solved using the explicit time

marching process introduced in Mesquita and Coda

(2001, 2002, 2003). Then, the one-step Euler method is

adopted to approximate the required time derivatives. The

mechanical behaviour of viscoelastic cracked materials is

represented by the dual BEM formulation (Portela et al.

1992; Leonel and Venturini 2010; Leonel et al. 2011). This

BEM approach is the most popular to model the mechan-

ical behaviour of materials containing cracks. In the dual

BEM, the singular integral representation is written along

the boundary elements positioned at one crack surface,

whereas the hyper-singular integral representation is

applied along the opposite crack surface. The singular

integral representation is applied along the entire external

boundaries.

Two applications of single structural viscoelastic mate-

rial are presented to illustrate the accuracy of the imple-

mented BEM approach. In these applications, experimental

and analytical results available in the literature are com-

pared against the responses achieved by the BEM. In

addition, structures composed of nonhomogeneous vis-

coelastic materials are also modelled, which is the main

contribution of the present research. The nonhomogeneous

structures are modelled using the sub-region technique.

This BEM technique enforces compatibility of displace-

ments and equilibrium of forces along the interfaces of all

multiple bodies that compose the nonhomogeneous struc-

ture (Leonel and Venturini 2011). One application con-

cerning nonhomogeneous viscoelastic cracked structure is

presented. This type of structure has not being properly

addressed in the literature. Therefore, the application pre-

sented in this study serves as benchmark for future

numerical researches addressing this subject.
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It is worth mentioning that the responses achieved by the

implemented BEM approach presents good agreement to

references adopted in literature and numerical stability as

well.

Review over the viscoelastic models

The mechanical behaviour of viscoelastic materials is

idealized by simple elements utilized into the electrical

circuit’s theory (Tschoegl 1989). Such elements are dash-

pots and springs, which represent viscous and elastic

material rheological characteristics, respectively. Then, the

convenient composition of such elements lead to the rep-

resentation of different viscoelastic models.

The Maxwell’s viscoelastic model is represented by a

series scheme composed by one dashpot and one spring, as

illustrated in Fig. 1a.

The following group of equations governs this vis-

coelastic model:

Constitutive relation ) relast ttð Þ ¼ Eeelast ttð Þ
rvisc ttð Þ ¼ g _e visc ttð Þ

Compatibility condition ) e ttð Þ ¼ eelast ttð Þ þ evisc ttð Þ
Equilibrium condition ) r ttð Þ ¼ relast ttð Þ ¼ rvisc ttð Þ

ð1Þ

where r and e represent normal stress and normal strain,

respectively. E is the Young’s modulus and g the viscous

coefficient. The superscripts visc and elast indicate viscous

and elastic components, respectively. The dot over the

variables represent the condition of time variation and tta

function of time.

The Maxwell’s viscoelastic model is governed by a

differential equation obtained from Eq. (1). The compati-

bility condition presented in Eq. (1) has to be differentiated

with respect to the time. Then, equilibrium condition and

constitutive relation are applied to obtain the following

representation:

_e ttð Þ ¼ _r ttð Þ
E

þ r ttð Þ
g

ð2Þ

The total strain is obtained by integrating Eq. (2) with

respect to the time. Then:

e ttð Þ ¼ r ttð Þ
E

þ 1

g

Ztt

s0

r sð Þds ð3Þ

Equation (3) has to be integrated by parts, which leads

to the following:

e ttð Þ ¼
Ztt

s0

1

E
þ tt � s

g

� �
_r sð Þds ) e ttð Þ

¼
Ztt

s0

D tt � sð Þ _r sð Þds ð4Þ

in which D tt � sð Þ ¼ 1
E
þ tt�s

g is denominated creep func-

tion for viscoelastic Maxwell’s model. It is important

emphasizing that D(tt – s) is a linear function with respect

to the time. Then, according to this model, the material

flows indefinitely if a time-constant stress state is observed.

Fig. 1 Rheological models. Association schemes

Int J Adv Struct Eng (2017) 9:1–12 3

123

Arc
hive

 of
 S

ID

www.SID.ir


www.SID.ir

Analogously, the relaxation function for Maxwell’s

viscoelastic model is defined as follows:

G tt � sð Þ ¼ Ee�
E
g tt�sð Þ ð5Þ

The composition illustrated in Fig. 1b represents the

Kelvin–Voigt’s viscoelastic model. A parallel association

of one dashpot and one spring characterizes such a vis-

coelastic model. The governing equations for Kelvin–Voigt

model are the following:

Constitutive relation ) relast ttð Þ ¼ Eeelast ttð Þ
rvisc ttð Þ ¼ g _evisc ttð Þ

Compatibility condition ) e ttð Þ ¼ eelast ttð Þ ¼ evisc ttð Þ
Equilibrium condition ) r ttð Þ ¼ relast ttð Þ þ rvisc ttð Þ

ð6Þ

Such a viscoelastic model is governed by a differential

equation, which is written by introducing compatibility

condition and constitutive relation into the equilibrium

condition, both of them presented in Eq. (6). These alge-

braic procedures lead to the following:

r ttð Þ ¼ Ee ttð Þ þ g _e ttð Þ ð7Þ

The solution of the last differential equation is obtained

as follows, for a given time-history stress state:

e ttð Þ ¼ 1

g

Ztt

�1

r ttð Þe�E
g tt�sð Þds ð8Þ

The creep function for Kelvin–Voigt viscoelastic model

is obtained by integrating parts of Eq. (8). Then:

D tt � sð Þ ¼ 1

E
1� e�

E
g tt�sð Þ

� �
ð9Þ

The creep function presented in Eq. (9) tends asymp-

totically to the elastic solution when tt tends to infinity, i.e.,

e(?) = r0/E. When this condition is observed, the total

stress is supported by the spring element, which is directly

evaluated by Eq. (7). The relaxation function for Kelvin–

Voigt viscoelastic model is not available.

The viscoelastic Boltzmann’s model is represented by a

composition of dashpot and springs in series and parallel

scheme as illustrated in Fig. 1c. The following equations

govern this viscoelastic model:

Constitutive relation ) relast ttð Þ ¼ E1e
elast ttð Þ

rv=e ttð Þ ¼ E2e
v=e ttð Þ þ g _e v=e ttð Þ

Compatibility condition ) e ttð Þ ¼ eelast ttð Þ þ ev=e ttð Þ
Equilibrium condition ) r ttð Þ ¼ relast ttð Þ ¼ rv=e ttð Þ

ð10Þ

in which the superscript v/e indicates the values evaluated

on the parallel sequence scheme of spring and dashpot.

The Boltzmann’s viscoelastic model is mathematically

expressed by a differential equation, which is obtained

from the differentiation of the compatibility condition

presented in Eq. (10) with respect to the time. Then, the

constitutive relation and equilibrium conditions are applied

to obtain the following representation:

gE1 _e ttð Þ þ E1E2e ttð Þ ¼ g _r ttð Þ þ E1 þ E2½ � r ttð Þ ð11Þ

The strain on materials governed by such viscoelastic

model is determined as follows:

e ttð Þ ¼
Ztt

s0

1

E1

þ 1

E2

� 1

E2

e�
E2
g tt�sð Þ

� �
_r sð Þds ð12Þ

And the stress state by the following equation:

r ttð Þ ¼
Ztt

s0

E1 �
E2
1

E1 þ E2

1� e�
E1þE2

g tt�sð Þ
� �� �

_e sð Þds

) r ttð Þ ¼
Ztt

s0

G tt � sð Þ _e sð Þds ð13Þ

in which G tt � sð Þ ¼ E1 � E2
1

E1þE2
1� e�

E1þE2
g tt�sð Þ

� �h i
indi-

cates the relaxation function for Boltzmann’s viscoelastic

model. This relaxation function shows that, during the

external load application, both elastic and viscous strains

are developed.

Integral equations of BEM

The integral equations required by the BEM in elastostatics

are obtained from the differential representation of equi-

librium, which is written in terms of displacements as

follows:

ul;kk þ
1

1� 2t
uk;kl þ

bl

l
¼ 0 ð14Þ

in which l represents the material shear modulus, t
the material Poisson’s ratio, ul indicate the displace-

ments components and bl the body forces. The singular

integral BEM equation is obtained by applying the

Betti’s theorem or weighted residual techniques. This

equation is presented below disregarding the body

forces.

clkuk þ
Z

C

P�
lkuk dC ¼

Z

C

Pku
�
lk dC ð15Þ

in which uk and Pk indicate displacements and tractions at

the body’s boundary, respectively. The free term clk is

equal to the Kroenecker operator multiplied by 0.5, for

4 Int J Adv Struct Eng (2017) 9:1–12
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smooth contours. ulk
* and Plk

* represent the fundamental

kernels for displacements and tractions, respectively (Por-

tela et al. 1992).

It should be mentioned that Eq. (15) is capable to model

the mechanical behaviour of 2D elastic bodies. However,

the single application of this equation leads to the singu-

larities over the final system of algebraic equations, when

cracked bodies are considered. Thus, in such cases, dif-

ferent BEM approaches have to be adopted.

Among the BEM formulations available in the literature

for this purpose, i.e., the mechanical analysis of cracked

structures, the dual BEM formulation is the most popular

(Oliveira and Leonel 2013a, b; Syngellakis and Wu 2008).

The singular integral representation is applied into the

discretization of one crack boundary in such BEM

approach. In addition, the oppositely crack boundary is

discretized by the hyper-singular integral representation.

The entire external boundary is discretized by the singular

integral representation.

The hyper-singular integral representation mentioned in

the last paragraph is obtained from Eq. (15). Equation (15)

is written in terms of displacements. Thus, by differenti-

ating it, one obtains an integral representation written in

terms of strains. Afterwards, Hooke’s law is applied to

obtain an integral representation based on stresses. Then,

the equilibrium of Cauchy is applied to obtain an integral

representation written in terms of tractions, which is the

well-known hyper-singular integral representation. This

integral equation is the following:

1

2
Pj þ fk

Z

C

S�kijukðcÞdC ¼ fk

Z

C

D�
kijPkdC ð16Þ

where the terms Skij
* and Dkij

* indicate the hyper-singular

kernels, which are obtained from Plk
* and ulk

* , respectively

(Portela et al. 1992; Hong and Chen 1988). fk represents

the cosines of the normal exterior direction to the structural

boundary.

Algebraic BEM equations for multi-domain
analysis

To simulate the mechanical behaviour of solids composed

by multi-domains, i.e., nonhomogeneous materials, the

sub-region BEM technique has to be applied. In such

approach, the body is divided into a finite amount of

homogeneous sub-regions interconnected by interfaces.

BEM analyses involving singular and hyper-singular

integral representations are performed using Eqs. (15) and

(16). When multi-domains are considered, these equations

have to be applied at each sub-domain individually. Then,

the classical BEM system of algebraic equations is

obtained for each sub-region, i, of the entire solid as

follows:

Hi½ � Uif g ¼ Gi½ � Pif g ð17Þ

in which matrix H contains the integration kernels Plk
* and

Skij
* , whereas matrix G contains the integration kernels ulk

*

and Dkij
* . Vectors U and P contain the displacement and

traction values on the body boundary, respectively.

The global system of algebraic equations presented in

Eq. (17) cannot be solved directly just by imposing the

boundary conditions of the problem, because along the

interfaces neither tractions nor displacements values are

known. Therefore, it is required to enforce compatibility of

displacements and equilibrium of forces along all inter-

faces. These conditions are written as follows:

UInterface 1 ¼ UInterface 2

PInterface 1 þ PInterface 2 ¼ 0
ð18Þ

The compatibilities conditions, Eq. (18), coupled to the

boundary conditions have to be imposed on the global

system of equations. By performing a convenient change

on the columns of H and G matrices, all known variables

are placed at the right hand side of this algebraic system,

whereas unknown variables, x, are placed at its left hand

side (Leonel and Venturini 2011). This system is presented

as follows:

A½ � xf g ¼ B½ � f
�n o

ð19Þ

Once f�fg is the vector of known boundary values, the

system is solved and the unknowns variables determined.

Integral formulations for viscoelastic materials
based on the BEM

A brief review on the rheological models was presented in

‘‘Review over the viscoelastic models’’. In the present

section, the differential equations that govern the vis-

coelastic models previously presented are applied in the

determination of the BEM viscoelastic integral and alge-

braic representations. The formulation for the Maxwell

viscoelastic model is presented in details. The formulations

for the Kelvin–Voigt and Boltzmann viscoelastic models

are shortly presented to avoid repetitive algebraic

procedures.

Integral and algebraic representations

for the maxwell viscoelastic model

To present the integral and algebraic representations for the

Maxwell viscoelastic model, Eq. (2) has to be rewritten in

terms of stresses as follows:

Int J Adv Struct Eng (2017) 9:1–12 5
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r ttð Þ ¼ g _e ttð Þ � g
_r ttð Þ
E

ð20Þ

The last equation can be modified by assuming pro-

portionality conditions between c and g. Such assumption,

g = cE, was presented in (Mesquita and Coda

2001, 2002, 2003), which leads to:

r ttð Þ ¼ c E _e ttð Þ � _r ttð Þ½ � ð21Þ

Equation (21) is also valid for 3D case. Therefore, it can

be rewritten as follows:

rij ttð Þ ¼ c Cijkl _ekl ttð Þ � _rkl ttð Þ
� �

ð22Þ

where Cijkl is the constitutive elastic tensor.

The stress state in each material point is represented by

Eq. (22) for Maxwell viscoelastic model. Then, such

equation is applied on the equilibrium equation, rij, j ? -

bi = 0, to obtain the BEM representation. For this purpose,

the equilibrium equation has to be weighted by the fun-

damental solution of displacements, u*, which leads to:Z

C

u�kiPi dC�
Z

X

u�ki;jc Cijkl _ekl � _rkl
� �

dXþ
Z

X

u�kibi dX ¼ 0

ð23Þ

To support the algebraic developments that follow, the

auxiliary variable below is defined:

I ¼ �
Z

X

u�ki;jc Cijkl _ekl � _rkl
� �

dX ð24Þ

Bearing in mind that uki,j
* Cijmn = rkmn

* , Eq. (24) assumes

the following form:

I ¼ �
Z

X

cu�ki;jCijkl _ekldXþ
Z

X

cu�ki;j _rkldX

¼ �
Z

X

cr�kmn _emndXþ
Z

X

c _rklu
�
ki;jdX ð25Þ

Equation (25) has to be integrated by parts, leading to:

I ¼ �
Z

C

cr�kij _uifjdCþ
Z

X

cr�kij;j _uidXþ
Z

C

c _riju
�
ki
_fjdC

�
Z

X

c _rij;ju
�
kidX ð26Þ

BEM formulations require a fundamental problem. In

the context of the present study, the fundamental Kelvin

problem is considered, i.e., rkmn,n
* = - D(s, f)dkm and

rkl,l = - bk D indicates the Dirac function. f and s are the

field and source points, respectively. Thus, considering the

Kelvin problem, the last equation assumes the following

form:

I ¼ �
Z

C

cP�
ki _uidCþ

Z

X

c �D s; fð Þdki½ � _uidXþ
Z

C

cu�ki _PidC

�
Z

X

c � _bi
� �

u�kidX ð27Þ

Due to a mathematical property of Dirac function, one

writes the second integral of Eq. (27) as follows:

Z

X

c �D s; fð Þdki½ � _uidX ¼ �c _uk sð Þ ð28Þ

As a result, Eq. (27) is rewritten in the following form:

I ¼ �c
Z

C

P�
ki _uidC� c _uk þ c

Z

C

u�ki _PidCþ c
Z

X

u�ki b
:

i
dX

ð29Þ

The result presented in Eq. (29) enables to write

Eq. (23) as follows:

c _uk þ c
Z

C

P�
ki _uidC ¼ c

Z

C

u�ki _PidCþ
Z

C

u�kiPidC

þ c
Z

X

u�ki
_bidXþ

Z

X

u�kibidX ð30Þ

To simplify the mechanical analysis, the body forces

and its variations along time are assumed as nil. Therefore,

Eq. (30) assumes the following form:

c _uk þ c
Z

C

P�
ki _uidC ¼ c

Z

C

u�ki _PidCþ
Z

C

u�kiPidC ð31Þ

The last equation is valuable for source points posi-

tioned at the body domain. Thus, convenient limits must to

be carried out, as usual in BEM, to write Eq. (31) for

source points positioned exclusively at the body boundary.

Such limits lead to the equation presented below:

ccki _uk þ c
Z

C

P�
ki _uidC ¼ c

Z

C

u�ki _PidCþ
Z

C

u�kiPidC ð32Þ

The algebraic representation of Eq. (32) is performed by

approximating displacements and traction by shape func-

tions. High order polynomial functions may be adopted.

Therefore, considering the approximation of these vari-

ables at the boundary, the algebraic representation for the

Maxwell viscoelastic model is the following:

cH _U ¼ cG _Pþ GP ð33Þ

The last equation is a differential equation in time

domain, which is solved by forward finite differences

technique. Therefore, a linear approximation is considered

6 Int J Adv Struct Eng (2017) 9:1–12
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for evaluating the first time derivative terms. This proce-

dure requires the division of the total analysis time into

finite time steps, Dt. Bearing in mind that s is the actual

time one has:

_U ¼ Usþ1 � Us

Dt
_P ¼ Psþ1 � Ps

Dt
ð34Þ

The algebraic representation presented in Eq. (33) has to

be rewritten considering the definitions introduced in

Eq. (34). Thus, the final algebraic representation for the

Maxwell viscoelastic model is obtained as follows:

cH
Usþ1 � Us

Dt

� 	
¼ cG

Psþ1 � Ps

Dt

� 	
þ GPsþ1

) HUsþ1

¼ 1þ Dt
c

� 	
GPsþ1 þ HUs � GPs ð35Þ

The last equation has to be solved for finite time

increments to evaluate the unknown variables at the

boundary. The stress state at the internal points is obtained

after the determination of all unknown variables at the

boundary. For this purpose, Eq. (31) has to be derived with

respect to the source points, which results in the following:

c _uk;l þ c
Z

C

P�
kil _uidC ¼ c

Z

C

u�kil _PidCþ
Z

C

u�kilPidC ð36Þ

As presented in ‘‘Review over the viscoelastic models’’,

the Maxwell viscoelastic model assumes that

r.ij = r.ij
e = Cijklu.k,l. Therefore, Eq. (36) is rewritten as

follows:

_rkl ¼
1

c

Z

C

�r�kilPidCþ
Z

C

�r�kil _PidC�
Z

C

�P�
kil _uidC ð37Þ

where �r�kil is the fundamental solution for stress (Portela et al.

1992; Hong and Chen 1988). As usual in BEM formulations,

the last integral equation is evaluated by approximating

displacements and tractions at the boundary by shape func-

tions. This approximation enables obtaining the algebraic

representation of Eq. (37), which is the following:

_r ¼ 1

c
G0Pþ G0 _P� H0 _U ð38Þ

To solve the differential equation above, finite differ-

ence technique is applied. As a result, the following alge-

braic representation is obtained:

rsþ1 ¼ DtG0 1

c
Psþ1 þ _Psþ1

� 	
� DtH0 _Usþ1 þ rs ð39Þ

It is worth emphasizing that viscous and elastic stresses

are equal in this viscoelastic model. Thus, Eq. (39) is

sufficient for determining the stress state in materials

governed by the Maxwell viscoelastic model.

Integral and algebraic representations

for the Kelvin–Voigt viscoelastic model

To develop the algebraic and integral equations that rep-

resent the mechanical behaviour of materials governed by

the Kelvin–Voigt viscoelastic model, mathematical proce-

dures similar to the presented in the last sub-section have to

be applied. To avoid the introduction of repetitive matter to

that presented in the last sub-section, such procedures are

omitted. Thus, the unknown variables at the boundary are

evaluated by the following algebraic equation:

1þ c
Dt

� �
HUsþ1 ¼ GPsþ1 þ c

Dt
HUs ð40Þ

The total stress state components at the internal points

are achieved by the following algebraic representation:

rsþ1 ¼ G0Psþ1 � HUsþ1 � cH0 _Usþ1 ð41Þ

As presented in ‘‘Review over the viscoelastic models’’,

the Kelvin–Voigt viscoelastic model considers the contri-

bution of elastic and viscous portions on the total stress state.

Therefore, the elastic stresses are evaluated as follows:

rsþ1
e ¼

rsþ1 þ c
Dt r

s
e


 �
1þ c

Dt

ð42Þ

On the other hand, the viscous stresses are determined

by the following expression:

rsþ1
v ¼ rsþ1 � rsþ1

e ð43Þ

Integral and algebraic representations

for the Boltzmann viscoelastic model

The integral and algebraic representations for the Boltz-

mann viscoelastic model are presented in expedite form,

similarly, to perform in the last sub-section. The unknown

values of tractions and displacements at the boundary of

structures composed by materials governed by the Boltz-

mann viscoelastic model are obtained by the algebraic

equation presented below:

1þ c
Dt

� �
HUsþ1 ¼ c

Dt
þ E1 þ E2

E2

� 	
Gþ c

Dt
HUs � GPsð Þ

ð44Þ

The total stress state components at internal points are

evaluated by the following algebraic representation:

rsþ1 ¼
G0Psþ1 � E2

E1þE2
H 0Usþ1 � cE2

E1þE2
H0 _Usþ1 þ cE2

E1þE2
G0 _Psþ1 þ c

Dt
E2

E1þE2
rs

� �

1þ c
Dt

E2

E1þE2

� �

ð45Þ

As presented in ‘‘Review over the viscoelastic models’’,

the total stress in this viscoelastic model is composed by
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viscous and elastic portions. The elastic contribution is

evaluated by the following equation:

rsþ1
e ¼

rsþ1 þ c
Dt r

s
e


 �
1þ c

Dt


 � ð46Þ

Consequently, the viscous contribution is determined as

follows:

rsþ1
v ¼ rsþ1 � rsþ1

e ð47Þ

Examples

The presented viscoelastic BEM formulations are applied

in the mechanical analysis of three cracked structures. In

the first and second analyses, the results obtained by the

BEM are compared with experimental and analytical

responses provided by the literature. The last application

concerns the structural analysis of a sandwich panel com-

posed of nonhomogeneous viscoelastic materials including

initial cracks. It is worth mentioning that nonhomogeneous

viscoelastic cracked structures have not been properly

analyzed in the literature. Therefore, the last application

aims to be a benchmark for aiding the development of

future viscoelastic numerical formulations.

In both analyses, the robustness and accuracy of the

implemented viscoelastic BEM formulation are illustrated.

Griffith problem

The first example of this study concerns the structural

analysis of the Griffith problem. Figure 2 illustrates the

geometry and boundary conditions for this example, which

involves a 2D structure in plane strain condition with a

symmetric crack. The external load is composed by a

remote tensile traction. The material was assumed as

governed by the Boltzmann’s model with the following

values: E1 = 22.5757 kgf/cm2, E2 = 11 kgf/cm2, t = 0.0,

c = 45.4545 days, P = 5.0 kgf/cm2, Dt = 1 day, total

time = 300 days, and a = 1.5 cm.

The mechanical problem presented in Fig. 2 has an

analytical solution. Such a solution associates the crack

opening displacement (COD) values to the intensity of the

external load by the relaxation Boltzmann’s function, H(t),

as follows:

COD tð Þ ¼ 2aP 1� t2

 � 1

E1

þ 1

E2

1� e�
t
c

� �� 	
H tð Þ ð48Þ

The numerical responses obtained by the BEM for COD

are compared with the results provided by Eq. (48). The

comparative results are presented in Fig. 3.

As illustrated in the results presented in Fig. 3, excellent

agreement among the results is observed. The error

between the response models is lower than 3% during the

all time history analyzed.

The normal stress y was also determined by the vis-

coelastic BEM model, as presented in Fig. 4. According to

this figure, the total normal stress y is constant along time,

as expected, due to the equilibrium requirements. As a

result, the elastic stress component grows along time,

whereas the viscous stress part decreases.

The implemented viscoelastic BEM formulation enables

for load phases conditions. Therefore, loading and

unloading phases can be considered easily. To illustrate

such a skill, the loading history presented in Fig. 5 was

applied, in which one load and one unload phases are

included.

Fig. 2 Classical Griffith problem

Fig. 3 Comparative results for COD along time
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The stress responses obtained by the BEM, accounting

for the load presented in Fig. 5, are illustrated in Fig. 6.

As illustrated in Fig. 6, the total stress is constant along

time, whereas its components have variation. Such beha-

viour is expected due to the equilibrium requirements.

After 300 days of the loading process start, the structure is

subjected to a complete unloading process. Thus, the

structure recovers its undeformed configuration once the

material is assumed as viscoelastic. Such a configuration is

observed after 600 days of the loading process start. Then,

the COD is nil after this time, as illustrated in Fig. 7.

It is worth mentioning that the unloading process causes

an instantaneous recovering of strain. This behaviour is

characteristic of the Boltzmann’s model, once two spring

elements are localized in a series sequence. In addition, the

superposition of the Boltzmann’s principle is observed in

the results presented in the Figs. 6 and 7.

The structure presented in Fig. 2 may be analyzed

considering another material mechanical behaviour model.

For instance, the Maxwell’s viscoelastic model may be

applied. For this case, the problem has an analytical solu-

tion, which associates the COD to the load values as

follows:

COD tð Þ ¼ 2aP
1� t2ð Þ
E

1þ t

c

� 	
H tð Þ ð49Þ

The numerical viscoelastic BEM responses are com-

pared with the results provided by the Eq. (49). The

comparative results are illustrated in Fig. 8.

Fig. 4 Numerical BEM normal stress y

Fig. 5 Load history applied

Fig. 6 Numerical BEM normal stress y

Fig. 7 COD values along time
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As observed in Fig. 8, extremely good agreement is

achieved among the models applied, which indicates the

relevance and accuracy of the implemented viscoelastic

BEM formulation.

Central notched beam: three point bending test

The second example of the present study concerns the

mechanical analysis of the notched beam illustrated in

Fig. 9. This specimen was analyzed experimentally by

(Zhou 1992), which utilized the following parameters

values: a = 50 mm, b = 760 mm, L = 800 mm,

e = 100 mm and h = 100 mm. The load is constant along

time and applied at the middle span on the beam top. Its

intensity is equal to 2.38 MPa.

The structural material is assumed as governed by the

viscoelastic Boltzmann’s model. The following parameters

values are utilized: E1 = 36 GPa, E2 = 11 GPa, t = 0.2,

c = 450.45 s, Dt = 1 s and total time = 500 s.

In the experimental study of (Zhou 1992) the values of

crack mouth opening displacement (CMOD) along time

were measured. The results obtained by (Zhou 1992) are

compared with the responses achieved by BEM to validate

the numerical BEM formulation. The experimental and

numerical responses are illustrated in Fig. 10.

Excellent agreement is verified among the results. Par-

ticularly, until the structural fracture, which occurs in

500 s. During the structural fracture, the numerical BEM

model loss convergence, as expected, once equilibrium is

no longer verified.

Nonhomogeneous cracked panel

The last application of the present study refers to the

structural analysis of the nonhomogeneous panel illustrated

in Fig. 11. This sandwich panel is composed of three dif-

ferent materials, which have different mechanical behaviour.

The mechanical coupling among each material is numeri-

cally performed by the sub-region BEM technique. The

structure is clamped at its left boundary and at its right end a

parabolic distributed load is applied. Three cracks F1, F2

and F3 are presented in the structure, which are positioned at

the middle span of each material, as presented in Fig. 11.

The mechanical properties for each material (domain)

that compose the structure are presented in Table 1.

To illustrate the mechanical time-effects, the crack

mouth opening displacement (CMOD) was monitored

along time for each crack simulated in the structure. The

total time considered in this analysis is 300 days, which

was simulated with time intervals of 1 day. The variation

of CMOD along time is illustrated in Fig. 12.

According to Fig. 12, it is observed that the CMOD grows

along time for all cracks studied. Such behaviour is observed

independently of the mechanical material model adopted.

Figure 13 presents the variation of the shear stress along time

for a given point belonging to domain 3 (D3). The behaviour

for the total shear stress and for its elastic and viscous parts is

studied. The total shear stress is constant along time, as

expected, due to the equilibrium requirements. The elastic

Fig. 8 COD values along time. Maxwell’s viscoelastic model

Fig. 9 Central notched beam

Fig. 10 CMOD results
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and viscous parts grow and decreases, respectively, to keep

constant the total shear stress.

The results presented in this example may be utilized for

validating future numerical formulations dedicated to the

mechanical analysis of nonhomogeneous viscoelastic crack

materials. Mechanical responses at the boundary and on the

domain were presented.

Conclusion

The present study discussed a viscoelastic BEM formula-

tion. Such formulation was applied for mechanical analyses

of materials subjected to initial cracks. The numerical

formulation is based on the dual BEM, in which singular

and hyper-singular integral equations are applied to rep-

resent the mechanical behaviour of cracked bodies. This

BEM approach is the most popular in the modelling of

fracture problems and lead to accurate results. The

mechanical material behaviour was modelled through the

rheological models of Maxwell, Kelvin–Voigt and Boltz-

mann. The differential governing equations were presented

and the algebraic BEM representations were achieved.

Fracture mechanics problems were analyzed considering

bodies composed by either homogeneous or nonhomoge-

neous materials. The mechanical modelling of viscoelastic

cracked bodies is still a challenge in engineering structures

field. Especially, in the context of nonhomogeneous bodies

where few advances were observed in the recent literature.

The presented BEM scheme was utilized to the

mechanical analysis of fracture problems, where the

numerical responses obtained were compared with analyt-

ical and experimental results available in the literature.

Good agreement among the responses was observed for the

first and second example presented in this study. Thus, the

relevance, robustness and accuracy of the implemented

formulation are demonstrated. Moreover, this formulation

Fig. 11 Nonhomogeneous

structure

Table 1 Material mechanical properties

Domain Model E1 (kN/cm
2) E2 (kN/cm

2) t c (days)

D1 Boltzmann 10,000 5000 0.22 30

D2 Hooke 22,000 – 0.20 –

D3 Kelvin 30,000 – 0.15 45

Fig. 12 Variation of CMOD along time

Fig. 13 Variation of shear stress along time
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is capable to represent loading phases, which enables the

simulation of fatigue phenomenon considering time-de-

pendent effects.

Finally, the last example of this study presented the

mechanical analysis of a nonhomogeneous viscoelastic

structure, in which results from the boundary and the

domain are illustrated. This application aimed to be a

benchmark to aid the development and validation of future

numerical formulations in this domain.
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