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Abstract
The purpose of the paper is to develop an analytical investigation on free vibration of a simply supported functionally graded 
(FG) doubly curved shell panels resting on elastic foundation in thermal environment. Heat conduction and temperature-
dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform 
distribution over the shell surface and varied in the thickness direction only. Material properties are assumed to be tempera-
ture dependent and graded in the thickness direction according to a simple power law distribution in terms of the volume 
fractions of the constituents. Based on the first-order shear deformation theory and applying the Hamilton’s principle, gov-
erning equations of motion are derived. The results of the study are compared with the available published literature. The 
numerical results obtained reveal that the material volume fraction index, geometrical parameters and temperature change 
have significant effects on natural frequencies of the FG doubly curved shell panels.

Keywords  Functionally graded materials · Doubly curved shell panels · Free vibration analysis · First-order shear 
deformation · Elastic foundation · Thermal environment

Introduction

Functionally graded materials (FGMs) have been used in 
various engineering applications because of their distinctive 
material properties, which can be altered to satisfy different 
working environments. Typically, these materials are made 
from a mixture of ceramic and metal or a combination of 
different metals. The ceramic constituent provides the high-
temperature resistance due to its low thermal conductivity. 
The ductile metal constituent, on the other hand, prevents 
fracture caused by stresses due to high-temperature gradient 
in a very short period of time. Numerous studies on thermo-
mechanical characteristics of FGM structures have been car-
ried out to date.

Static and dynamic analyses of functionally graded shells 
in thermal environment are well established in the exist-
ing literature. Kadoli and Ganesan (2006) presented linear 

thermal buckling and free vibration analysis for functionally 
graded cylindrical shells with clamped–clamped boundary 
condition with temperature-dependent material properties. 
First-order shear deformation theory along with Fourier 
series expansion of the displacement variables in the cir-
cumferential direction are used to model the FGM shell. 
Shen and Wang (2010) investigated thermo-elastic vibra-
tion and buckling characteristics of the functionally graded 
piezoelectric cylindrical shell using Maxwell equation with 
a quadratic variation of the electric potential along the thick-
ness direction of the cylindrical shells and the first-order 
shear deformation theory. Based on Love’s shell theory and 
the von Karman–Donnell type of kinematic nonlinearity, 
free vibration analysis of simply supported functional graded 
cylindrical shells for four sets of in-plane boundary condi-
tions is performed by Haddadpour et al. (2007) using Galer-
kin’s method. The free vibration analysis of rotating func-
tionally graded (FG) cylindrical shells subjected to thermal 
environment is investigated based on the first-order shear 
deformation theory of shells and was reported in the work 
of Malekzadeh and Heydarpour (2012). Pradyumna and 
Bandyopadhyay (2010) investigated the free vibration and 
buckling behavior of functionally graded singly and doubly 
curved shell panels. A higher-order shear deformation theory 
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is used and the shell panels are subjected to a temperature 
field. Bhangale et al. (2006) used the first-order shear defor-
mation theory to study the thermal buckling and vibration 
behavior of truncated functionally graded conical shells in 
a high-temperature environment by finite element method. 
Temperature-dependent material properties are considered 
to carry out a linear thermal buckling and free vibration 
analysis. Zhao et al. (2009) studied static response and free 
vibration characteristic of metal and ceramic functionally 
graded shells using the element-free kp-Ritz method. The 
displacement field is expressed in terms of a set of mesh-free 
kernel particle functions according to Sander’s first-order 
shear deformation shell theory. Wattanasakulpong and Chai-
kittiratana (2015) presented an investigation of free vibra-
tion of stiffened functionally graded doubly curved shallow 
shells under thermal environment. Two types of temperature 
rise throughout the shell thickness: linear temperature rise 
and nonlinear temperature rise are considered. Alijani et al. 
(2011) studied geometrically nonlinear vibrations of func-
tionally graded doubly curved shells subjected to thermal 
variations and harmonic excitation via multi-modal energy 
approach.

However, studies on thermal vibration analyses of func-
tionally graded doubly curved shell panels resting on elas-
tic foundation are very rare in the existing literature. Thus, 
in this paper, the vibration analysis of simply supported 
functionally graded doubly curved shells resting on Win-
kler–Pasternak elastic foundation including thermal effects 
is performed. The material properties are assumed to be tem-
perature dependent and graded in the thickness direction 
according to a simple power law function. A first-order shear 
deformation theory is used for the analysis of two FG panels, 
namely, cylindrical, spherical, and as special case of plate.

Theoretical formulation

Consider a functionally graded doubly curved panel with 
length a, width b, and thickness h, referred to an orthogonal 
curvilinear coordinate system (x, y, z), as shown in Fig. 1. 
R1 and R2 are the radii of principal curvatures of the middle 
surface in the x-direction and the y-direction, respectively. 
The elastic material properties vary through the shell thick-
ness according to a simple power law distribution in terms 
of the volume fractions of the constituents. The top surface 
(z = h/2) of the shell is assumed to be ceramic rich, whereas 
the bottom surface (z = − h/2) is assumed to be metal rich. 
The effective properties of the functionally graded material 
at any thickness of coordinate z can be expressed by the fol-
lowing power law distribution:

(1)P(z,T) =
(
Pc − Pm

)( z

h
+

1

2

)p

+ Pm,

where p is the volume fraction exponent, Pm and Pc repre-
sent the properties of the metal and the ceramic, respectively. 
The properties of the temperature-dependent constituents of 
an FGM shell can be expressed as (Bhangale et al. 2006):

where P0, P−1, P1, P2 and P3 are the coefficients of tem-
perature T(K) and are unique to the constituent materials.

In this study, Poisson ratio ν is assumed to be constant, 
Young’s modulus E and thermal expansion coefficient α 
are assumed to be temperature dependent, whereas the 
mass density ρ and thermal conductivity � are independ-
ent of the temperature (Huang and Shen 2004):

It is assumed that temperature variation occurs in the 
thickness direction only and one-dimensional temperature 
field is assumed to be constant in the x–y surface of the 
shell. In such case, the temperature distribution through 
the thickness of the functionally graded shell can be 
obtained by solving a steady-state heat transfer equation 
as follows (Wattanasakulpong and Chaikittiratana 2015):

This equation is solved by imposing boundary condi-
tions of T = Tc at z = h/2 and T = Tm at z= − h/2. The 
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3
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Fig. 1   Coordinate system and geometry of an in-contact doubly 
curved FGM panel
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solution of this equation, by means of polynomial series 
as (Javaheri and Eslami 2002):

According to the first-order shear deformation shell the-
ory, the displacement field can be expressed as (Wattana-
sakulpong and Chaikittiratana 2015):

where u0, v0 and w0 are the displacement at the mid-surface 
of the shell in the x, y and z directions, respectively; and �x 
and �y are the rotations of the transverse normal about the y 
and x axes, respectively.

The linear strains are defined as:

where

Then, the linear constitutive relations are expressed as,

(5)T(z) = Tm +
(
Tc − Tm

)
�(z),
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(7)

u(x, y, z, t) = u0(x, y, t) + z�x(x, y, t),

v(x, y, z, t) = v0(x, y, t) + z�y(x, y, t),

w(x, y, z, t) = w0(x, y, t).
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where

The force and moment resultants and are defined by:

where

and,

and ks is shear correction coefficient (ks = 5/6). The tem-
perature is assumed to only vary along the thickness direc-
tion of the shell; thus, �

xy
= 0 . The thermal stresses for the 

functionally graded shell in the x, y directions are expressed 
as follows:

where ΔT = T(z) − T0 is temperature rise from the reference 
temperature T0 at which there are no thermal strain.

Using the Hamilton’s principle, we can obtain the equa-
tions of motion as (Wattanasakulpong and Chaikittiratana 
2015):
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where

and Kw is the Winkler’s elastic foundation coefficient and 
Kg is a constant showing the effect of the shear interaction 
of vertical elements.

The internal moment and force resultants are expressed in 
displacement terms using Eqs. (7)–(13) and then substituting 
into Eq. (15), we get the equations of motion expressed to the 
displacement components (u0, v0, w0, �x,�y).
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Table 1   Temperature-dependent 
coefficients of the FGM shell 
panel

Material Properties P0 P-1 P1 P2 P3

Si3N4 Ec (Pa) 3.4843E+11 0 −3.07E+04 2.16E+07 −8.946E−11
αc (1/K) 5.8723E−06 0 9.095E−04 0 0
Kc (W/m K) 13.723 0 −1.032E−03 5.466E−07 −7.876E−11
νc 0.24 0 0 0 0
�c(kg/m3) 2370 0 0 0 0

SUS304 Em (Pa) 2.0104E+11 0 3.079E−04 −6.53E−07 0
αm (1/K) 1.233E−05 0 8.086E−04 0 0
Km (W/m K) 15.379 0 −1.264E−03 2.09E−06 −7.223E−10
νm 0.3262 0 −2.002E−04 3.797E−07 0
�m (kg/m3) 8166 0 0 0 0

Solution procedures

Based on the Navier’s approach, the displacement unknowns 
satisfying the simply supported boundary conditions for the 
FG doubly curved shell are assumed in the following forms:

where umn, vmn, wmn, �xmn, �ymn are the coefficients; i is 
the imaginary unit (i2 = − 1); ω is the natural frequency; 
� = m�∕a ; � = n�∕b.

The final form of equations of motion can be obtained by 
substituting Eq. (17) in the equations of motion expressed to 
the displacement components of Eq. (15) and conceded as.

where [K]5×5 and [M]5×5 are the stiffness matrix and the mass 
matrix, respectively. With Kij , Mij are the elements which 
can be obtained by Symbolic Toolbox of the MATLAB 
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,
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)
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software. 
{Δ}5×1 =

{
umn vmn wmn �xmn �ymn

}T is the displace-
ment vector.

The natural frequency �mn can be obtained by solving 
the above eigenvalue-type equation (Eq. 18). With each pair 
of m and n, there is a corresponding unique mode shape of 
the natural frequency for the FG doubly curved shell panel.

Results and discussion

Validation study

To verify the accuracy of the presented solutions, two exam-
ples have been analyzed for free vibration of the simply sup-
ported FG shell panels and the values of the fundamental 
frequencies are compared with those in existing literature. 
It is noted that the doubly curved shell panels can be flex-
ible and degenerated into the different structures by setting 
these quantities:

•	 a

R1

=
b

R2

= 0 for the plate structures;

•	 a

R1

= 0 for the cylindrical panel; a
R1

=
b

R2

 for the spherical 

panel.

According to Reddy and Chin (1998), the effective mate-
rial properties used in the present study are listed in Table 1.

Example 1  We first consider the FG doubly curved shell 
panels resting on elastic foundation under ambient tempera-
ture with geometrical parameters: a/b = 1, a/h = 10, power 
law index p = 0.5 and various curvatures (a/R1, b/R2)

The non-dimensional natural frequencies for two types 
of curved panel (spherical panel and cylindrical panel) and 
the associated plate are calculated for various values of 
foundation parameters and displayed in Table 2. A com-
parison is made by comparing with those given by Kiani 
et al. (2012). The non-dimensional frequency parameter is 
defined as: �1 =

a2

h
⋅ � ⋅

√
�c∕Ec  . According to Kiani 

et al. (2012), the non-dimensional Winkler and Pasternak 
c o e f f i c i e n t s  a r e  K0 =

Kw ⋅ a4

Dm

 ;  J0 =
Kg ⋅ b

2

Dm

 w i t h 
(
Dm = Emh

3∕12∕(1 − �2)
)
 . The material properties of 

ceramic and metal are as follows:

•	 Ceramic (Al2O3): Ec = 380 GPa; ρc = 3800 kg/m3; ν = 
0.3.

•	 Metal (Al): Em = 70 GPa; ρm = 2707 kg/m3; ν = 0.3.

As shown in Table 2, a good agreement between the 
results is accomplished.

Example 2  In this example, the vibration analysis of FG 
plates (a/R1 = b/R2=0) in the thermal environment not rest-
ing on elastic foundation (K0 = J0 = 0) is investigated.

The FG plate is made of SUS304 and Si3N4 and the mate-
rial properties are assumed to be dependent of temperature 
as listed in Table 1. Geometrical parameters of the plate are: 
h = 0.025 (m); a = b = 0.2 (m); a/h = 8. The non-dimen-
sional frequency parameter is used in the form: 
�2 =

a2

h
⋅ � ⋅

√
�0m

(
1 − �2

)
∕E0m with E0m and ρ0m as the 

reference values of Em and ρm at T0 = 300 K. Table 3 shows 
the calculated non-dimensional frequencies parameters in a 
comparison with those given by Shen and Wang (2012) 
using higher-order shear deformation plate theory. It can be 
seen clearly that the results obtained are in very good agree-
ment. The biggest difference are 1.18% for Tc = 600 K, Tm 
= 600 K, mode (2, 2) and p = 1 and 1.17% for Tc = 400 K, 
Tm = 300 K, mode (2, 2) and p = 0.5.

These two comparisons show that the presented results 
match very well with the established ones. It can be seen 
that the maximum difference of the fundamental frequency 
between present solution and Shen and Wang’s solution is 
only about 1.20% at Tc = Tm = 600 K and p = 1, mode (2, 2).

Table 2   Comparison of non-dimensional frequencies �1 for FG 
square doubly curved shells resting on elastic foundation (under 
ambient temperature)

(K0, J0) (a/R1, a/R2) Sources Difference (%)

Kiani et al. 
(2012)

Present

(0, 0) (0.2, 0.2) 5.1783 5.1783 0.00
(0.2, 0) 4.9551 4.9568 0.03
(0, 0) 4.8985 4.8985 0.00

(100, 0) (0.2, 0.2) 5.3517 5.3517 0.00
(0.2, 0) 5.1365 5.1381 0.03
(0, 0) 5.0826 5.0826 0.00

(100, 10) (0.2, 0.2) 5.6787 5.6787 0.00
(0.2, 0) 5.4768 5.4783 0.03
(0, 0) 5.4278 5.4278 0.00

(500, 0) (0.2, 0.2) 5.9957 5.9957 0.00
(0.2, 0) 5.8053 5.8068 0.03
(0, 0) 5.7606 5.7606 0.00

(500, 10) (0.2, 0.2) 6.2892 6.2892 0.00
(0.2, 0) 6.1085 6.1099 0.02
(0, 0) 6.0673 6.0673 0.00

(500, 50) (0.2, 0.2) 7.3468 7.3468 0.00
(0.2, 0) 7.1943 7.1955 0.02
(0, 0) 7.164 7.1640 0.00

Values in bold are results by the authors, and values in italic are the 
differences between the authors’ results and the reference results
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Parametric study

Next, the following parametric studies are carried out to 
analyze the free vibration of FG doubly curved shell pan-
els in the case of resting on elastic foundation (K0 = 100 
and J0 = 10) or without contacting with elastic founda-
tion (K0 = J0 = 0) in thermal environment. The FG mate-
rial type used is SUS304/Si3N4 in the following inves-
tigation with the material properties as in the Table 1. 
The non-dimensional frequency parameter is defined as 
�3 = 100 ⋅ � ⋅ h ⋅

√
�0c∕E0c with E0c and ρ0c as the ref-

erence values of Ec and ρc at T0 = 300 K. The geometrical 
parameters of the shell panels are: a/b = 1; a/h = 20; for 
spherical shell (a/R1 = b/R2 = 0.5) and for cylindrical shell 
(a/R1 = 0; b/R2 = 0.5). The temperature at the metal-rich 
surface is Tm = 300 K and the temperature at the ceramic-
rich surface is Tc.

For illustration purpose, on the plot graph, the non-
dimensional frequencies of shell panels resting on elastic 
foundation are depicted by solid lines whereas the dash 
lines are for the case of shell panels not resting on elastic 
foundation.

Table 3   Comparison of non-dimensional frequencies for the FG plates under thermal environment

Temperature P Sources Mode (1, 1) Mode (1, 2) Mode (2, 2)

Tc = 600 K; Tm = 600 K 0 Shen and Wang (Shen and Wang 2012) 12.079 28.381 43.016
Present 12.159 28.437 42.977
Difference (%) 0.66 0.20 0.09

1 Shen and Wang (Shen and Wang 2012) 7.337 17.203 26.043
Present 7.287 17.033 25.734
Difference (%) 0.69 1.00 1.20

2 Shen and Wang (Shen and Wang 2012) 6.584 15.397 23.259
Present 6.532 15.261 23.045
Difference (%) 0.80 0.89 0.93

10 Shen and Wang (Shen and Wang 2012) 5.698 13.279 20.000
Present 5.643 13.174 19.882
Difference (%) 0.97 0.79 0.59

Tc = 400 K; Tm = 300 K (tem-
perature dependence)

0 Shen and Wang (Shen and Wang 2012) 12.424 29.192 44.245
Present 12.440 29.096 43.974
Difference (%) 0.13 0.33 0.62

1 Shen and Wang (Shen and Wang 2012) 7.556 17.726 26.842
Present 7.520 17.567 26.537
Difference (%) 0.48 0.91 1.15

2 Shen and Wang (Shen and Wang 2012) 6.785 15.877 23.994
Present 6.754 15.77 23.811
Difference (%) 0.46 0.68 0.77

10 Shen and Wang (Shen and Wang 2012) 5.878 13.708 20.66
Present 5.846 13.649 20.602
Difference (%) 0.54 0.43 0.28

Fig. 2   Variation of the non-dimensional fundamental frequency of 
the FG panel with the temperature (Tc)

Values in bold are results by the authors, and values in italic are the differences between the authors’ results and the reference results
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Effect of the temperature on the fundamental natural 
frequency

The temperature variation refers to the case when the metal 
temperature is kept constant while the ceramic surface is 
heated; so there is a temperature difference ΔT between the 
top and bottom shell surfaces. The variation of the non-dimen-
sional fundamental frequencies of the spherical and cylindri-
cal FG shell panels (p = 1) versus the temperature is shown 
in Fig. 2. It is observed that the trend of the non-dimensional 
fundamental frequency changes of the cylindrical panel and 
spherical panel are the same. The non-dimensional fundamen-
tal frequencies decrease when the temperature of the ceramic 

surface (Tc) increases. The reduction of the non-dimensional 
fundamental frequencies is due to the decreasing of panel’s 
stiffness when the temperature increases. The non-dimensional 
fundamental frequency of FG shell panels with the elastic 
foundation is higher than that without elastic foundation.

Effect of the power law index on the fundamental 
frequency

Figure 3 shows the effect of the power law index (p) on 
non-dimensional fundamental frequencies of cylindrical and 
spherical panels. The temperatures are Tm = 300 K, Tc = 
400 K. It can be seen that the non-dimensional natural fre-
quency decreases with increasing value of power law index 
(p). It is basically due to the fact that Young’s modulus of 
ceramic is higher than metal. Figure 3 also shows that the 
non-dimensional natural frequency decreases significantly 
when p is small.

)

Fig. 3   Variation of the non-dimensional fundamental frequency of 
the FG panel with the power law index (p)

Fig. 4   Variation of the non-dimensional fundamental frequency of 
the FG panel with a/h ratio

Fig. 5   Variation of the non-dimensional fundamental frequency of 
the FG panel with b/R2 ratio

Table 4   Variation of the non-dimensional fundamental frequency of 
the FG panel with various foundation parameters (K0 and J0)

The non-dimensional fundamental frequency �3

J0 K0

0 100 300 500

0 1.7176 1.7632 1.8509 1.9347
100 2.4657 2.4976 2.5602 2.6214
300 3.5112 3.5337 3.5781 3.6220
500 4.3086 4.3269 4.3632 4.3992
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Effect of geometrical parameters on the fundamental 
frequency

Figure 4 and 5 depict the variation for the non-dimensional 
fundamental frequency of spherical panel and cylindrical 
panel versus the side-to-thickness (a/h) and side-to-radius 
ratios (b/R2). Note that: p = 1, Tm = 300 K, Tc = 400 K. It 
can be seen clearly from Fig. 4 that the dimensionless fre-
quencies of these shell panels decrease dramatically with the 
increase of the side-to-thickness ratio.

To study the effect of the variation of the fundamental 
frequency versus side-to-radius ratio of shell panels (b/R2), 
the geometric and material properties and the temperature 
used for investigation in Fig. 5 are: a/b = 1, a/h = 20, p = 
1, Tm = 300 K, Tc = 400 K and with varying ratio of b/R2. 
For spherical panel, a/R1 = b/R2 and for cylindrical panel, 
a/R1 = 0. Figure 5 shows that the non-dimensional fun-
damental frequency increases with increasing of side-to-
radius ratio. This means that the rising of the curvature of 
the shell causes an increase in the stiffness, which causes 
a rapid increase of the non-dimensional fundamental fre-
quency of the panel.

Table 4 and Fig. 6 show an observation concerning the 
effect of foundation parameters K0, J0 on the variation of 
non-dimensional fundamental frequency �3 of FG panel 
with a/b = 1, p = 1, a/h = 20, Tm = 300 K and Tc = 400 K. 
These results indicate that the non-dimensional fundamen-
tal frequency �3 increases with increasing of foundation 
parameters K0, J0, and the shear Pasternak parameter J0 
has more significant effect than the Winkler parameter K0 
in causing an increase of the non-dimensional fundamental 
frequency.

Based on the presented theory, it is clearly shown 
that the effect of foundation parameters K0, J0 plays an 
important role in the increase of the non-dimensional 

fundamental frequency of the FG panel. The non-dimen-
sional fundamental frequencies of shell panels resting on 
elastic foundation are always bigger than those without 
elastic foundation.

Conclusion

In this paper, a solution for vibration analysis of simply sup-
ported FG doubly curved shell panels based on the first-order 
shear deformation theory is formulated. The Pasternak-type 
elastic foundation is in contact with the FG shell panels in 
thermal environment. The accuracy of numerical solutions 
has been validated against existing results in available lit-
erature. The numerical results show a significant impact of 
foundation parameters, thermal environment (Tc, Tm), power 
law index (p), side-to-thickness ratio (a/h) and side-to-radius 
ratio (b/R2) on non-dimensional fundamental frequency of 
the FG shell panels. We hope that the presented analyti-
cal solution could be useful references for future researches 
which relate to the mechanical behaviors of FG doubly 
curved shell panel structures.
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