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Abstract A theoretical study has been carried out on

sandwich beams strengthened mechanically by two exter-

nal steel plates attached to their tension and compression

sides with so-called ‘‘shear connectors ‘‘. This study is

based on the individual behaviour of each component of

the composite sandwich section (i.e. reinforced concrete

beam and upper steel plate and lower steel plate). The

approach has been developed to simulate the behaviour of

such beams, and is based on neglecting the separation

between the three layers; i.e., the deflections are equal in

each element through the same section. The differential

equations reached were solved analytically. Deflection was

calculated by using the approach for several beams, tested

in two series, and close agreements were obtained with the

experimental values. Furthermore, the interaction effi-

ciency between the three elements in a composite sandwich

beam has been considered thoroughly, from which the

effect of some parameters, such as plate length upon the

behaviour of such beams, were studied.

Keywords Multilayer beam � Sandwich beam �
Strengthening beam with steel plate � Interlayer slip

Introduction

In structural engineering, the maintenance, repair and

upgrading of structures is just as important and technical as

the design and construction of new structures. Upgrading

usually involves strengthening of an existing structure

which was found unsatisfactory due to poor performance

under service loading or inadequate strength. Strengthening

deficient or critical members may involve adding new

material to the existing member. Usually, the analysis of

layered beam systems is based on the assumption of rigid

interconnection.

Yang et al. (2015a, b) submitted that a strengthened

beam consists of two layers of epoxy-bonded, pre-stressed

steel plates and the reinforced concrete (RC) beam sand-

wiched in between. The bonding-enclosed and pre-stressed

U-shaped steel jackets were applied at the beam sides.

Itani et al. (1981) produced an experimental study to

verify the theoretical analysis of a diaphragm in a satis-

factory manner. It was seen that the theoretical analysis of

the diaphragm overestimated strains and deflections

because it did not account for the effects of joists in the

diaphragm, and the presence of discontinuities in layers of

a glued lumber diaphragm does not have considerable

significance.

Roberts and Haji-Kazemi (1989) performed tests on 18

rectangular, RC beams having steel plates attached

mechanically to the tension face of the beams by expanding

bolts, which were either cast-in during manufacture of the

beams or drilled and fixed via a torque control process after

curing. The parameters considered are the thickness of

plates (2 and 4 mm) and the bolt length. Test results

showed a significant improvement in the stiffness of the

plated beams and all beams exhibited a ductile failure

followed by crushing of the concrete in the compression

& Muthanna A. Abbu

abbu@ntu.edu.iq; muthanna.abbu@gmail.com

1 Building and Construction Engineering Techniques,

Engineering Technical College, Northern Technical

University, Mosul, Iraq

2 School of Engineering, Deakin University, Geelong,

Australia

123

Int J Adv Struct Eng (2017) 9:219–229

DOI 10.1007/s40091-017-0159-8

Archive of SID

www.SID.ir

http://orcid.org/0000-0001-8641-7373
http://crossmark.crossref.org/dialog/?doi=10.1007/s40091-017-0159-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40091-017-0159-8&amp;domain=pdf
http://www.sid.ir


zone. The mode of failure for beams with relatively thick

steel plates (4 mm) was invariably characterized by

shearing off one or more of the bolts near the plate ends.

The length of the bolts and method of fixing the steel

plates, in which connectors were driven either during

concrete casting or after hardening, had little influence on

the ultimate strength.

Ovigne et al. (2003) presented an analytical model of a

beam with open cracks and external strengthening which is

able to predict its modal schema components (natural fre-

quencies and mode shapes).

Abtan (1997) investigated the behaviour of reinforced

concrete beams with external steel plates, in which a series

of 12 tests was carried out on under-reinforced concrete

beams strengthened mechanically with plates of different

length, width and thickness. Two beams out of 12 were

without steel plates as controlling beams. One beam was

preloaded to approximately 60% of its ultimate strength

before attaching the steel plate. The test showed that the

external reinforcement (plates) increased the flexural

stiffness of the beam at all stages of loading, and conse-

quently reduced the deflection at corresponding loads. Less

deflection was obtained by increasing the length and area

of the plate. Also, a correlation was recorded between the

maximum slip and the central deflection of the plated beam

and the maximum slip is affected by the area and length of

the steel plate.

Aykac et al. (2012) suggested investigating the influence

using perforated steel plates instead of solid steel plates on

the ductility of reinforced concrete beams. Push-out tests

conducted by Han et al. (2015) to investigate the static

behavior of a steel and rubber-filled concrete composite

beam with different ratios of rubber mixed with concrete

and studs. The results of the experimental investigations

show that large studs lead to a higher ultimate strength but

worse ductility in normal concrete.

Abbu (2003) presented a theoretical study of reinforced

concrete beams strengthened mechanically by external

steel plates attached to their tension side with so-called

‘‘shear connectors’’. This study was based on the individual

behaviour of each component of the composite section (i.e.

reinforced concrete beam and external steel plate). Two

approaches were developed to simulate the behaviour of

such beams. The first approach was based on neglecting the

separation between the two elements (i.e. the deflections

are equal in both (elements). The differential equation

obtained was solved analytically. The second approach

takes both the slip and the separation between the two

elements into account. The derived differential equations

were solved numerically using the finite difference repre-

sentation. Slip, deflections, stress and strain were calcu-

lated by using both approaches for several beams, tested

previously. Close agreements were obtained with the

experimental values for different thicknesses and widths of

the strengthening plates.

Demir et al. (2014) produced strengthen cracked beams

with prefabricated RC U cross-sectional plates. The dam-

aged beams were repaired with epoxy-based glue. The

repaired beams were strengthened using prefabricated

plates.

The failure mode and ultimate load-bearing capacity of

the steel concrete-steel composite beam under the four-

point-bend loading was investigated by Zou et al. (2016).

The load–displacement curves and results of failure mode

were in good agreement with experiments. A finite element

(FE) model was presented by Lezgy-Nazargah and Kafi

(2015) for the analysis of composite steel-concrete beams

based on a refined high-order theory. The employed theory

satisfied all the kinematic and stress continuity conditions

at the layer interfaces and considered the effects of the

transverse normal stress and transverse flexibility.

The flexural vibration differential equations and

boundary conditions of the steel-concrete composite beam

(SCCB) with comprehensive consideration of the influ-

ences of the shear deformation, interface slip and longitu-

dinal inertia of motion were derived by Zhou et al. (2016).

The analytical natural frequencies of flexural vibration

were compared with available results previously observed

by the experiments; the results were calculated by the FE

model and other similar beam theories available in the

open literatures. The comparison showed that the calcula-

tion results of the analytical and Timoshenko models had

good agreement with the results of the experimental test

and FE model.

Yang et al. (2015a, b) introduced a new kind of partially

precast or prefabricated, castellated, steel-reinforced, con-

crete beam, which is abbreviated here as CPSRC beam.

This kind of CPSRC beam is composed of a precast outer

part and a cast-in-place inner part. The precast outer part is

composed of an encased, castellated steel shape, rein-

forcement bars and high-performance concrete. Simplified

formulas were proposed by Yang et al. (2015a, b) to cal-

culate the prestress and the ultimate capacities of the

strengthened beams. The accuracy of the formulas was

verified by the experimental results.

Jones et al. (1982) studied the behaviour of reinforced

concrete beams (155 9 225 9 2500 mm) externally rein-

forced by steel plates glued to their tension face. The

variables considered were the thickness of plates, number

of plate layers, lapping technique, preloading and glue

thickness (see Fig. 1). The effects of these variables upon

the deformation characteristics and ultimate strength of the

beams were studied. Test results indicated that the addition

of glued plates to concrete beams substantially increases

their flexural stiffness, reduced structural deformations at

all load levels, and contributed to the ultimate flexural
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capacity. However, lapped plates, precracking and variable

glue thickness had no effect on the structural behaviour of

the beams. Beams with multiple layers of plates behave

almost similar to beams with single plates of the same total

sectional area. The beams strengthened with thick plates (3

and 6 mm) fail led by the sudden separation of the plate

ends together with the concrete cover, before reaching their

ultimate load.

In the present study, primary attention is focused on

developing representative numerical models for a sandwich

beam. To achieve this aim, several analytical models of a

laboratory specimen are developed using different approaches

available within programming procedure. A good represen-

tation for external plates is used. Rigid link elements extended

the models with full interaction composition. Modelling

details and results of different models are presented. The

results acquired from numerical models are assessed against

test results, and the performance of the models is detailed. In

addition, a study of the effect of layer length on the behaviour

of the sandwich beam is submitted. This effect caused by

reduction deflection in longitudinal directions with several

different percentages is also submitted.

Shear distributed load

In question is an element comprised of three layers, an

upper steel plate, concrete and a lower steel plate. Con-

sider, a transformed concrete section for which moment of

inertia, modulus of elasticity and area are denoted by (lco),

(Eco) and (Aco) respectively. The two interfaces’ shear

distributed forces are (q1, q2) and the tension peeling forces

are (F1, F2) between the upper steel plate and concrete also

between the concrete and the lower steel plate, respec-

tively. The longitudinal equilibrium of either the concrete

beam or steel plates gives (see Fig. 1):

For upper elementary

Nup;x ¼ �q1: ð1Þ

For middle element

Nup;x � Nlp;x ¼ q2 � q1: ð2Þ

For lower elementary

Nlp;x ¼ �q2: ð3Þ

Equilibrium of the vertical forces implies:

Sup;x ¼ Pþ F1; ð4Þ

Sco;x ¼ F1 � F2; ð5Þ

Slp;x ¼ �F2: ð6Þ

The equilibrium of moments of the three elements about

their centroids will give:

Mup;x ¼ �Sup � Nup;x: h1; ð7Þ

Mco;x ¼ �Sco � Nup;x: d1 � Nlp;x: d2; ð8Þ

Mlp;x ¼ �Slp � Nlp;x: h3: ð9Þ

where: d1 = h1 ? h2; d2 = h2 ? h3.

Furthermore, the composite FE satisfies the compati-

bility requirement

q1 ¼ Usc: K

s
; ð10Þ

q2 ¼ Ucs : K

s
; ð11Þ

where (Usc, Ucs) is the slip at the interface between the

upper plate and concrete and concrete and lower plate,

respectively, (K) is shear stiffness of the connectors, and

(S) is the spacing between the connectors. Differentiate

Eqs. (10 and 11) once with respect to (x) will give,

q1;x ¼ Usc;x: Ks; ð12Þ

q2;x ¼ Ucs;x: Ks; ð13Þ

where,

Ks ¼ K=S: ð14Þ

While, (Usc,x and Ucs,x) is defined as the slip strain at the

interfaces between the concrete and two steel plates, which

equals to,

Usc;x ¼ eup � eco; ð15Þ

Ucs;x ¼ eco � elp; ð16Þ

where, (eup) represents the strain at the bottom of the upper

steel plate, and (eco) is the strain of concrete beam (top and

bottom), and (elp) is the strain at the top of the lower steel plate.

Assuming equal curvature for the three elements, we have:

Wxx ¼ Wup;xx ¼ Wco;xx ¼ Wlp;xx: ð17Þ
Fig. 1 Element from three layers with forces
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From elastic beam theory:

Wup;xx ¼ Mup=Eup: Iup; ð18Þ

Wco;xx ¼ Mco=Eco : Ico; ð19Þ

Wlp;xx ¼ Mlp=Elp : Ilp; ð20Þ

we can define eup, eco and elp as below:

eup ¼ hup:
Mup

Eup : Iup

� N

Eup : Aup

; ð21Þ

eco ¼ hco :
Mco

Eco : Ico

� N

Eco : Aco

; ð22Þ

elp ¼ hlp:
Mlp

Elp : Ilp
� N

Elp : Alp

: ð23Þ

Combining Eqs. (10), (12), (21) and (22), the following

equation can be obtained:

q1;x

Ks

¼ hup : Mup

Eup : Iup

þ hco : Mco

Eco : Ico

� N
hup

Eup : Aup

þ hco

Eco : Aco

� �
: ð24Þ

And combining Eqs. (11), (13), (22) and (23), the fol-

lowing equation can be obtained:

q2;x

Ks

¼ hlp : Mlp

Elp : Ilp
þ hco :Mco

Eco : Ico

� N
hlp

Elp : Alp

þ hco

Eco : Aco

� �
: ð25Þ

Differentiating the Eqs. (24) and (25) once with respect

to (x) and substituting the value of (N,x), (Mup, Mco) and

(Mlp) from Eqs. (1), (7, 8) and (9), respectively, Eqs. (24)

and (25) become:

q1;xx ¼ q : Ks

h2
up

Eup : Iup

þ 1

Eup : Aup

þ h2
co

Eco : Ico

þ 1

Eco:Aco

" #

� hup : Sup : Ks

Eup : Iup

� hco : Sco : Ks

Eco : Ico

; ð26Þ

q2;xx ¼ q : Ks

h2
lp

Elp : Ilp
þ 1

Elp : Alp

þ h2
co

Eco : Ico

þ 1

Eco:Aco

" #

� hlp : Slp : Ks

Elp : Ilp
� hco : Sco : Ks

Eco : Ico

: ð27Þ

And if we note Fig. 1 we can assume that the shear due

to external loads (total shear TS) is carried by concrete

only, so that:

Sup ¼ 0; ð28Þ

Sco ¼ TS: ð29Þ

Along the concrete beam

Slp ¼ 0: ð30Þ

Assume

V1 ¼ x1 : Ks; ð31Þ

V2 ¼ x2 : Ks; ð32Þ

where

x1 ¼
h2

up

Eup:Iup

þ 1

Eup:Aup

þ h2
co

Eco:Ico

þ 1

Eco:Aco

; ð33Þ

x2 ¼
h2

lp

Elp:Ilp
þ 1

Elp:Alp

þ h2
co

Eco:Ico

þ 1

Eco:Aco

: ð34Þ

By using Eqs. (28, 29, 32) and (33) and neglecting the

effect of the peeling forces on the deflection of the concrete

beam from the two sides, Eq. (26) becomes:

q1;xx � V1:q1 þ
hco:Ks

Eco:Ico

:TS ¼ 0: ð35Þ

Also, by using Eqs. (29, 30, 32) and (34), Eq. (27)

becomes:

q2;xx � V2:q2 þ
hco:Ks

Eco:Ico

:TS ¼ 0: ð36Þ

Equations (35) and (36) represent the general differential

equations for shear distributed forces.

Solution for uniformly distributed load

Consider a simply supported beam of span (L) with plastic

layer material (e.g. concrete) strengthened mechanically

with upper and lower elastic layer materials, of length (lup

and llp), respectively, and subjected to a uniformly dis-

tributed load (p). The distance (x) is measured from the

beginning of the lower steel plate. The shear force, (TS),

due to external load at a distance (x) from the left end of the

lower steel plate is:

TS ¼ p: a þ x� lco=2ð Þ; ð37Þ

where (a) is the distance from the support of the nearer end

of the lower steel plate. Then, the general solution of the

differential Eqs. (26) and (27) can be obtained as, see

Fig. 2:

q1 ¼ A1: cosh fxþ A2:shinfxþ hco:q
Eco:Ico:x1

ðx� ðlup=2 þ bÞÞ;

ð38Þ

q2 ¼ A3: cosh fxþ A4:shinfxþ hco:q
Eco:Ico:x2

ðx� llp=2Þ:

ð39Þ

Noting that b is the distance from the end of (a) to the

beginning of the upper steel plate and (A1), (A2) and (A3),

(A4) are constants of integration, and can be obtained after

satisfying the boundary conditions, which are at x = 0

222 Int J Adv Struct Eng (2017) 9:219–229

123

Archive of SID

www.SID.ir

http://www.sid.ir


q2;x ¼
Mco:Ks:hco

Eco:Ico

; ð40Þ

At x = b

q1;x ¼
Mco:Ks:hco

Eco:Ico

; ð41Þ

where

Mco ¼ P:aðlco � aÞ=2; ð42Þ

At x = llp/2,

q1 ¼ 0; ð43Þ

And at x = lup/2,

q2 ¼ 0; ð44Þ

Then,

A1 ¼ �A2: tanh f
:lup

2
þ b

� �
; ð45Þ

A2 ¼ hco:q
Eco:Ico

:
Ks:a:ðlco � aÞ

2:f
� 1

f:x1

� �
; ð46Þ

A3 ¼ �A4: tanh f
:llp
2

� �
; ð47Þ

A4 ¼ hco:q
Eco:Ico

:
Ks:a:ðlco � aÞ

2:f
� 1

f:x2

� �
: ð48Þ

Therefore, the particular solution for the basic differ-

ential equation will become:

q1 ¼
q:hco

Eco:Ico

Ks:a:ðlco� aÞ
f:2

� 1

f:x1

� �
:

�

sinhfx� tanhf:ðlup

2
þ bÞcoshfx

� �
þ x�ðlup=2þ bÞ

x1

�
;

ð49Þ

q2 ¼
q:hco

Eco:Ico

Ks:a:ðlco�aÞ
f:2

� 1

f:x2

� �
:

�

sinhfx� tanh
f:llp

2
coshfx

� �
þx� llp=2

x2

�
:

ð50Þ

Prediction of deflection

The value of deflection is one of the important parameters

in the service life of structures, which should be limited to

satisfy an acceptable behaviour. Therefore, prediction of

deflection is an important step in design and checking the

performance of structural members. In order to arrive at an

expression for the deflection of the sandwich beam, sum-

ming Eqs. (7, 8) and (9) gives:

Mco;x þMup;x þMlp;x ¼ d1:q1 � d2:q2 � TS, ð51Þ

where d1 = h1 ? h2 and d2 = h2 ? h3

Also, from Eqs. (18, 19) and (20), (Mco, Mup) and (Mlp)

can be obtained by differentiating these equations once

with respect to (x):

Mup;x ¼ W;xxx:Eup: Iup; ð52Þ

Mco;x ¼ W;xxx:Eco: Ico; ð53Þ

Mlp;x ¼ W;xxx:Elp: Ilp: ð54Þ

Substituting the values of (Mup,x, Mco,x) and (Mlp,x) in

Eq. (51) and simplifying will give:

Wxxx ¼ 1

H0

ðd1:q1 þ d2:q2 � TSÞ; ð55Þ

where

H0 ¼ Eco:Ico þ Eup: Iup þ Elp: Ilp: ð56Þ

Differentiating Eq. (55), once with respect to (x), will

arrive at the general expression for deflection as:

Wxxxx ¼ 1

H0

ðd1:q1;x þ d2:q2;x � TSxÞ: ð57Þ

From Eq. (57) above, the deflection (w) of the sandwich

beams with unequal lengths can be calculated by inte-

grating four times with respect to (x). The four constants of

integration can be determined by applying the boundary

condition for every case of loading.

Solution for the case of uniformly distributed load

For a simply supported beam, the shear force (TS) at a

distance (x) from the left end of steel plate is given by

Eq. (37), then (TS,x) is,

Ts;X ¼ P: ð58Þ

Substituting for (TS,x) and (q1,x and q2,x) from Eqs. (58)

and (49 and 50), respectively, into Eq. (57), will give the

general solution for this case as:

W;XXXX ¼ 1

H0

�
f:d1 A1: sinh f:xþ A2: cosh f:xð Þ þ f:d2 A3 sinh f:xþ A4: cosh f:xð Þ

þP:
hco:d1

Eco:Ico:x1

þ hco:d2

Eco:Ico:x2

� 1

� �
2
64

3
75:

ð59Þ

By integrating Eq. (59) four times with respect to (x),

the final form of (w) can be as:
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Fig. 2 sandwich beam with

uniformly distributed load

Table 1 Information of Roberts’ series

Beam no. Plate thickness (mm) Bolt diameter (mm) Compressive strength (Mpa) Ec 106 kpa

Fc Fcu

(a) Details of test beams and concrete properties

R1 – – 62 67 37

C1 2 8 54 63 36

C2 4 8 62 69 37

C3 2 8 59 64 36

C4 4 8 72 82 40

D1 2 8 65 72 38

D2 4 8 58 63 36

D3 2 8 62 68 37

D4 4 8 62 67 37

Bar diameter (mm) 0.2% Proof stress (MPa) Ultimate stress (MPa) Elastic modulus 106 (kpa) Strain at 0.2% proof

(b) Average properties of conventional steel reinforcement

8 487 649 206 0.0043

10 473 751 200 0.0043

Plate thickness (mm) 0.2% Proof stress (MPa) Ultimate stress (MPa) Elastic modulus 106 (kpa) Strain at 0.2% proof

(c) Average properties of steel plate

2 280 282 208 0.0034

4 214 214 200 0.0031

All steel plate are (1750 mm) in length

All space between connectors are (140 mm)

W ¼

:d1

f3
A1: sinh f:xþ A2: cosh f:xð Þ þ :d2

f3
A3 sinh f:xþ A4: cosh f:xð Þ

þ P:
X4

24

hco:d1

Eco:Ico:x1

þ hco:d2

Eco:Ico:x2

� 1

� �
þ C1:

X3

6
þ C2:

X2

2
þ C3:X þ C4

2
6664

3
7775; ð60Þ
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Fig. 3 Load-deflection curve. a For beam C2. b For beam D1

Table 2 Information of Abtan’s series

Beam no. Steel dimensions (mm) Spacing bolt (mm) Compressive strength (Mpa) Ec 106 kpa

Fc Fcu

(a) Details of test beams and concrete properties

B1 – – 34.9 37.6 27.8

B2 – – 34.9 37.6 27.8

B3 150 9 2 9 1500 200 34.2 36.0 27.5

B4 150 9 3 9 1500 130 34.2 36.0 27.5

B5 150 9 3 9 1500 280 35.2 37.8 27.9

B6 100 9 3 9 1500 200 35.2 37.8 27.9

B7 150 9 3 9 1150 98 33.0 38.0 27.0

B8 150 9 3 9 850 71 33.0 38.0 27.0

B9 150 9 2 9 1150 155 33.5 36.3 27.2

B10 150 9 2 9 850 113 33.5 36.3 27.2

B11 150 9 5 9 1500 62 33.6 37.3 27.2

B12-1 – – 33.6 37.3 27.2

B12-2 150 9 2 9 1500 200 33.6 37.3 27.2

Bar diameter (mm) Yield stress (MPa) Ultimate stress (MPa) Elastic modulus 106 (kpa)

(b) Average properties of conventional steel reinforcement

5 470 613 200

12 520 705 200

Plate thickness (mm) 0.2% Proof stress (MPa) Ultimate stress (MPa) Elastic modulus 106 (kpa)

(c) Average properties of steel plate

2 225 200 356

3 250 200 361

5 306 200 392
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where (A1, A2, A3) and (A4) are as defined in earlier Eqs. (45

to 48) and (C1) to (C4) are constants of integration, which can

be obtained by applying the boundary conditions.

Since the two steel plate not anchored at the supports,

the cross-section of the beam will have three different

parts: the first part is a reinforced concrete section

extending between the support and the end point of the

nearest steel plates; the second part is the strengthened

section which consists of reinforced concrete and one steel

plate, upper or lower (in this case, the lower plate); and the

third part is the sandwich beam strengthened with two

plates with unequal lengths. Hence, the first part will sat-

isfy the simple bending theory as given below:

wi;xx ¼ Mi

Eco:Ico

; ð61Þ

where (Mi) and (wi) are the moment and curvature of any

part of the unplated beam, respectively. (Mi) is defined as

below:

Mi ¼ Ra:x0 �
P:x2

0

2
; ð62Þ

where (Ra) is the reaction force at support, and (x0) is the

available distance from the support to the nearest end of the

plate, and varies from zero to the value of (a).

Hence, the slope and deflection at any point of the

unplated part can be obtained from Eq. (61) as below:

wi;x ¼ 1

Eco:Ico

Ra:x
2

2
� P:a3

6

� �
þ C5; ð63Þ

wi ¼
1

Eco:Ico

Ra:x
3

6
� P:a4

24

� �
þ C5:aþ C6: ð64Þ

where (C5) and (C6) are constants of integration.

If the deflection of support is zero, then (C6 = 0) and the

slope and deflection at the free end of the steel plate are:

wi;x ¼ 1

Eco:Ico

Ra:a
2

2
� P:a3

6

� �
þ C5; ð65Þ

wi ¼
1

Eco:Ico

Ra:a
3

6
� P:a4

24

� �
þ C5:aþ C6: ð66Þ

Then, there are five unknown constants that can be

defined using the five boundary conditions given below,

At x ¼ llp=2; W ; xx ¼ 0; ð67Þ

At x ¼ 0; w;xx ¼ wi;xx; ð68Þ

At x ¼ llp=2; W; x ¼ 0; ð69Þ

At x ¼ 0; w;x ¼ wi;x; ð70Þ

At x ¼ 0; W ¼ wI: ð71Þ

Applying the boundary conditions above, the value of

constants (C1) to (C5) can be obtained.

Results and comparison with experimental works

The experimental field investigations of the simply sup-

ported sandwich beam are limited due to the high cost of

the test model; so, the applications of the solutions are

Table 3 Comparison between the central deflection given by the

current model and experimental value

Beam

no.

Experimental

value (kN)

Theoretical value

(kN)

Experimental/

theoretical

B1 2.05 2.30 0.90

B2 2.16 2.40 0.90

B3 2.4 2.26 1.06

B4 2.15 2.20 0.98

B5 2.10 2.33 0.90

B6 2.20 2.31 0.95

B7 2.45 2.20 1.11

B8 3.00 3.03 0.99

B9 2.61 2.50 1.04

B10 2.72 2.81 0.97

B11 2.50 2.25 1.11

B12-1 2.10 1.91 1.11

B12-2 2.50 2.41 1.04

R 9.50 8.60 1.10

C1 8.60 8.47 1.02

C2 9.40 9.15 1.03

C3 8.20 7.75 1.09

C4 7.70 8.27 0.94

D1 11.00 10.33 1.06

D2 11.00 11.43 0.96

D3 8.40 7.30 1.15

D4 11.20 10.52 1.06

Mean ratio 1.02

Standard deviation 0.08

Fig. 4 Slip along the platted part of beam (B6)

226 Int J Adv Struct Eng (2017) 9:219–229

123

Archive of SID

www.SID.ir

http://www.sid.ir


intended to show their validity by comparing the results

with the available experimental test results. Also, the

effects of some parameters on the behaviour of simply

composited beams are investigated. We also present a

parametric study suggesting removal of the upper steel

plate and comparing the results with two series which are

encountered from literature survey. The first is by Roberts

et al. in which nine pairs of rectangular beams are tested,

details of which are given in Table 1.

It can be seen from Fig. 3 that the presence of steel

plate, at the underside of the beams, has the distinct effect

of stiffening the beams, which reduces the deflection.

Fig. 5 Load-slip curve. a For

beam B3. b For beam B4. c For

beam B6. d For beam B7. e For

beam B8. f For beam B9
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The second series is by Abtan in which a series of 12

beams are tested, with details given in Table 2.

All of the beams tested in each series had the same

dimensions with simple supports, unequal reinforced con-

crete beam lengths and two external steel plates; they were

loaded with a central point load. The calculated failure load

of the tested beams in two series using theoretical models is

given in Table 3. Predicted loads are in a close agreement.

The interface slip is the relative movement between the

concrete beam and steel plate at the interface. For the series

tested by Abtan, the calculated values of maximum slip are

reasonably close to those observed by experiments. The

mean ratios of the experimental to theoretical values are

(1.01) and (0.99) and the standard deviation is (0.05) and

(0.10), by closed form and numerical solutions, respec-

tively. In addition, the distribution of slip along the beam is

plotted in Fig. 4, which indicates that the maximum value

of slip occurs at the end of the steel plate and becomes zero

under the point load, at mid-span in the case of uniformly

distributed load.

The maximum slip values are plotted against the applied

load [up to the service load which is taken as (50%) from

the ultimate load] and shown in Fig. 5. It can be seen that

the initial value of slip is noticed at (24–30%) of the ser-

vice load, with the increased value at the increased loading.

When the slip is increased, loss of interaction results,

allowing for extra deflection, whereas the slip is a function

of the degree of connection and the properties of materials.

To isolate the effect of plate length, three beams are

compared, which have one plate thickness and variable

plate length, and in which all other parameters are kept

constant. These three beams consist of beams (B4), (B7)

and (B8) with a constant plate thickness (3 mm) and

varying length of (95%), (73%) and (54%), respectively

(see Fig. 6).

Figure 6 shows the load-maximum slip curve for the

tested beams. It can be concluded that beams with shorter

steel plates exhibit higher slip values at the concrete-steel

interface and the increase in maximum slip is proportional

to the increase in the length of steel plate.

It can be seen from Figs. 6 and 7 that the presence of

steel plate, at the underside of the beams, has a distinct

effect on the stiffening of the beams, which reduces the

deflection.

The central deflection values for tested plated beams are

very close to the predictions from the literature. The mean

value of the ratios of experimental to theoretical central

deflection is (1.02) and the standard deviation is (0.08), as

given in Table 3.

Conclusion

A theoretical model has been presented herein to predict the

deflection values for sandwich beams with two external steel

plates. The limitation has been introduced in the sectional

area of the steel plate provided in the tension and compres-

sion faces of the beam, which is based on the derived bal-

anced area in order to prevent compression failure of the

composite section. Also formulated equations indicate the
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Fig. 6 Load-slip curve of typical beams

Fig. 7 Load-deflection curve.

a For beam B3. b For beam B8

228 Int J Adv Struct Eng (2017) 9:219–229

123

Archive of SID

www.SID.ir

http://www.sid.ir


behaviour of reinforced concrete beams strengthened with

external steel plates, and have been applied to two test series,

from literature, to examine the ability and efficiency of them

in predicting the deflection. A close agreement is obtained

showing that the solution is applicable to a wide range of

beams.

The values of central deflection of beam influenced by

the area and the length of the attached steel plates and

beams, it appears that longer steel plates will fail at higher

loads, as the length of the beam with composite section is

increased, resulting in stronger sections.

It can be concluded that beams with shorter steel plates

exhibit higher slip values at the concrete–steel interface

and the increase in maximum slip is proportional to the

increase in the length of steel plate.
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