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Abstract
This paper presents the formulation of exact stiffness matrices applied in linear generalized beam theory (GBT) under con-
stant and/or linear loading distribution in the longitudinal direction. Also, the assortment of the correct exact stiffness matrix 
and the corresponding shape function are presented based on main transversal deformation mode, which can be divided 
into: (1) dominant distortion mode; (2) dominant torsion mode; (3) and critical distortion–torsion mode. Special attention is 
given to the hyperbolic–trigonometric shape functions, which are organized in a system of vector in function of longitudinal 
direction and a coefficient matrix obtained from the completeness requirement. This approach has the benefit of compacting 
the terms of the stiffness matrix and systematizing the boundary conditions of an element by applying the completeness 
coefficient matrix as a transformation matrix. As a result, in linear analysis, a single element can represent the stress and 
displacement fields. Moreover, due to the higher-order continuous derivatives properties of hyperbolic–trigonometric shape 
functions, the generalized internal shear is obtained without the typical discontinuity of Hermitian shape functions. A full 
and detailed example, applied in a thin-walled circular hollow cross section, provides not only an illustration of the presented 
approach, but also a quick introduction point in GBT.

Keywords Generalized beam theory · Stiffness matrix · Exact solution · Completeness coefficient matrix · Thin-walled 
circular hollow section

Introduction

Generalized beam theory, GBT, is a numerical approach, 
which was initially developed to describe open thin-walled 
beams by Richard Schardt in Darmstadt, Germany. This 
approach is applicable to linear analysis (Schardt 1989), but 
it has been further extended to geometric non-linear analy-
sis (Schardt 1994). This method splits the displacement and 
stress fields of a spatially dependent beam function in the 
cross section via separation of variables. As a result, this 
approach presents astonishing numerical performance and 
a clear representation of the displacement and stress fields 

as a linear combination of the generalized cross-sectional 
proprieties and internal forces.

Separation of variables in GBT consists of two steps. 
The first step requires a cross-sectional analysis by solving 
a quadratic eigenvalue problem, which is quite elaborate. 
Consequently, this step has been widely studied and relevant 
progress has been achieved in many cross sections, such as 
arbitrary branched opened (Dinis et al. 2006) and elliptical 
(Silvestre 2008) cross sections. The performance and robust-
ness of the numerical approach have also been studied (Jöns-
son and Andreassen 2011; Andreassen and Jönsson 2012).

The second step involves analyzing the beam along the 
longitudinal direction by solving a system of uncoupled 
ordinary differential equations. This second step is the main 
focus of this work.

In the original works of Richard Schardt and his co-work-
ers, the ordinary differential equations were evaluated by the 
finite difference method. Although this method has a clear 
and direct numerical solution, it has been replaced by the 
finite element method (FEM) in structural analysis, owing 
to the well-known versatility of this method (Silvestre and 
Camotim 2003a).
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The first application of FEM in GBT was performed by 
Davies (1986), who proposed the use of an exact element. 
However, the formulation presented contains some contro-
versial points. First, the stiffness components of transverse 
distortion are not included in the complete stiffness matrix. 
Second, the shape function used in the formulation is based 
on the homogeneous solution, which is a linearly independ-
ent function of most usual load functions, such as a constant 
loading distribution.

Silvestre and Camotim (2003a) developed a finite ele-
ment based on Hermitian shape functions. This method has 
been extensively applied in many studies and analyses, such 
as Silvestre and Camotim (2003b), Gonçalves et al. (2010), 
Correia et al. (2011), and Abambres et al. (2013, 2014). 
Although this type of element has good convergence and 
allows easy implementation of the stiffness matrix, it does 
not reach an exact solution and it also requires longitudi-
nal discretization. Moreover, the generalized internal force 
obtained from Hermitian shape functions presented a coarse 
result due to the higher-order derivatives that are necessary 
to achieve it. These issues affect the non-linear analysis, i.e., 
the initial stress stiffness matrix (Camotim et al. 2011).

As an alternative to overcome these coarse results in 
higher-order problems, Duan et al. (2016) presents the for-
mulation of a B-splines-based GBT, which provides continu-
ity between two adjacent elements. However, this alternative 
still requires longitudinal discretization.

This letter presents a review of the exact stiffness matrix 
formulation of GBT and compares the pros and cons 
between this formulation and the one based on Hermitian 
shape functions.

Shape function assortment 
and the transverse deformation mode 
classification

The development of shape functions that describe the exact 
displacement field in GBT is initially based on the analyti-
cal solution to the following ordinary differential equation:

V(x) is a displacement amplification function in the lon-
gitudinal direction x, E is Youngs modulus, � is Poisson’s 
ratio, C is the generalized moment of inertia, G is the shear 
modulus, D is the generalized longitudinal rotation inertia, 
D is the generalized inertia due to the Poisson effect, and 
B is the transverse bending stiffness. For convenience, one 
can consider the following effective generalized longitudinal 
rotation stiffness:

(1)ECV ����(x) − (GD − 2�KD�)V
��(x) + BV(x) = q(x).

(2)GD = GD − 2�KD�.

The homogeneous part in Eq. (1) is

and has the characteristic equation:

with the following possible roots:

The internal square root can classify not only the mathemati-
cal type of numerical root, but also the main stiffness com-
ponent in a transverse deformation mode of the cross section 
(i.e., torsion or distortion). Therefore, one can derive the 
following cases:

• Case A: dominant distortion mode:

(
GD

2EC

)2

<
B

EC
 i.e., GD < 2

√
BEC.

Deformation modes, in this case, are the main contribu-
tion to total transverse stiffness due to transverse bending of 
each wall in the cross section. This case is the main focus of 
the present work, owing to the fact that it is the most usual 
case in GBT and it was studied in Schardt’s work (1989). 
With two real and one complex conjugate roots, the solution 
of the differential homogeneous equation is

where K1 , K2 , K3 , and K4 are constants found from the 
boundary conditions. In addition, we have the following:

• Case B: dominant torsion mode:

(
GD

2EC

)2

>
B

EC
 i.e.GD > 2

√
BEC.

In this case, torsion of each wall in the cross section is the 
main contributor to the total transverse stiffness for deforma-
tion modes. This case occurs specially when the extremity 
walls are much thicker than the internal walls of an opened 
cross section. With four real roots, the solution of the dif-
ferential homogeneous equation is:

(3)ECV ����(x) − GDV ��(x) + BV(x) = 0

(4)ECm4 − GDm2 + B = 0

(5)m1,2 ,3 ,4 = ±

√√√√ GD

2EC
±

√(
GD

2EC

)2

−
B

EC
.

(6)
V(x) = K1 cosh(�x) cos(�x) + K2 cosh(�x) sin(�x)

+ K3 sinh(�x) sin(�x) + K4 sinh(�x) cos(�x),

(7)� =

√√
B

4EC
+

GD

4EC

(8)� =

√√
B

4EC
−

GD

4EC
.

(9)
V(x) = K1 cosh(�x) cosh(�x) + K2 cosh(�x) sinh(�x)

+ K3 sinh(�x) sinh(�x) + K4 sinh(�x) cosh(�x),
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where:

• Case C: torsion and distortion mode:

(
GD

2EC

)2

=
B

EC
 i.e., GD = 2

√
BEC.

In this particular case, torsion and transverse bending of 
each wall in the cross section have the same contribution in 
the total transverse stiffness for deformation modes. This 
case is the border between the two previously presented 
cases. With two pairs of identical real roots, the solution of 
the differential homogeneous equation is:

with: � =

√
GD

2EC
.

Variational formulation in generalized beam theory

Before developing the shape functions in FEM, a brief 
review of the variational formulation for GBT in the longitu-
dinal direction is presented here. Following the equilibrium 
principle, the particular solution of Eq. (1) is found in the 
minimal energy system, together with the boundary condi-
tions of the generalized beam. It can be obtained from the 
minimization of the total energy functional that

where Π is the total energy, Uint the internal strain energy, 
and Vext the external load potential energy. Below, each term 
is developed according to GBT.

Internal strain energy according to GBT

Following the assumptions of GBT in an arbitrary beam 
cross section, the variation of the internal strain energy can 
be described as a combination of four main components:

• Longitudinal strain energy (which considers the effect of 
membrane stiffness iCm and plate stiffness iCp).

• Shear strain energy, which considers only the plate 
behavior.

(10)� =

√√√√ GD

2EC
+

√(
GD

2EC

)2

−
B

EC
,

(11)� =

√√√√ GD

2EC
−

√(
GD

2EC

)2

−
B

EC
.

(12)
V(x) = K1x cosh(�x) + K2x sinh(�x) + K3 cosh(�x)

+ K4 sinh(�x)

(13)Π = Uint − Vext

(14)�Π = �Uint − �Vext = 0,

• Transverse strain energy due to transverse bending of the 
plate.

• Strain energy due to the Poisson effect in the plate’s con-
stitutive material law.

Therefore, the total variation of the internal stress energy is 
obtained by the sum of these respective terms, as follows:

External load potential energy according to GBT

Following the same principle of the internal energy, the 
external load potential energy can be expressed by a sum-
mation of the orthogonal modes:

Here, the terms Qx and Qw are the concentrated generalized 
forces that can be applied at the initial or final beam nodes 
(the subscripts i and f represent these two points). Obtain-
ing the variation of this functional in terms of amplification 
functions iV  yields the following:

Equilibrium by Hamilton’s principle

Introducing variations of internal strain energy Eq. (15) and 
external potential energy Eq. (17) into Hamilton’s principle 
presented in Eq. (14), one can obtain:

(15)

�Uint = ∫
L

EiCiV ��(x)�iV ��(x) + G iD iV �(x)� iV �(x)

+ iB iV(x)� iV(x) + �K iD�

(
iV(x)� iV ��(x)

+ � iV(x) iV ��(x)
)
dx.

(16)

Vext =

n∑
i=1

∫
L

iqx(x)
iuiV �(x) + iqs(x)

iviV(x)

+ iqv(x)
iwiV(x) dx + iQwi

iVi +
iQwf

iVf

+ iQxi
iV �

i
+ iQxf

iV �
f
).

(17)

�Vext = ∫
L

iqx(x)
iu�iV �(x) + iqs(x)

iv�iV(x)

+ iqv(x)
iw�iV(x) dx + iQwi �

iVi +
iQwf �

iVf

+ iQxi �
iV �

i
+ iQxf �

iV �
f
.

(18)

0 = ∫
L

E iC iV ��(x)� iV ��(x) + G iD iV �(x)� iV �(x)

+ iB iV(x)� iV(x) + �K iD�

(
iV(x)� iV ��(x)

+ � iV(x) iV ��(x)
)
− iqx(x)

iu�iV �(x)

− iqs(x)
iv�iV(x) − iqv(x)

iw�iV(x) dx − iQwi �
iVi

− iQwf �
iVf −

iQxi �
iV �

i
− iQxf �

iV �
f
.
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Integrating the terms involving � iV ��(x) by parts twice, and 
integrating the second term in the above integral by parts 
once, we find:

Replacing these results in Eq. (18) with the expression in 
Eq. (2), we find:

Here, the equilibrium and the boundary conditions stand 
out. Taking into account that the functional Eq. (21) must 
vanish for any arbitrary longitudinal amplification func-
tions �V(x), the parentheses terms in the integral must be 
zero, which gives the equilibrium condition in Eq. (1), with 
q(x) = iqx(x)

iu − iqs(x)
iv − iqv(x)

iw . In the same way, the 
boundary conditions are found in the remaining terms:

(19)

∫
L

(
E iC iV ��(x) + �K iD�

iV(x)
)
� iV ��(x) dx

= ∫
L

(
E iC iV ����(x) + �K iD�

iV ��(x)
)
� iV(x) dx

+
[(
E iC iV ��(x) + �K iD�

iV(x)
)
� iV �(x)

]f
i

−
[(
E iC iV ���(x) + �K iD�

iV �(x)
)
� iV(x)

]f
i
,

(20)

∫
L

G iD iV �(x)� iV �(x)dx = [G iD iV �(x)� iV(x)]
f

i

− ∫
L

G iD iV ��(x)� iV(x)dx.

(21)

0 = ∫
L

(
E iC iV ����(x) − G iD iV ��(x) + iB iV(x)

− iqx(x)
iu − iqs(x)

iv − iqv(x)
iw
)
�iV(x) dx

+
[(
E iC iV ��(x) + �K iD�

iV(x)
)
� iV �(x)

]f
i

+
[((

G iD − �K iD�

)
iV �(x) − E iC iV ���(x)

)
� iV(x)

]f
i

− iQwi �
iVi −

iQwf �
iVf −

iQxi �
iV �

i
− iQxf �

iV �
f
.

(22)

[((
G iD − �K iD�

)
iV �(x) − E iC iV ���(x) − iQwi

)
� iV(x)

]
i
= 0,

(23)

[((
G iD − �K iD�

)
iV �(x) − E iC iV ���(x) − iQwf

)
� iV(x)

]
f
= 0,

(24)
[(
E iC iV ��(x)+�K iD�

iV(x) − iQxi
)
� iV �(x)

]
i
= 0,

The function describing longitudinal amplification V(x) is 
obtained via superposition of the interpolation functions, 
which are presented below.

Shape functions based on homogeneous 
and inhomogeneous solution of GBT 
ordinary differential equation

The formulation of a GBT element based on homogeneous 
solutions is a particular case of the inhomogeneous solution. 
In fact, the equilibrium part of the variational formulation 
given by Eq. (18) in the homogeneous case is reduced into 
the form:

Because the homogeneous solution can only be applied 
under nodal loading cases, only the formulation related to 
the inhomogeneous solution is presented here.

In inhomogeneous differential equations, the general 
solution is a combination between the homogeneous and a 
particular solution, which represents an external load func-
tion. In the most common structural analysis, the external 
load functions are constants or linear functions, which are 
linearly independent from the homogeneous solutions of 
cases A, B and C. Therefore, the function of the exact solu-
tion of inhomogeneous equation needs six terms, four from 
the boundary conditions: K1 , K2 , K3 , and K4 , presented in 
Eqs. (6), (9) and (12) , and two extra terms due to loading 
distribution K5x + k6 , as shown below:

which leads to three nodes for each element, with two 
degrees of freedom per node. Further, for convenience of 
symmetric and anti-symmetric properties of trigonometric 
function, the initial node is chosen as x = −

L

2
 and the final 

node as x = L

2
 , as shown in Fig. 1.

(25)
[(
EiC iV ��(x)+�K iD�

iV(x) − iQxf
)
� iV �(x)

]
f
= 0.

(26)

0 = ∫
L

E iC iV ��(x)� iV ��(x) + G iD iV �(x)� iV �(x)

+ iB iV(x)� iV(x) + �K iD�

(
iV(x)� iV ��(x)

+ � iV(x) iV ��(x)
)
dx − iQwi �

iVi −
iQwf �

iVf

− iQxi �
iV �

i
− iQxf �

iV �
f
.

(27)

V(x) = K1 cosh(�x) cos(�x) + K2 cosh(�x) sin(�x)

+ K3sinh(�x)sin(�x)+K4sinh(�x)cos(�x)+K5x +K6,
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All element formulations presented here are based on this 
element with an extra node. Nevertheless, one can note that 
this extra node can be avoided by a static contraction as 
presented.

Inhomogeneous solution for case A with clamped–
clamped boundary conditions

Starting with the shape functions of the dominant distortion 
mode (case A), in clamped–clamped1 boundary conditions, 
it is necessary to satisfy the completeness principle: each 
interpolation function corresponds to a nodal displacement 
(transverse or longitudinal). Moreover, each interpola-
tion function must have a unitary value for its respective 
nodal displacement and vanish for other displacements and 
nodes  (Soriano 2003). For instance, the first shape function, 
ShHacc1 , which interpolates the initial generalized displace-
ment, is based on Eq. (27):

Sij is the ind constant value of shape function j. The constants 
above must satisfy the following conditions:

(28)

ShHacc1 = S11 cosh(�x) cos(�x) + S21 cosh(�x) sin(�x)

+ S31 sinh(�x)sin(�x) +S41 sinh(�x) cos(�x)

+ S51x +S61.

(29)

ShHacc1

(
x = −

L

2

)
= 1∴ S11 cosh

(
−
�L

2

)
cos

(
−
�L

2

)

+ S21 cosh

(
−
�L

2

)
sin

(
−
�L

2

)

+ S31 sinh

(
−�L

2

)
sin

(
−�L

2

)

+ S41 sinh

(
−
�L

2

)
cos

(
−
�L

2

)

− S51
L

2
+ S61 = 1,

(30)

Sh�
Hacc1

(
x = −

L

2

)
= 0∴

S11

(
� sinh

(
−
�L

2

)
cos

(
−
�L

2

)
− � cosh

(
−
�L

2

)
sin

(
−
�L

2

))

+ S21

(
� sinh

(
−
�L

2

)
sin

(
−
�L

2

)
+ � cosh

(
−
�L

2

)
cos

(
−
�L

2

))

+ S31

(
� cosh

(
−
�L

2

)
sin

(
−
�L

2

)
+ � sinh

(
−
�L

2

)
cos

(
−
�L

2

))

+ S41

(
� cosh

(
−
�L

2

)
cos

(
−
�L

2

)
− � sinh

(
−
�L

2

)
sin

(
−
�L

2

))

+ S51 = 0,

(31)

ShHacc1

(
x =

L

2

)
= 0 ∴

S11 cosh
(
�L

2

)
cos

(
�L

2

)
+ S21 cosh

(
�L

2

)
sin

(
�L

2

)

+ S31 sinh
(
�L

2

)
sin

(
�L

2

)
+ S41 sinh

(
�L

2

)
cos

(
�L

2

)

+ S51
L

2
+ S61 = 0,

(32)

Sh�
Hacc1

(
x =

L

2

)
= 0 ∴

S11

(
� sinh

(
�L

2

)
cos

(
�L

2

)
− � cosh

(
�L

2

)
sin

(
�L

2

))

+ S21

(
� sinh

(
�L

2

)
sin

(
�L

2

)
+ � cosh

(
�L

2

)
cos

(
�L

2

))

+ S31

(
� cosh

(
�L

2

)
sin

(
�L

2

)
+ � sinh

(
�L

2

)
cos

(
�L

2

))

+ S41

(
� cosh

(
�L

2

)
cos

(
�L

2

)
− � sinh

(
�L

2

)
sin

(
�L

2

))

+ S51 = 0,

(33)ShHacc1(x = 0) = 0 ∴ S11 + S61 = 0,

(34)Sh�
Hacc1

(x = 0) = 0 ∴ S21� + S41� + S51 = 0.

Fig. 1  Element for inhomogeneous solution with six degrees of freedom

1 The term clamped–clamped boundary conditions is an analog of 
the bending moment. It refers to a beam with longitudinal and trans-
verse restraints in both the initial and final nodes.
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The conditions presented above can also be expressed in a 
matrix form, which can be applied for the other interpolation 
functions in this case:

with:

where:

and: ch L

2

= cosh(
�L

2
) , sh L

2

= sinh(
�L

2
) , c L

2

= cos(
�L

2
) , and 

s L

2

= sin(
�L

2
) . The matrix in Eq.  (36) is symbolically 

inverted, which leads to the values of the six constants for 
the first shape function. It is interesting to observe that the 
only difference among the six shape functions is the vector 
in the right side of Eq.  (35). This vector will be: [
0 1 0 0 0 0

]T  ,  
[
0 0 1 0 0 0

]T  ,  
[
0 0 0 1 0 0

]T  , [
0 0 0 0 1 0

]T and 
[
0 0 0 0 0 1

]T for shape functions 2, 3, 
4, 5, and 6, respectively. By solving the above system for the 
other five interpolation functions, it is possible to represent 
all constant values of the shape functions in a coefficient 
matrix, ShNHacc , which is referred to here as the complete-
ness coefficient matrix:

(35)
[
ShHacc1

][
S11 S21 S31 S41 S51 S61

]
T=

[
1 0 0 0 0 0

]
T,

(36)
�
ShHacc1

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 s14 −
L

2
1

s21 s22 s23 s24 1 0

s31 s32 s33 s34
L

2
1

s41 s42 s43 s44 1 0

1 0 0 0 0 1

0 � 0 � 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(37)s11 = s31 = ch L

2

c L

2

(38)s32 = −s12 = ch L

2

s L

2

,

(39)s13 = s31 = sh L

2

s L

2

(40)s34 = −s14 = sh L

2

c L

2

,

(41)s41 = −s21 = �s34 − �s32,

(42)s42 = s22 = �s13 + �s11,

(43)s43 = −s23 = �s32 − �s34,

(44)s44 = s24 = �s11 − �s31

with:

where:

(45)
�
ShNHacc

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

S11 S12 S11 − S12 − 2S11 0

S21 S22 − S21 S22 0 S26
S31 S32 S31 − S32 − 2S31 0

S41 S42 − S41 S42 0 S46
S51 S52 S51 S52 0 S56
−S11 − S12 − S11 S12 S65 0

⎤⎥⎥⎥⎥⎥⎥⎦
KNHacc

,

(46)
KNHacc = 2

(
� sin

(
�L

2

)
− � sinh

(
�L

2

))

×

(
cos

(
�L

2

)
− cosh

(
�L

2

))
,

(47)S11=�sinh
(
�L

2

)
cos

(
�L

2

)
+ �cosh

(
�L

2

)
sin

(
�L

2

)
,

(48)S12 = sinh
(
�L

2

)
sin

(
�L

2

)
,

(49)S65 = � sin(�L) + � sinh(�L),

(50)
S21 =

KNHacc

DS1

sinh
(
�L

2

)

×
(
�S2

12
+ �S12 −

�

4
sinh(�L) sin(�L)

)
,

(51)

DS1 = −� sinh4
(
�L

2

)
sin

(
�L

2

)
sin(�L)

+ sinh3
(
�L

2

)(
L
(
�2 + �2

)
sin2

(
�L

2

)
+ � sin(�L)

)

− � sinh(�L) sinh
(
�L

2

)
sin2

(
�L

2

)

+ −� sinh(�L) sinh2
(
�L

2

)
sin

(
�L

2

)

+
�

4
sinh2(�L) sin

(
�L

2

)
sin(�L),

(52)S22 = S21

�L

2
− sinh

(
�L

2

)
cos

(
�L

2

)

�S12 + �S32
,

(53)S26 = S21L − 2S22
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Consequently, the amplification function V(x) can now be 
expressed by the nodal generalized displacements:

[
TxNHa

]
 is the term vector in case A, which is dependent on 

the length x, and [��] is the variation vector that is given by 
the initial and final displacements. These two vectors are 
presented below:

(54)S46 = S41L − 2S42,

(55)S31=�cosh
(
�L

2

)
sin

(
�L

2

)
− �sinh

(
�L

2

)
cos

(
�L

2

)
,

(56)S32 = 1 − cosh
(
�L

2

)
cos

(
�L

2

)
,

(57)
S41 =

KNHacc

DS1

sinh
(
�L

2

)

×

(
�S2

12
− �S12 +

�

4
sinh(�L) sin(�L)

)
,

(58)S42 = S41

�L

2
− cosh

(
�L

2

)
sin

(
�L

2

)

−�S12 + �S32
,

(59)S51 = −
KNHacc

DS1

sinh
(
�L

2

)(
�2 + �2

)
S2
12
,

(60)S52 = S51

� coth
(

�L

2

)
− � cot

(
�L

2

)

�2 + �2
,

(61)S56 = S51L − 2S52 + KNHacc.

(62)V(x) =
[
TxNHa

][
ShNHacc

]
[�].

(63)
�
TxHa

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

cosh(�x) cos(�x)

cosh(�x) sin(�x)

sinh(�x) sin(�x)

sinh(�x) cos(�x)

x

1

⎤⎥⎥⎥⎥⎥⎥⎦

T

(64)[�] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V−L∕2
V �
−L∕2

VL∕2

V �
L∕2

V0

V �
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The amplification function, V(x), is conveniently represented 
in Eq. (62). It splits into three terms. The first is a vector in 
Eq. (63), which is only a function of x. The second is the 
completeness coefficient matrix for the boundary conditions, 
Eq. (45), which is independent of x. The third is a vector in 
Eq. (64), which contains the variational terms. For different 
cases of dominant torsion and/or distortion, as well as dif-
ferent boundary conditions, it is only necessary to change 
the respective vector or/and matrix in the formulation above.

A variation of V(x) is easily given by:

Introducing Eqs. (62) and (65) into the variational formula-
tion presented in Eq. (26) leads to:

• For the first term in the integral:

The values of the integration matrix 
[
Υ��

NHa

]
= ∫ L

2

−
L

2

[
Tx

��
NHa

]T
[
Tx

′′
NHa

]
dx are given below:

where

(65)�V(x) =
[
TxHa

][
ShHacc

]
.

(66)

∫
L

EiCiV ��(x)�iV ��(x)dx

=EiC

L

2

∫
−

L

2

[
i
[
Tx��

NH1

]
i
[
ShNHacc

]
i[�]

]Ti[Tx��
NH1

]
i
[
ShNHacc

]
dx

= E iC i
[
ShNHacc

]T i
[
Υ��

NHa

]
i
[
ShNHacc

]
i[�].

(67)
�
Υ��

NHa

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Υ��
Ha,11

0 Υ��
Ha,13

0 0 0

Υ��
Ha,22

0 Υ��
zHa,24

0 0

Υ��
Ha,33

0 0 0

Υ��
Ha,44

0 0

0 0

Sym. 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(68)

Υ��
Ha,11

=
1

4��

(
�sinh(�L)

(
�2
(
�2−3�2

)
cos(�L) +

(
�2+�2

)2)

+ � sin(�L)
((

�2 + �2
)2

+
(
�4 − 3�2�2

)
cosh(�L)

)
+ ��L

+
(
�4 − 6�2�2 + �4

))
,

(69)

Υ��
Ha,13

=
1

4

(
−�

(
�2 − 3�2

)
sinh(�L) cos(�L)

+ �
(
�2−3�2

)
cosh(�L)sin(�L) + 4��L(�−�)(�+�)

)
,
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The stiffness matrix due to longitudinal displacement is 
obtained from the multiplication

• For the second term in the integral, one can proceed in a 
similar way:

The values of the integration matrix[
Υ�

NHa

]
= ∫ L

2

−
L

2

[
Tx�

NHa

]T[
Tx�

NHa

]
dx are given below:

where

(70)
Υ��

Ha,22
= −Υ��

Ha,11
+

(
�2+�2

)2
sinh(�L)+�L

(
�4−6�2�2+�4

)
2�

,

(71)Υ��
Ha,24

= Υ��
Ha,13

+ 2��L
(
�2 − �2

)
,

(72)Υ��
Ha,33

=−Υ��
Ha,11

+

(
�2+�2

)2
(� sin(�L)+� sinh(�L))

2��
,

(73)
Υ��

Ha,44
= Υ��

Ha,11
−

(
�2+�2

)2
sin(�L)+�L

(
�4−6�2�2+�4

)
2�

.

(74)i
[
Kc

]
= E iC i

[
ShHacc

]T i
[
Υ��

Ha

]
i
[
ShHacc

]
.

(75)
∫
L

G iD iV �(x)�iV �(x) dx

= G iD i
[
ShNHacc

]T i
[
Υ�

NHa

]
i
[
ShNHacc

]
i[�].

(76)
�
Υ�

NHa

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Υ�
Ha,11

0 Υ�
Ha,13

0 0 0

Υ�
Ha,22

0 Υ�
Ha,24

Υ�
NHa,25

0

Υ�
Ha,33

0 0 0

Υ�
Ha,44

Υ�
NHa,45

0

L 0

Sym. 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(77)

Υ�
Ha,11

=
−1

4��

(
� sin(�L)

(
�2 + �2 cosh(�L) + �2

)

− ��L
(
�2−�2

)
+�sinh(�L)

(
�2cos(�L)+�2+�2

))
,

(78)

Υ�
Ha,13

=
� cosh(�L) sin(�L) −2��L+� sinh(�L) cos(�L)

4
,

The stiffness matrix due to longitudinal rotation is obtained 
from the multiplication

• The third term in the integral follows the same procedure:

The values of the integration matrix[
ΥNHa

]
= ∫ L

2

−
L

2

[
TxNHa

]T[
TxNHa

]
dx are given below:

where

(79)Υ�
Ha,22

= −Υ�
Ha,11

+
�L

(
�2−�2

)
+
(
�2+�2

)
sinh(�L)

2�
,

(80)Υ�
Ha,24

= Υ�
Ha,13

+ ��L,

(81)Υ�
Ha,33

=−Υ�
Ha,11

−

(
�2+�2

)
(� sin(�L)−� sinh(�L))

2��
,

(82)Υ�
Ha,44

= Υ�
Ha,11

+
�L

(
�2 − �2

)
+
(
�2 + �2

)
sin(�L)

2�
,

(83)Υ�
NHa,25

= 2 cosh
(
�L

2

)
sin

(
�L

2

)
,

(84)Υ�
NHa,45

= 2 sinh
(
�L

2

)
cos

(
�L

2

)
.

(85)i
[
Kd

]
= G iD i

[
ShNHcc

]T i
[
Υ�

NHa

]
i
[
ShNHcc

]
.

(86)
∫
L

iB iV(x)�iV(x) dx

iB i
[
ShHacc

]T i
[
ΥHa

]
i
[
ShHacc

]
i[�].

(87)

�
ΥNHa

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

ΥHa,11 0 ΥHa,13 0 0 ΥNHa,16

ΥHa,22 0 ΥHa,13 ΥNHa,25 0

ΥHa,33 0 0 ΥNHa,36

ΥHa,44 ΥNHa,45 0
L3

12
0

Sym. L

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(88)

ΥHa,11 =
1

4��
(
�2 + �2

)(�(�2 + �2
)
(�L + sin(�L))

+ � sinh(�L)
(
�2cos(�L)+�2+�2

)
+��2cosh(�L)sin(�L)

)
,

(89)ΥHa,13 =
� cosh(�L) sin(�L) − � sinh(�L) cos(�L)

4
(
�2 + �2

) ,



303International Journal of Advanced Structural Engineering (2018) 10:295–323 

1 3

The stiffness matrix due to transverse distortion is obtained 
from the multiplication:

The fourth term in the integral in Eq. (18) has a unique prop-
erty. It involves a shape function and its second derivative, as 
well as its commutative product. Each stiffness matrix is not 
symmetric, but each is the transpose of the other. This leads 
to the final symmetric matrix in the summation:

The values of the integration matrix[
Υ��

NHa
,�
]
= ∫ L

2

−
L

2

[
Tx��

NHa

]T[
TxNHa

]
+
[
TxNHa

]T[
Tx��

NHa

]
dx are 

given below:

(90)ΥHa,22 = −ΥHa,11 +
�L + sinh(�L)

2�
,

(91)ΥHa,33 = −ΥHa,11 +
� sin(�L) + � sinh(�L)

2��
,

(92)ΥHa,44 = ΥHa,11 −
sin(�L) − �L

2�
,

(93)ΥNHa,16 =
�Υ�

NHa,45
+ �Υ�

NHa,25

�2 + �2
,

(94)

ΥNHa,25 =
Υ�

NHa,25(
�2 + �2

)2
(
�2 − �2 −

�L

2

(
�2 + �2

)
cot

(
�L

2

)

+� tanh
(
�L

2

)(
L

2

(
�2 + �2

)
+ 2� cot

(
�L

2

)))
,

(95)ΥNHa,36 =
�Υ�

NHa,25
− �Υ�

NHa,45

�2 + �2
,

(96)

ΥNHa,45 =
Υ�

NHa,45(
�2 + �2

)2
(
�L

2

(
�2 + �2

)
tan

(
�L

2

)
− �2 + �2

+� coth
(
�L

2

)(
L

2

(
�2 + �2

)
− 2� tan

(
�L

2

)))
.

(97)i
[
Kb

]
= iB i

[
ShNHacc

]T i
[
ΥNHa

]
i
[
ShNHacc

]
.

(98)
�K iD� ∫

L

iV(x)�iV(x) dx

= �K iD�
i
[
ShHacc

]T i
[
Υ��

NHa
,�
]
i
[
ShHacc

]
i[�].

where

The stiffness matrix due to the Poisson effect in plate behav-
ior is obtained from multiplication, similar to the other 
matrices:

(99)

�
Υ��

NHa
,�
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Υ��
Ha,11

,� 0 Υ��
Ha,13

,� 0 0 Υ��
NHa,16

,�

Υ��
Ha,22

,� 0 Υ��
Ha,24

,� Υ��
NHa,25

,� 0

Υ��
Ha,33

,� 0 0 Υ��
NHa,36

,�

Υ��
Ha,44

,� Υ��
NHa,45

,� 0

0 0

Sym. 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(100)

Υ��
Ha,11

,� =
1

2��

[
� sinh(�L)

(
�2 cos(�L) + �2 − �2

)

− ��2 cosh(�L) sin(�L)+�(�2−�2)(�L+sin(�L))
]
,

(101)

Υ��
Ha,13

,�=
2��L+�sinh(�L)cos(�L)+�cosh(�L)sin(�L)

2
,

(102)Υ��
Ha,22

,� =

(
�2 − �2

)
(�L + sinh(�L))

�
− Υ��

Ha,11
,�

(103)Υ��
Ha,44

,� = Υ��
Ha,11

,� −

(
�2 − �2

)
(�L + sin(�L))

�
,

(104)Υ��
Ha,24

,� = Υ��
Ha,13

,� −2��L,

(105)Υ��
Ha,33

,� = Υ��
Ha,22

,� +

(
�2 − �2

)
(�L − sin(�L))

�
,

(106)Υ��
NHa,16

,� = �Υ�
NHa,45

− �Υ�
NHa,25

,

(107)Υ��
NHa,36

,� = �Υ�
NHa,45

+ �Υ�
NHa,25

,

(108)
Υ��

NHa,25
,� = �L sinh

(
�L

2

)
sin

(
�L

2

)

+ �L cosh
(
�L

2

)
cos

(
�L

2

)
− Υ�

NHa,25
,

(109)
Υ��

NHa,45
,� = �L cosh

(
�L

2

)
cos

(
�L

2

)

− �L sinh
(
�L

2

)
sin

(
�L

2

)
− Υ�

NHa,45
.
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The total stiffness matrix can be expressed by a combination 
of Eqs. (74), (85), (97), and (110):

Here, it is important to highlight that the integration matri-
ces ΥNHa , Υ�

NHa
 , Υ��

NHa
 and Υ��

NHa
,� [given, respectively, in 

Eqs. (87), (76), (67), and (99)] are not dependent on the 
boundary conditions. Therefore, the completeness coeffi-
cient matrix, which expresses the boundary conditions, can 
be understood as a matrix transformation of a kernel stiff-
ness matrix:

The total stiffness matrix of the clamped–clamped of case 
A can be expressed by:

force vector for case A:
As mentioned before, the main reason to use three nodes 

with two degrees of freedom each is to fulfill the inner prod-
uct of the constant/linearly distributed force and the varia-
tion of the generalized displacement, which can be expressed 
by the shape function as:

Just like in the development of the stiffness matrix, the com-
pleteness coefficient matrix of the boundary conditions is 
independent of the length. Therefore, one can find:

where the components of the vector are
i
[
FkNHa

]T
= [Fk1,Fk2,Fk3,Fk4,Fk5,Fk6] for a linear load 

function: iq = ax + b are

(110)i
[
K�

]
=�KiD�

i
[
ShNHacc

]T i
[
Υ��

NHa
,�
]
i
[
ShNHacc

]
.

(111)

i[KNHacc] =
i[ShNHacc]

T
[
E iC i[Υ��

NHa
] + G iD i[Υ�

NHa
]

+ iB i
[
ΥNHa

]
+ �K iD�

i
[
Υ��

NHa
,�
]]

i[ShNHacc].

(112)
i[KNHa] = E iC i[Υ��

NHa
] + G iD i[Υ�

NHa
] + iB i

[
ΥNHa

]
+ �K iD�

i
[
Υ��

NHa
,�
]
.

(113)i[KNHacc] =
i[ShNHacc]

T i[KNHa]
i[ShNHacc].

(114)∫
L

iq(x)�iV(x)dx=

L

2

∫
−

L

2

iq(x) i
[
TxNHa

]
i
[
ShHacc

]
dx.

(115)i
[
FNHacc

]
= i[ShNHacc]

T i
[
FkNHa

]
,

(116)

Fk1=2b

�sinh
(

�L

2

)
cos

(
�L

2

)
+�cosh

(
�L

2

)
sin

(
�L

2

)

�2 + �2
,

As a particular case, the constant function iq = a causes 2nd, 
4th and 5th in the vector above to vanish.

Inhomogeneous solution for case A with hinged–
hinged boundary conditions

When one adopts different boundary conditions at the ele-
ment nodes, the advantages of presenting the stiffness matrix 
in the form of Eq. (112) stand out simply by changing the 
coefficient completeness matrix.

In the case of hinged–hinged2 boundary conditions, the 
null propriety of the first derivate of longitudinal restraint 
at the initial and final nodes cannot be applied for any dis-
placement fields, similar to the case of the clamped–clamped 
beam. Instead, the generalized internal moment must be 
eliminated, which implies that the second derivate of the 
shape function must be null at the hinged nodes.

(117)

Fk2 =
a(

�2 + �2
)2
(
� sinh

(
�L

2

)(
L
(
�2 + �2

)
sin

(
�L

2

)

+ 4� cos

(
�L

2

))
− cosh

(
�L

2

)(
�L

(
�2 + �2

)
cos

(
�L

2

)

+ 2(� − �)(� + �) sin

(
�L

2

)))
,

(118)

Fk3 =
2b

(
� cosh

(
�L

2

)
sin

(
�L

2

)
− � sinh

(
�L

2

)
cos

(
�L

2

))

�2 + �2
,

(119)

Fk4 =
a(

�2 + �2
)2
(
sinh

(
�L

2

)(
�L

(
�2 + �2

)
sin

(
�L

2

)

+2
(
�2 − �2

)
cos

(
�L

2

))

+ �cosh
(
�L

2

)(
L
(
�2+�2

)
cos

(
�L

2

)
−4�sin

(
�L

2

)))
,

(120)Fk5 =
aL3

12

(121)Fk6 = L.

2 The term hinged–hinged boundary conditions is an analog of a 
bending moment and refers to a beam with longitudinal release and 
transverse restraint at the initial and the final nodes. In GBT, it can be 
physically obtained for higher-order modes by a membrane in a cross 
section, such as a thin material with high stiffness.
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For instance, the first two shape functions of case A, pre-
sented in Eq. (28), must satisfy the following conditions for 
the initial node:

ShHahh1:

ShHahc2:

The conditions presented above can also be expressed in 
matrix form, which can be applied to the other shape func-
tions. By following the same procedure presented in the pre-
vious subsection and solving the six systems, each one with 
six equations, the hinged–hinged coefficient completeness 
matrix of boundary conditions is

(122)ShHahc1

(
x=−

L

2

)
=1

(123)Sh��
Hahc1

(
x=−

L

2

)
=0,

(124)ShHahc1(x=0)=0

(125)Sh�
Hahc1

(x=0)=0,

(126)ShHahc1

(
x=

L

2

)
=0

(127)Sh��
Hahc1

(
x=

L

2

)
=0,

(128)ShHahc2

(
x=−

L

2

)
=0

(129)Sh��
Hahc2

(
x=−

L

2

)
=0,

(130)ShHahc2(x=0) = 0

(131)Sh�
Hahc2

(x=0)=0,

(132)ShHahc2

(
x=

L

2

)
=0

(133)Sh��
Hahc2

(
x=

L

2

)
=0.

(134)

�
ShNHahh

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

S11 0 S11 0 −2S11 0

S21 0 −S21 0 0 S21L

S31 0 S31 0 −2S31 0

S41 0 −S41 0 0 S41L

S51 0 S51 0 0 S56
−S11 0 −S11 0 S65 0

⎤⎥⎥⎥⎥⎥⎥⎦
KNHahh

with

By replacing ShNHacc with ShNHahh in Eq. (113), one obtains 
the exact stiffness matrix for an element with hinged–hinged 
boundary conditions. The same must be applied to the vector 
force presented in Eq. (115).

(135)S65 = −2��(cosh(�L) + cos(�L)),

(136)
S11 =

(
�2 − �2

)
sinh

(
�L

2

)
sin

(
�L

2

)

− 2�� cosh
(
�L

2

)
cos

(
�L

2

)
,

(137)KNHahh = S65 − 2S11,

(138)
S21 =

KNHahh

DS2

((
�2 − �2

)
sinh

(
�L

2

)
cos

(
�L

2

)

+ 2�� cosh
(
�L

2

)
sin

(
�L

2

))
,

(139)
DS2 = L

(
�2 + �2

)(
� sinh

(
�L

2

)
cos

(
�L

2

)

+� cosh
(
�L

2

)
sin

(
�L

2

))
+ Saux,

(140)Saux = −2��(cosh(�L) − cos(�L)),

(141)
S31 = (�2 − �2) cosh

(
�L

2

)
cos

(
�L

2

)

− 2�� sinh
(
�L

2

)
sin

(
�L

2

)
,

(142)
S41 =

KNHahh

DS2

(
2�� sinh

(
�L

2

)
cos

(
�L

2

)

+(�2 − �2) cosh
(
�L

2

)
sin

(
�L

2

))
,

(143)S51 = KNHahh

Saux−DS2

DS2L
,

(144)S56 =
LSauxS51

Saux − DS2

.
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Inhomogeneous solution for case A with clamped–
hinged boundary conditions

The coefficient completeness matrix for the clamped–hinged 
boundary conditions can be determined in the same way 
as the previous case. However, due to the non-symmetric 
boundary conditions in FEM, it leads to substantially more 
complex and longer terms, which indicates the disadvantage 
of the exact GBT solution.

It is important to note that, in spite of the complexity 
of the terms below, the stiffness matrix for these boundary 
conditions is only feasible with the use of a coefficient com-
pleteness matrix. A direct derivation of the stiffness matrix 
will lead to extremely long terms in the absence of a coef-
ficient completeness matrix.

Following the same procedure, as in the hinged–hinged 
boundary conditions, one obtains the coefficient complete-
ness matrix for the clamped–hinged boundary conditions:

To evaluate this case, the following auxiliary terms are used:

(145)

�
ShNHach

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 S15 S16
S21 S22 S23 0 S25 S26
S31 S32 S33 0 S35 S36
S41 S42 S43 0 S45 S46
S51 S52 S53 0 S55 S56
−S11 −S21 −S13 0 KNHach − S15 −S16

⎤⎥⎥⎥⎥⎥⎥⎦
KNHach

.

(146)b1 =
(
�2 + �2

)

(147)b2 =
(
�2 − �2

)
,

(148)b3 =
(
3�2 + �2

)

(149)b4 =
(
3�2 − �2

)
,

(150)b5 =
(
�2 + 3�2

)

(151)b6 =
(
�2 − 3�2

)
,

(152)a1 = 2b1

(
� sin

(
�L

2

)
− � sinh

(
�L

2

))
,

(153)a3 = 2b1(� sin(�L) − � sinh(�L)),

(154)a2 = 4 sinh
(
�L

2

)
sin

(
�L

2

)(
cos

(
�L

2

)
−cosh

(
�L

2

))
,

(155)a4=csch
(
�L

2

)
csc

(
�L

2

)
−coth

(
�L

2

)
cot

(
�L

2

)
,

(156)a5 = −Lb1b2 cosh(�L) cos(�L),

(157)a6=−�2Lb1cos(�L)

(158)a8=−4��2 sinh(�L),

(159)a7=−�2Lb1cosh(�L)

(160)a16=4�2� sin(�L),

(161)a9 = −4��2 sinh
(
�L

2

)
cos

(
3�L

2

)
,

(162)a10 = −4�2� cosh
(
�L

2

)
sin

(
3�L

2

)
,

(163)a11 = −2��Lb1 sinh
(
�L

2

)
sin

(
�L

2

)
,

(164)a12 = −4�2� cosh
(
3�L

2

)
sin

(
�L

2

)
,

(165)a13 = −4��2 sinh
(
3�L

2

)
cos

(
�L

2

)
,

(166)a14 = −Lb1b2 cosh
(
�L

2

)
cos

(
�L

2

)
,

(167)a15 = −2��Lb1 sinh(�L) sin(�L),

(168)a17 = −2�b2 sin

(
3�L

2

)
sinh

(
�L

2

)
,

(169)a18 = 4��2 sin

(
�L

2

)
cosh

(
�L

2

)
,

(170)a19 = 4�2� cos

(
�L

2

)
sinh

(
�L

2

)
,

(171)a20 = 4�2� sin (2�L),

(172)a21 = −�2b1L cos

(
3�L

2

)
cosh

(
�L

2

)
,

(173)a22 = �2b1L cos

(
�L

2

)
cosh

(
3�L

2

)
,

(174)

a23 = − sinh
(
�L

2

)(
4� cosh

(
�L

2

)(
b1 cos(�L) − �2

+4�2 cosh(�L)
)
−2b1

(
2� sinh

(
�L

2

)
sin(�L)

+ sin

(
�L

2

)
(3��L(cos(�L)+1)−2� sin(�L)−2�sinh(�L))

))
.
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Therefore, the terms in Eq. (145) are

(175)

KNHach = a23 − 2
(
a5+a6−a7−a15−a16

)
+ 3

(a8
2
+a10−a13

)

+ a11(1−3 cosh (�L))+a9−a12−a14+a20+a21+a22,

(176)
S11 = a5+ a6 − a7 − a8 − a9 − a10+ a12+ a13 − a15 − a16,

(177)S16 =
a11

�2�2

(
4
(
�2a7 − �2a6

)
(
Lb1

)2 +
a16 − a8

4

)
,

(178)S13 = S11 + a1a2

(179)S15 = −2S11 − a1a2,

(180)S12 = −
L

2
a1a2 − S16,

(181)S25 = a3

(
�L − 2 sinh

(
�L

2

)
cos

(
�L

2

))
,

(182)S22 =
4��S25

Lb1a3

(
a11b2

2�2�2
+

2a14

b2
−

a6

�2
−

a7

�2

)
,

(183)

S23 =
2a6b3 − 3b2a11 + a15b4

�Lb1
−

L2b1
(
a8 + a16

)
+ 8a15

4�L

− a17 −
4�a14

(
−2�4a6 + L

(
��b1

)2
− �2b2a7

)

(
L��b1

)2
b2

+
2�a7(

L��b1
)2
(
2�2�2Lb1 − b4a6 − 2a11�

2
)
,

(184)S26=
L

2

(
S21 − S23

)
− S22

(185)S21 = −
(
S23 + S25

)
,

(186)

S31 = −
�
(
a6 − a9

)
�

+
b3a8 − b5a16 + b2a15

2��
+ 2

��a5

b2
−

�a7

�

+ a18

(
3 +

�2

�2
+ 2 cos (�L) − 2 cosh (�L)

)

+ a19

(
2 +

�2

�2
+ 2 cosh (�L)

)
,

(187)S33 = S31 + a1a2a4

By replacing ShNHacc with ShNHach in Eq.  (113), one 
obtains the exact stiffness matrix for an element with 
clamped–hinged boundary conditions. The same must be 
done for the vector force presented in Eq. (115).

Numerical example

As a detailed numerical example of the application of the 
exact stiffness matrix, let us consider the thin-walled circular 
hollow steel cross section shown in Fig. 2. This cross sec-
tion is applied in a vertical cantilever structure subjected to 
a linear projected surface load, i.e., the total load applied in 
the structure is not a product of the surface load and the area 
of the surface, but is the product of the surface load and the 
project area on the global coordinate direction z. The mate-
rial parameters are Young’s modulus E = 205,000 N/mm2 , 
Poisson’s ratio � = 0.3 , and shear modulus G = 78, 846.2 
N/mm2.

To evaluate the problem above under a systematic GBT 
approach, the following analytical steps are performed. First, 
cross-sectional analysis and load’s mode participation; sec-
ond, finite element solution in longitudinal direction; third 
and fourth, analysis of the displacement and stress fields, 
respectively.

(188)S32 = S12a4,

(189)S35 = −
(
S31 + S33

)

(190)S36 = S16a4,

(191)
S43 =

2

�L

(
a5 + a6 − a7 + a14 − a21 − a22

−
a11

Lb1

(
a6

�2
+

a7

�2
−

4a14

b2

))
−

�

�
S23,

(192)S45 = −a3

(
�L − 2 cosh

(
�L

2

)
sin

(
�L

2

))
,

(193)S42 =
S22S45

S25

(194)S41 = −
(
S45 + S43

)
,

(195)S46 =
L

2

(
S41 − S43

)
− S42,

(196)S5i = −
(
�S2i + �S4i

)
for: 1 ≤ i ≤ 5,

(197)S56 = KNHach −
(
�S26 + �S46

)
.



308 International Journal of Advanced Structural Engineering (2018) 10:295–323

1 3

Cross‑sectional analysis and load’s mode 
participation

The cross-sectional analysis is the main feature in GBT. 
Usually, it leads to a quadratic eigenvalue problem, which 
has a non-trivial setup. However, in the case of circular hol-
low sections this laborious step is replaced by orthogonal 
deformation shapes based on Fourier series  (Schardt 1989; 
Silvestre 2007).3 In Fig. 3, some of these deformation shapes 
are presented, and their respective values are given by:

• For pure axial extension mode,

• For pure torsion mode,

• For pure longitudinal extension mode,

• For odd modes, i = 3, 5, 7,...

(198)i = a ∶ iu(�) = 0 iv(�) = 0 iw(�) = 1.

(199)i = t ∶ iu(�) = 0 iv(�) = 1 iw(�) = 0.

(200)i = 1 ∶ iu(�) = 1 iv(�) = 0 iw(�) = 0.

(201)where m = (i − 1)∕2

⎧⎪⎨⎪⎩

iu(�) = −r cos (m�)
iv(�) = −m sin (m�)
iw(�) = m2 cos (m�)

.

Fig. 2  Thin-walled circular hollow section under a linear projected force. a Elevation, b cross section, c force and projected area in a local coor-
dinate system

Fig. 3  Transverse deformation shape modes of a thin-walled circular hollow section according to GBT

3 This example adopts a right-hand coordinate system instead of 
a left-hand coordinate system, which is found in   Schardt (1989) 
and  Silvestre (2007).
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• For even modes, i = 2, 4, 6,...

Once one has the functions for the orthogonal modes, it is 
possible to obtain the properties of the cross section. From 
the longitudinal displacement iu , the generalized warping 
inertia iC is reached by adding between the membrane iCM 
and the plate iCP stiffness. This is expressed as

where K is the plate stiffness given by K =
Et3

12(1−�2)
 . The 

inertia concerning the cross-sectional shear and Poisson 
effect stiffness ( iD and iD� , respectively)4 are given by

The dot index represents the derivative d∕d� . Finally, the 
distortion stiffness is given by:

Evaluating the closed line integral from Eqs. (203) to (206), 
one can obtain the practical formulation:

(202)where m = i∕2

⎧
⎪⎨⎪⎩

iu(�) = r sin (m�)
iv(�) = −m cos (m�)
iw(�) = −m2 sin (m�)

.

(203)iC = iCM + iCP = ∮
(
tr iu(�)2 +

Kr iw(�)2

E

)
d�,

(204)iD =
r

3
t3
h ∮

(
iẇ(𝜃) − iv(𝜃)

r

)2

d𝜃,

(205)iD𝜇 = r∮
iw(𝜃) + iẅ(𝜃)

r2
w(𝜃)d𝜃.

(206)iB =
K

r3 ∮
(
iw(𝜃) + iẅ(𝜃)

)2
d𝜃.

(207)iC =

⎧
⎪⎪⎨⎪⎪⎩

0 for i = t

2𝜋rK∕E for i = a

2𝜋rt for i = 1

𝜋tr3
�
1 +

t2m4

12r2(1−𝜇2)

�
for i > 1

.

(208)

iD =

⎧⎪⎨⎪⎩

0 for i = t and i = 1

2𝜋r3t for i = a

𝜋
t3

3r
m2

�
m2 − 1

��
m2

1−𝜇
− 1

�
for i > 1

.

It is important to note that, from an infinite number of 
orthogonal deformation modes, only a few modes are neces-
sary to evaluate an applied problem such as the one consid-
ered here. The filtering technique of the relevant deformation 
mode is performed by modal decomposition of the external 
loads, which are assumed to be represented by separation 
of variables:

The modal decomposition is achieved by the inner product 
of the deformation modes  (201) and  (202), and the func-
tions of the external load:

For instance, in the present case, the projected external load 
can be described in a local coordinate system (v,w) as:

When these functions are applied to the inner products given 
in Eqs. (214),  215, and  (216), it becomes obvious which 
mode is relevant for the structural analysis. Moreover, inside 
the interval �∕2 ≤ � ≤ 3�∕2 , all integrals of odd trigono-
metric functions are eliminated. Therefore, the even modes 
do not participate in this analysis, as evenq

v
= qm ∫ 3�∕2

�∕2

cos (�) sin (�) cos (m�)d� = 0  a n d  even
q
w
= qm

2 ∫ 3�∕2

�∕2

cos (�)2 sin (m�)d� = 0 . In Table  1, a summary of the modal 
decomposition applied to external forces and the respective 
mode cross-sectional properties necessary to develop the 
GBT solution are presented:

Here, five modes are chosen. As will be shown later, 
modes 3 and 5 are sufficient to solve for the displacement 

(209)
iD𝜇 =

{ 𝜋

r
m4

(
1 − m2

)
for i > 1

0 for all another cases
.

(210)iB =

⎧
⎪⎨⎪⎩

0 for i = t and i = 1

2𝜋Et∕r for i = a

𝜋
K

r3
m4

�
m2 − 1

�2
for i > 1

.

(211)px(x, �) = fx(x)qx(�)

(212)pv(x, �) = fv(x)qv(�),

(213)pw(x, �) = fw(x)qw(�).

(214)iqx = −r∮ qx(�)
iu(�)d�,

(215)iqv = r∮ qv(�)
iv(�)d�,

(216)iqw = r∮ qw(�)
iw(�)d�.

(217)
{

qv = q sin (�) cos (�)

qw=−q cos (�)2
for �∕2≤�≤3�∕2 and qx=0.

4 According to GBT, the unit of generalized shear stiffness is m2 , 
which is consistent with Eq.  (1). The exception is the pure torsion 
mode, from which the unit is m4 , and it leads to the classical Saint–
Venant uniform torsion theory.
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field. However, all modes shown above are required to obtain 
some particular internal forces, especially in the neighbor-
hood of support. Further, from Table  1, it is easy to see 
that 3C is nothing more than the moment of inertia of a 
traditional Euler–Bernoulli beam. For higher-order modes, 
5, 7, and 11, the cross-sectional properties are unusual. 
Their physical meanings are related to the cross-sectional 
ovalization, as presented in Fig.  3. Because these high 
modes have extension C, shear D, distortion B, and Poisson 
effect stiffness D� , the mode classification concerning the 
major behavior must be performed, as was shown in “Shape 
function assortment and the transverse deformation mode 
classification”.

In all GBT’s modes, distortion is the dominant behav-
ior, which is typical in thin-walled beams. Moreover, the 
exact stiffness matrix approach detailed here can be applied 
(Table 2).

Finite element solution in the longitudinal direction

After the cross-sectional properties are obtained and clas-
sified, it is possible to apply FEM to solve the longitudinal 
amplification for each deformation mode. Mode 3 could 
be solved by a well-known Hermitian element with two 
nodes and four degrees of freedom. However, mode 3 is 
solved here by a Hermitian element with three nodes and six 
degrees of freedom, as shown in Fig. 1. These parameters 
for mode 3 present an opportunity to clarify the application 
of the completeness coefficient matrix. For this element, the 
shape function vector is given by:

with:

The completeness coefficient matrix ShHecc can be obtained 
by applying the procedures shown in “Inhomogeneous solu-
tion for case A with clamped–clamped boundary condi-
tions”. For the clamped–clamped case, the result is:

(218)V(x) =
[
TxHe

][
ShHecc

]
[�],

(219)
[
TxHe

]
=
[
x5 x4 x3 x2 x 1

]
,

(220)[�] =
[
V−L∕2 V �

−L∕2
VL∕2 V �

L∕2
V0 V �

0

]T
.

The corresponding kernel stiffness matrix and force vec-
tor (for linear external force: f = ax + b ) for this case are, 
respectively:

Now, one can build the effective stiffness matrix by applying 
the transformation of the completeness coefficient matrix: 
3
[
Kc

]
= E 3C 3

[
ShHecc

]T 3
[
Υ��

He

]
3
[
ShHecc

]
 , and the effective 

external force vector:

Together with the boundary conditions of the null displace-
ment and rotation in x = −L∕2 , the system of equations for 
the nodal displacements in mode 3 (units in N and mm) are:

(221)

�
ShHecc

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

24∕L5 4∕L4 −24∕L5 4∕L4 0 16∕L4

−8∕L4 −2∕L3 −8∕L4 2∕L3 16∕L4 0

−10∕L3 −1∕L2 10∕L3 −1∕L2 0 −8∕L2

4∕L2 1∕(2L) 4∕L2 −1∕(2L) −8∕L2 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

(222)
�
Υ��

He

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

25L7∕28 0 3L5∕2 0 0 0

9L5∕5 0 2L3 0 0

3L3 0 0 0

4L 0 0

0 0

Sym. 0

⎤⎥⎥⎥⎥⎥⎥⎦

(223)
[
FHe

]
=
[
aL7

448

bL5

80

aL5

80

bL3

12

aL3

12
bL

]T
.

[
3F

]
= 3

[
ShHecc

]T[
FHe

]
.

Table 1  Cross section 
and external load modal 
decomposition

Mode C (mm4) D (mm2) B (N/m2) D� (mm−1) q
v
 (N/mm2) q

w
 (N/mm2) qtotal (N/mm2)

a 11,651.51 0 5,152.21 0 0.000 −  2.3562 −  2.3562
3 3,976,084,027 0 0 0 1.000 2.000 3.000
5 3,976,171,414 1.36 2.13 − 0.20 −  2.3562 −  4.7124 −  7.069
7 3,976,550,088 21.71 32.18 − 2.71 1.800 3.600 5.400
11 3,979,719,299 542.87 785.22 − 62.83 −  0.714 −  1.429 −  2.143

Table 2  Modal classification

Mode GD (N/mm2) 2
√
BEC (N/mm2) Condition Case

a 0.00 7.016e+6 GD < 2

√
BEC A

5 1.658e+5 4.210e+7 GD < 2

√
BEC A

7 2.538e+6 2.526e+8 GD < 2

√
BEC A

11 6.191e+7 2.106e+9 GD < 2

√
BEC A



311International Journal of Advanced Structural Engineering (2018) 10:295–323 

1 3

With the nodal displacement values, one can obtain the dis-
placement field corresponding to mode 3 at any position in 
the longitudinal direction by Eq. (218) and its first deriva-
tive. Up to this point the present solution leads to the well-
known Bernoulli–Euler beam model, which cannot reveal 
any cross-sectional distortion or warping. At this point, GBT 
rises as an extension of this traditional beam model and pro-
vides these cross-sectional deformations. In this sequence, 
it the FEM analysis is developed for the higher-order GBT 
modes 5, 7, and 11:

• mode 5: To build up the completeness coefficient and 
stiffness matrices, one must first find the values of � and 
�:

Next, the completeness coefficient matrix is evaluated based 
on the clamped–clamped boundary conditions Eq. (45):

Following the presented procedure, the kernel stiffness 
matrices due to longitudinal stress, transverse shear, and 
distortion are addressed by their respective Eq. (112):

(224)

⎡
⎢⎢⎢⎢⎢⎣

1.69e + 4

−3.21e + 7

2.4e + 4

5.14e + 7

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

4.39e + 3 −2.94e + 7 −3.09e + 3 −4.97e + 7

2.58e + 11 2.32e + 7 2.48e + 11

6.18e + 3 0

Sym 9.94e + 11

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

3
V
L∕2

3
V
�
L∕2

3
V0

3
V
�
0

⎤
⎥⎥⎥⎥⎥⎦

∴

⎡⎢⎢⎢⎢⎢⎣

3
V
L∕2

3
V
�
L∕2

3
V0

3
V
�
0

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

273.28

0.0124

93.94

0.0106

⎤⎥⎥⎥⎥⎥⎦

.

(225)5� =

√√
B

4EC
+

GD

4EC
= 0.000113855,

(226)5� =

√√
B

4EC
−

GD

4EC
= 0.000113401.

(227)

�
ShNHacc

�

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25 2, 341.167 0.25 − 2, 341.167 − 0.5 0.0

−1.071 − 4, 823.949 1.071 − 4, 823.949 0.0 − 22, 473.151

0.318 1, 212.475 0.318 − 1, 212.475 − 0.637 0.0

−0.342 − 2, 639.382 0.342 − 2, 639.382 0.0 − 4, 994.045

0.00016 0.848 − 0.00016 0.848 0.0 4.117

−0.25 − 2, 341.167 − 0.25 2, 341.167 1.5 0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(228)
�
Υ��

NHa

�
=10−11

⎡⎢⎢⎢⎢⎢⎢⎣

3.048 0 −0.794 0 0 0

0.403 0 −0.802 0 0

1.327 0 0 0

4.124 0 0

0 0

Sym 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

From Eq. (113), these matrices lead to the exact stiffness 
matrix, which are presented below in Eq. (232). The cor-
responding load vector is obtained from Eq. (115):

,

The boundary conditions for GBT’s higher-order modes are, 
in this case, the same as those in Euler–Bernoulli bending, 
as the longitudinal (warping) and transverse (distortion) at 
the initial point x = −L∕2 are restrained. After this restric-
tion, one can solve the system of linear equations to deter-
mine the other degrees of freedom:

(229)

�
Υ�

NHa

�
= 10−4

⎡⎢⎢⎢⎢⎢⎢⎣

5.69 0 −7.218 0 0 0

11.534 0 −3.344 56.499e+ 3 0

11.843 0 0 0

5.412 −6.928e+ 3 0

3e+ 8 0

Sym 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

(230)

�
ΥHa

�
= 104

⎡⎢⎢⎢⎢⎢⎢⎣

1.9814 0 1.1803 0 0 2.1757

6.1946 0 1.1803 3.709e+ 4 0

4.5811 0 0 2.7954

0.5949 8.088e+ 3 0

2.25e+ 8 0

Sym 3.0

⎤⎥⎥⎥⎥⎥⎥⎦

.

(231)

�
Υ��

Ha
,�
�
= 10−4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6.036 0 −6.682 0 0 −7.198

6.143 0 −14.43 2.103 + 4 0

6.122 0 0 5.627

−6.054 −9.567 + 4 0

0 0

Sym 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(232)

5[KNHa]

= 103

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.957 3.394e+ 4 − 1.022 5.219e+ 3 − 2.216 4.563e+ 4

2.679e+ 8 − 5.219e+ 3 2.587e+ 7 − 2.076e+ 4 2.411e+ 8

6.957 − 3.394e+ 4 − 2.216 − 4.563e+ 4

2.679e+ 8 2.076e+ 4 2.411e+ 8

1.330e+ 1 0

Sym 1.171e+ 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(233)

5
[
FNHacc

]T
= 104

[
−0.91 −2.9e + 3 −3.92 7.42e + 3 −5.77 −12.33e + 3

]
.
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(234)

⎡
⎢⎢⎢⎣

−3.9246

7.416e + 3

−5.7668

−12.335e + 3

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

6.957e − 1 −3.394e + 3 −2.216e − 1 −4.563e + 3

2.679e + 7 2.076e + 3 2.411 + 7

1.33 0

Sym 1.171e + 8

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

5VL∕2
5V �

L∕2
5V0
5V �

0

⎤
⎥⎥⎥⎥⎦

∴

⎡
⎢⎢⎢⎢⎣

5VL∕2
5V �

L∕2
5V0
5V �

0

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

−13.303

−4.896e − 4

5.788

−5.228e − 4

⎤⎥⎥⎥⎦
.

Fig. 4  Generalized displacement of the axial mode, aV  (in mm)

Fig. 5  Generalized displacement of mode 5, 5V  (in mm)

Fig. 6  Generalized displacement of mode 7, 7V  (in mm)
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• modes 7, 11, and axial: The approach for these modes 
follows the same as that used for mode 5. Therefore, 
here only the final values of nodal displacements are 
presented:

(235)

a[�]T =
[
0.0 0.0 −4.573e−4 −1.524e−8 −2.287e−4 −1.524e−8

]
,

(236)

7[�]T =
[
0.0 0.0 2.763 − 1 9.547 − 6 1.384 − 1 9.152 − 6

]
,

In the case of the axial mode, there is no torsion stiffness 
( D = 0 ), which leads to the particular case � = �.

Analysis of the displacement field

Here, the generalized displacement and rotation functions 
are plotted, and these functions are compared with the solu-
tion obtained from the usual Hermitian shape functions (2 

(237)

11[�]T =
[
0.0 0.0 −1.59 − 3 −7.24 − 8 −7.88 − 4 −5.26 − 8

]
.

Fig. 7  Generalized displacement of mode 11, 11V  (in mm)

Fig. 8  Generalized warping displacement of the axial mode, aV ′ (in m/m)

Fig. 9  Generalized warping displacement of mode 5, 5V ′ (in m/m)
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nodes and 4 degrees of freedom). Moreover, the detailed 
cross-sectional transverse deformation at the extreme free 
point of the structure is shown. This cross-sectional defor-
mation is compared with the results obtained from FEM 
analysis based on the shell elements.

The generalized displacement functions given by 
Eq.  (62), which provide amplification to the GBT modes for 
transverse deformation, are plotted below for modes a, 5, 7, 
and 11 in Figs. 4, 5, 6, and 7, respectively. The amplification 
functions for cross-sectional warping, i.e., the longitudinal 
displacement, are found by the first derivative of Eq. (62) 
and are plotted below for the same modes in Figs. 8, 9, 10, 
and 11, respectively.

One can observe that the solution obtained from a single 
Hermitian element lacks precision, which can be overcome 
by finer discretization, e.g., with ten elements as used above. 
Although this solution seems to have better accuracy for the 
displacement field concerning the lower-order modes 5 and 
7, the first derivatives for the higher modes, such as 11 and 
the axial mode, near the support boundary condition have 
coarse results. Further, it is important to keep in mind that 
this solution was obtained from a linear equation system of 
20 unknowns instead of a system with 4 unknowns, as pro-
posed here by the trigonometric–hyperbolic shape functions. 
Moreover, the high computational performance of GBT is 
only reached by coarse longitudinal beam discretization. 

Fig. 10  Generalized warping displacement of mode 7, 7V ′ (in m/m)

Fig. 11  Generalized warping displacement of mode 11, 11V ′ (in m/m)

Fig. 12  Results of top cross-sectional deformation. The GBT solution is obtained by the summation of all modal deformation factors. The solu-
tion achieved from shell elements is also presented
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If some structural analysis requires many GBT modes, it 
will lead to similar amount of degrees of freedom for each 
beam node as in the case of a cross section modeled by shell 
elements. This GBT model with a high number of modes, 
together with fine longitudinal discretization, provides a total 
number of unknowns that is similar to a traditional shell 
element analysis. This case is especially applicable in non-
linear analysis involving plasticity  (Abambres et al. 2013).

Actually, shell element models with high discretization 
are used in the approach to validate the GBT’s models, 
which are based on comparison of the results from both 
types of models  (Silvestre and Gardner 2011; Silvestre et al. 
2012; Martins et al. 2017).

Here, the results using shell elements were obtained from 
commercial  ANSYS® software, where four models based on 
shell elements types 63, 93, 181, and 281 were developed. The 
discretization among these models are the same: 100 nodes for 
the cross section and 600 element segments in the longitudinal 
direction. This leads to a total of 60,000 elements. The differ-
ence among these models is the type of interpolation function 
applied: linear (shell-63 and shell-181) or quadratic (shell-93 
and shell-281). These elements are based on one of the follow 
kinematic hypotheses: Kirchhoff–Love (shell-63 and shell-93) 
and Mindlin–Reissner (shell-181 and shell-281).

A comparison of the displacement fields between the mod-
els is conducted in the cross section at the free extreme, which 
is plotted in Figs. 12 and  13. The transverse deformation 
obtained from GBT is achieved by a combination of radial 
and tangential displacements v and w,  respectively, which are 
given by the summation of all n modal participation factors:

Here, the second term in Eq.  (238) was added into the 
formulation of  Schardt (1989) and  Silvestre (2007) to 
represent the Poisson effect in the membrane behavior. It 
only affects the displacement field. The values of iV(x) and 

(238)w(x, �) =

n∑
i=1

iV(x) iw(�) + �
r2

im2

iV ��(x) iw(�),

(239)
v(x, �) =

n∑
i=1

iV(x) iv(�).

iV ��(x) for each mode are taken at node x = L∕2 , and for each 
desired point on this cross section, the values v(�) and w(�) 
are accessed in Eq. (201).

One can note in Fig. 12 that the contribution from modes 
7, 11, and axial are almost undetectable in the total displace-
ment. Nevertheless, these modes are required to achieve 
an accurate stress field, as shown in the next subsection. 
Table  3 shows that the highest mean difference is around 
0.8% , which occurs in the tangential direction v between 
GBT and Shell-63. Further, it shows that the GBT results 
approach the response of elements with quadratic interpola-
tion functions (Shell-93 and Shell-281).

For longitudinal displacement, the differences are even 
smaller. The highest mean difference is around 0.16% with 
respect to Shell-181. Figure 13 presents a diagram of the 
longitudinal displacement to illustrate the quality of the 
results:

Analysis of the stress field

In GBT, the longitudinal and shear stresses at a particular 
point of one cross section are easily given by the summation 
among all stress modal participation factors, which are a gen-
eralization of the stresses from Bernoulli–Euler beam theory:

iS(�) = ∫ s

0
iu(�)ds is the generalized first moment. iW(x) 

and iW �(x) are the generalized bending moments and shear 
forces, respectively, and are given by:

Similar to the displacement field, the results from the stress 
field are plotted from the present formulation of the exact 
GBT solution and the traditional Hermitian shape functions.

(240)�x(x, �) =

n∑
i=1

iW(x) iu(�)
iC

,

(241)�x(x, �) =

n∑
i=1

iW �(x) iS(�)
iC

,

(242)iWx(x) = E iC iV ��(x),

(243)iW �x(x) = E iC iV ���(x).

Fig. 13  Longitudinal displacement results at the top cross section: comparison between the solutions of GBT and shell elements
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The stress field results found from Hermitian and trigono-
metric–hyperbolic functions have a clear contrast. Due to the 
higher-order derivatives required to achieve the stress fields, the 

Hermitian shape functions present discontinuities, especially 
for the generalized shear force (see Figs. 14, 15, 16,  17, 18, 19, 
20 and 21). Because trigonometric–hyperbolic shape functions 
always have derivatives, such an effect does not exist. Besides, 

Table 3  Mean differences (%) 
and standard deviation (SD) of 
the displacement field between 
the GBT and shell element 
models

Elem. u v w

Diff. (%) SD (%) Diff. (%) SD (%) Diff. (%) SD (%)

Shell-63 0.13 0.36 0.78 0.94 0.4 1.58
Shell-93 0.04 0.25 0.49 1.06 0.34 1.51
Shell-181 0.16 0.41 0.61 1.08 0.43 1.62
Shell-281 0.04 0.30 0.49 1.06 0.34 1.52

Fig. 14  Generalized internal force of the axial mode, aW (in kN m)

Fig. 15  Generalized internal force of the axial mode, aW ′ (in kN)

Fig. 16  Generalized internal force of mode 5, 5W (in kN m)
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Fig. 17  Generalized internal force of mode 5, 5W ′ (in kN)

Fig. 18  Generalized internal force of mode 7, 7W (in kN m)

Fig. 19  Generalized internal force of mode 7, 7W ′ (in kN)

Fig. 20  Generalized internal force of mode 11, 11W (in kN m)
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the generalized bending moments for axial and higher order 
modes (Figs.  14, 18, respectively) present an exponential grow-
ing behavior near the support. Consequently, the Hermitian shape 
functions require an even higher discretization in this domain.       

This issue of precision deficiency in the Hermitian shape 
function has a particular highlight in the case of circular 
hollow sections, whose internal forces are obtained from a 
combination of the higher order derivatives. For instance, 
the bending moments of the plate for this cross section are 
given by  Silvestre (2007) and Schardt (1989)5:

(244)Mx(x,s) = −K

n∑
i=2

iw(𝜃)iV ��(x)+𝜇
iw(𝜃)+iẅ(𝜃)

r2
iV(x),

(245)M𝜃(x, 𝜃) = −K

n∑
i=2

iw(𝜃) + iẅ(𝜃)

r2
iV(x)

(246)Mx𝜃(x, 𝜃) = −K
1 − 𝜇

r

n∑
i=2

(
iẇ(𝜃) − iv(𝜃)

)
iV �(x),

(247)

Qx(x, 𝜃) = −K

n∑
i=1

iw(𝜃) iV ���(x)

+
(
𝜇
(
iw(𝜃) + iv̇(𝜃)

)
+ iẅ(𝜃) − iv̇(𝜃)

) iV �(x)

r2
,

Fig. 21  Generalized internal force of mode 11, 11W ′ (in kN)

Fig. 22  Longitudinal bending moment M
x
 at x = 1 m for the GBT modes. The final result, which is a summation over all modes, is plotted 

together with the results obtained from the shell element models

Fig. 23  Transverse bending moment M� at x = 1 m for the GBT modes. The final result, which is a summation over all modes, is plotted together 
with the results obtained from the shell element models

5 The transverse bending moment is adjusted here. Because there is 
not any restraint on transverse rotation of the hollow circular cross-
sectional walls ẇ(𝜃) along the longitudinal direction, the transverse 
bending moment has no contribution from the longitudinal curvature 
of the plate by the Poisson effect.
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(248)
Q𝜃(x, 𝜃) =

K

r

n∑
i=1

(1 − 𝜇)
(
iẇ(𝜃) − iv(𝜃)

)
iV ��(x)

+
iw⃛(𝜃) + iẇ(𝜃)

r2
iV(x).

To illustrate the quality of the results obtained from the pre-
sented GBT approach, all internal bending moments and 
shear forces in the cross section at the point x = 1 m are 
plotted below alongside the results obtained from shell ele-
ment models.

Figures  22, 23, 24, 25 and  26 show how GBT approaches 
the results of the other models. It also indicates that there 

Fig. 24  Twist bending moment M�x at x = 1 m for the GBT modes. The final result, which is a summation over all modes, is plotted together 
with the results obtained from the shell element models

Fig. 25  Longitudinal shear forces Q
x
 at x = 1 m for the GBT modes. The final result, which is a summation over all modes, is plotted together 

with the results obtained from shell element models

Fig. 26  Transverse shear forces Q
x
 at x = 1 m for the GBT modes. The final result, which is a summation over all modes, is plotted together with 

the results obtained from the shell element models

Table 4  M
x
 : mean differences 

(in table’s upper-right side) and 
standard deviations (in table’s 
lower-left side) for all models

M
x

GBT (%) Shell-63 (%) Shell-93 (%) Shell-181 (%) Shell-281 (%)

GBT – − 6.22 0.31 − 6.16 78.9
Shell 63 12.24 – − 8.32 − 0.05 − 47.9
Shell 93 8.83 1.97 – − 8.27 77.8
Shell 181 12.37 0.1 2.06 – 92.89
Shell 281 5.62 5.82 19.76 22.81 –
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is no consensus among the different shell element models 
regarding the values of the plate’s internal forces. Tables  4, 
5, 6, 7 and  8 present mean differences and standard devia-
tions for all models.

The membrane’s internal forces can be also presented in 
the GBT modal composition, but in the case of these internal 
forces even higher-order derivatives are required (Silvestre 
2007; Schardt 1989):

(249)Nx(x, �) = Et

n∑
i=1

iV ��(x) iu(�),

(250)N𝜃x(x, 𝜃) = NT
𝜃x
+r

n∑
i=2

(
EtiV ���(x)−

iqxfx(x)

𝜋r3

)
iu̇(𝜃)

m2
,

(251)

N𝜃(x, 𝜃) = NA
𝜃
+ rfw(x)qw(𝜃)

− K

n∑
i=2

r iw(𝜃) iV ����(x) +
iw⃜(𝜃) + iẅ(𝜃)

r3
iV(x)

+
(
𝜇
(
iw(𝜃) − iẅ(𝜃)

)
+ 2

(
iv̇(𝜃)(𝜇 − 1) + iẅ(𝜃)

)) iV ��(x)

r
.

Table 5  M� : mean differences 
(in table’s upper-right side) and 
standard deviations (in table’s 
lower-left side) for all models

M� GBT (%) Shell-63 (%) Shell-93 (%) Shell-181 (%) Shell-281 (%)

GBT – 7.16 19.48 7.27 7.27
Shell 63 0.72 – 1.33 − 0.1 − 0.1
Shell 93 41.03 37.19 – − 0.09 − 0.08
Shell 181 0.72 0.03 38.12 – 0.01
Shell 281 0.71 0.09 38.09 0.06 –

Table 6  M�x : mean differences 
(in table’s upper-right side) and 
standard deviations (in table’s 
lower-left side) for all models

M�x GBT (%) Shell-63 (%) Shell-93 (%) Shell-181 (%) Shell-281 (%)

GBT – 2.78 3.31 2.45 2.9
Shell 63 2.93 – 1.13 1.06 − 0.11
Shell 93 9.77 9.25 – − 0.01 1.25
Shell 181 3.78 5.7 5.75 – 1.19
Shell 281 3.05 0.13 9.33 5.81 –

Table 7  Q
x
 : mean differences (in table’s upper-right side) and stand-

ard deviations (in table’s lower-left side) for all models

Q
x

GBT (%) Shell-93 (%) Shell-181 (%) Shell-281 (%)

GBT – 3.58 25.43 3.74
Shell 93 11.71 – − 3.97 0.95
Shell 181 280.16 350.09 – − 75.59
Shell 281 5.1 8.08 73.5 –

Table 8  Q� : mean differences (in table’s upper-right side) and stand-
ard deviations (in table’s lower-left side) for all models

Q� GBT (%) Shell-93 (%) Shell-181 (%) Shell-281 (%)

GBT – 15.11 8.93 10.36
Shell 93 21.36 – − 2.19 − 1.43
Shell 181 3.75 19.7 – 2.48
Shell 281 12.11 10.54 9.63 –

Fig. 27  Longitudinal membrane force N
x
 at x = 1 m of for the GBT modes. The final result, which is a summation over all modes, is plotted 

together with the results obtained from the shell element models
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Here, the constants NT
�x

 and NA
�
 are the shear from the uni-

form torsion mode and the tangential force due to the axial 
mode, respectively  (Silvestre 2007).

In particular, the membrane force in the axial direction 
N� requires a fourth-order derivative, which is eliminated in 
the traditional Hermitian shape functions. This is another 
point that stresses the need for functions with continuous 
derivatives, such as the hyperbolic–trigonometric functions 
presented here.

Figures  27, 28 and  29 illustrate how all models converge 
to nearly the same internal force of the membrane. Tables  9, 
10 and 11 quantify the mean differences and standard devia-
tions for all models.

Conclusion

This work presented the procedure and results for calcu-
lating the exact stiffness matrices in GBT. Based on the 
various possible solutions of the inhomogeneous differ-
ential equation for GBT, the choice of the exact stiffness 
matrix is guided by the classification of each warping mode 
as either dominant distortion, dominant torsion, or critical 
distortion–torsion.

In the Euler–Bernoulli beam finite element, the loading 
function can usually be described as a linear combination 
of shape functions, i.e., a constant or linearly distributed 
load can be expressed by a linear combination of Hermitian 
functions. However, in GBT, the shape functions based on 
the exact solution of the homogeneous differential equation 
lead to a combination between trigonometric and hyper-trig-
onometric functions, which are linearly independent with 

Fig. 28  Transverse membrane force N� at x = 1 m of for the GBT modes. The final result, which is a summation over all modes, is plotted 
together with the results obtained from the shell element models

Fig. 29  Membrane shear force N�x at x = 1 m of for the GBT modes. The final result, which is a summation over all modes, is plotted together 
with the results obtained from shell element models

Table 9  N
x
 : mean differences 

(in table’s upper-right side) and 
standard deviations (in table’s 
lower-left side) for all models

N
x

GBT (%) Shell-63 (%) Shell-93 (%) Shell-181 (%) Shell-281 (%)

GBT – 0.02 − 0.02 0.05 − 0.02
Shell 63 0.17 – 0.05 − 0.03 0.05
Shell 93 0.13 0.04 – 0.08 0.01
Shell 181 0.19 0.02 0.06 – − 0.08
Shell 281 0.13 0.04 0.01 0.06 –
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respect to constant, linear, or other polynomial functions. 
Therefore, the exact solution for a GBT element must be 
based not only on the homogeneous differential equation, but 
it must also account for the particular solution, which will 
increase the number of nodes in the beam element.

To overcome the complexity in the stiffness matrix, it is 
split into a kernel stiffness matrix under a transformation via 
the completeness coefficient matrix. This matrix not only 
enables one to handle complex and long shape functions, but 
can also provide a systematic approach, in which the element 
boundary conditions can be easily managed.

The numerical example shows the benefits of using the 
exact stiffness matrix. First, the exact solution is obtained 
without extra effort due to longitudinal discretization of the 
element. Consequently, the number of unknowns in finite 
element analysis is reduced. Second, the displacement and 
stress fields (in particular, the generalized shear internal 
force) are obtained without applying any perturbation to the 
approximate solution. On the other hand, the implementa-
tion of the stiffness matrix in GBT involves terms which are 
much more complex than the usual terms in the stiffness 
matrix based on Hermitian shape functions. Furthermore, 
the numerical example shows how GBT and the different 
types of shell element models lead to the almost same dis-
placement field and internal forces of the membrane. With-
out the same precision, all models approach to the approxi-
mated results for the internal forces of the plate.

Acknowledgements This work was carried out with the support of 
CNPq (Conselho Nacional de Desenvolvimento Cient-fico e Tecnol-
gico—Development National Council for Scientific and Technologi-
cal), Brazil.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Abambres M, Camotim D, Silvestre N (2013) Physically non-
linear GBT analysis of thin-walled members. Comput Struct 
129:148–165

Abambres M, Camotim D, Silvestre N (2014) GBT-based elastic-plas-
tic post-buckling analysis of stainless steel thin-walled members. 
Thin-Walled Struct 83:85–102

Andreassen M, Jönsson J (2012) Distortional solutions for loaded semi-
discretized thin-walled beams. Thin-Walled Struct 50:116–127 
(707)

Camotim D, Silvestre N (2011) Non-linear GBT formulation for open-
section thin-walled members with arbitrary support conditions. 
Comput Struct 89:1906–1919

Correia JR, Branco FA, Silva NMF, Camotim D, Silvestre N (2011) 
First-order, buckling and post-buckling behaviour of GFRP 
pultruded beams. Part 2: Numerical simulation. Comput Struct 
89:2065–2078

Davies JM (1986) An exact finite element for beam on elastic founda-
tion problems. J Struct Mech 14(4):489–499

Dinis PB, Camotim D, Silvestre N (2006) GBT formulation to analyse 
the buckling behaviour of thin-walled members with arbitrarily 
‘branched’ open cross-section. Thin-Walled Struct 44:20–38

Duan L, Zhao J, Liu S, Zhang D (2016) A B-splines-based GBT for-
mulation for modeling fire behavior of restrained steel beams. J 
Constr Steel Res 116:65–78

Gonçalves R, Ritto-Correa M, Camotim D (2010) A large displace-
ment and finite rotation thin-walled beam formulation includ-
ing cross-section deformation. Comput Meth Appl Mech Eng 
199:1627–1643

Jönsson J, Andreassen M (2011) Distortional eigenmodes and homo-
geneous solutions for semi-discretized thin-walled beams. Thin-
Walled Struct 49:691–707

Table 10  N� : mean differences 
(in table’s upper-right side) and 
standard deviations (in table’s 
lower-left side) for all models

N� GBT (%) Shell-63 (%) Shell-93 (%) Shell-181 (%) Shell-281 (%)

GBT – 0.79 1.11 0.83 − 1.96
Shell 63 1.81 – − 0.44 − 0.08 3.1
Shell 93 1.44 0.45 – − 0.4 − 0.64
Shell 181 1.91 0.14 0.57 – 2.42
Shell 281 5.42 7.77 9.55 14.65 –

Table 11  N�x : mean differences 
(in table’s upper-right side), and 
standard deviations (in table’s 
lower-left side) for all models

N�x GBT (%) Shell-63 (%) Shell-93 (%) Shell-181 (%) Shell-281 (%)

GBT – 0.01 − 0.02 0.01 − 0.02
Shell 63 0.17 – 0.03 0.01 0.03
Shell 93 0.14 0.03 – 0.03 0
Shell 181 0.19 0.02 0.05 – − 0.03
Shell 281 0.15 0.02 0.01 0.04 –

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


323International Journal of Advanced Structural Engineering (2018) 10:295–323 

1 3

Martins AD, Camotim D, Dinis PB (2017) Behaviour and DSM design 
of stiffened lipped channel columns undergoing local–distortional 
interaction. J Constr Steel Res 128:99–118

Schardt R (1989) Verallgemeinerte Technische Biegetheorie. Springer, 
Berlin

Schardt R (1994) Generalized beam theory—an adequate method for 
coupled stability problems. Thin-Walled Struct 19:161–180

Silvestre N (2007) Generalized beam theory to analyse the buckling 
behaviour of circular cylindrical shells and tubes. Thin-Walled 
Struct 45:185–198

Silvestre N (2008) Buckling behaviour of elliptical cylindrical shells 
and tubes under compression. Int J Solids Struct 45:4427–4447

Silvestre N, Camotim D (2003a) GBT buckling analysis of pultruded 
FRP lipped channed members. Comput Struct 81:1889–1904

Silvestre N, Camotim D (2003b) Nonlinear generalized beam theory 
for cold-formed steel members. Int J Struct Stab Dyn 3:461–490

Silvestre N, Gardner L (2011) Elastic local post-buckling of elliptical 
tubes. J Constr Steel Res 67:281–292

Silvestre N, Camotim D, Dinis PB (2012) Post-buckling behaviour and 
direct strength design of lipped channel columns experiencing 
local/distortional interaction. J Constr Steel Res 73:12–30

Soriano H (2003) Método de Elementos Finitos em Análise de Estru-
turas. Editora da Universidade de São Paulo

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


