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Abstract 
     In this paper, we develop an inventory model for perishable items with random lifetime in a 
two-echelon production-distribution system. There is a manufacturer at the first stage that 
produces its product with a constant rate. Deterioration in this stage is modeled via a two-
parameter Weibull distribution. At the second stage, the retailer places the order and receives 
the product instantly. The deterioration rate at this stage is a three-parameter Weibull 
distribution, which its initial value depends on the time the product has spent in the first stage 
before being transferred. The behavior of different key parameters of the model is analyzed 
using numerical studies. 
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Introduction
We develop a mathematical model for a 

two-echelon supply chain with perishable 
items. Products are produced in the first 
stage and are sent to the second stage to be 
stocked. Different deterioration functions are 
imposed for two stages. Our purpose is to 
find the optimal policy, i.e., the optimal 
production time, production cycle, inventory 
level and delivery cycle of the system. The 
wide variety of perishable items and the 
enormous number of factories and 
manufacturers dealing with these products as 
well as the application of two-echelon supply 
chains for their production and distribution 
systems is the main motivation of this study.  

Integrating production planning and 
distribution planning in a supply chain is 
necessary to achieve its optimal 
performance. These systems are called 
Explicit Production-Distribution (EPD) 
systems. Among different groups of EPD 
defined by Chen [1], joint Lot-Sizing and 
Finished-Product Delivery Problem is the 
closest to our study.  

In this study we assume production period 
is equal to distribution period and items lose 
their values in both stages. The deterioration 
functions are stochastic and follow Weibull 
distribution. At the first echelon, 

deterioration is modeled via a two-parameter 
Weibull distribution similar to Covert and 
Philip [3] and at the second echelon 
deterioration rate follows a three -parameter 
Weibull distribution as Philip [8]. 

Studies on integrated inventory models 
with perishable items when the 
manufacturers and the retailers coordinate 
their production and ordering policies have 
received much attention from researchers in 
recent years. Yang and Wee [12] considered 
a two-echelon system with one manufacturer 
and several customers with constant 
production rate, deterioration rate and 
demand. Wee et al. [11] cited two possible 
flaws in the cost function of Wee and Yang’s 
model and give a proposal to eradicate the 
flaws. Rau et al. [9] proposed a model 
similar to that of Yang and Wee [12] with 
the only difference that the deterioration rate 
is set to be exponential. Yang and Wee [13] 
developed a multi-lot-size production and 
inventory model of deteriorating items with 
constant production and demand rates. Lo et 
al [7] derive an optimal solution for an 
integrated production-inventory model with 
imperfect production processes and Weibull 
distribution deterioration under inflation. 
Cheng and Wee [2] studied a production-
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inventory deterioration model considering 
pricing policy, warranty period, imperfect 
production and stock dependent demand. Lee 
and Hsu [6] study the two-warehouse 
inventory control model for deteriorating 
items with finite replenishment rate. Wang et 
al [10] empirically showed different 
deterioration rates in each echelon affect 
performances of individuals and integrated 
inventory policies.  To the best of our 
knowledge, this is the first study considering 
perishable items in a two-echelon supply 
chain having production at the first stage and 
warehouse at the second stage.  

The following assumptions are made in 
developing the mathematical model: 

 

1- Demand rate is constant. 
2- The product is produced on one 

production line or production machine. 
There is constant set up cost at the 
beginning of each production cycle. 

3- Inventory control is continuous. 
4- Lead-time is constant and zero 
5- At the first stage there is only one 

producer. 
6- At the second stage there is only one 

retailer. 
7- Shortage is not allowed. 
8- Deterioration of items begins at the 

first stage right after being produced. 
9- The rate of deterioration and its 

parameters are known for both stages. 
10- Replacing or repairing the 

deteriorated items is not allowed. 
11- Our purpose is to find the optimal 

policy, i.e., the optimal production 
time, production cycle, inventory level 
and delivery cycle of the system. 

 

The rest of this paper is organized as 
follows: In section 2 we develop a 
mathematical problem based on our 
assumptions. In Section 3 we solve the 
proposed model using numerical analysis 
and investigate the behavior of optimal 
solution as different parameters of the model 
change. Conclusion is presented in Section 4. 
 

Mathematical Model 

For describing the model and its solution 
we need the following notations, see figure 
1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  An illustration of the proposed two-
echelon system 

 
D: Demand per unit of time 
P: Production per unit of time 
T: Production cycle (time between two 
consequent setups) 
R: Delivery cycle (time between two 
consequent deliveries) 
A: Delivery cost 
S: Set-up cost 
s: Set-up time 
C1: Cost of one unit of product for producer 
C2: Cost of one unit of product for the 
retailer 
h: Cost of keeping an item in per unit of time 
Tp: Production time in a production cycle 
t: time (representing the age of items) 
Ii(t): Inventory level at the ith stage (i=1,2) 
fi(t): Density function of items life-time at 
the ith  stage (i=1,2) 
Fi(t): Cumulative function of items life-time 
at the ith  stage (i=1,2) 
Zi(t): Deterioration function of items at the ith  
stage (i=1,2) 
 

First, we will develop different 
components of the model separately and at 
the end, the mathematical model is 
introduced. We have used the results from 
Covert and Philip [3] for deterioration rate of 
product in the first stage when we have a 
Weibull distribution with two parameters. 

 

P

TP 

First 

Second 

I1 max

T 

D 
I2 max 

R 
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f1(t): Density function of items life-time in 
the first stage, has a Weibull distribution 
with two parameters; its p.d.f. is as follows:  
 

)exp()( 1
1

  tttf                             (1) 
 

in which  is the scale parameter and   is 
the shape parameter. 
 
F1(t): Cumulative function of items life-time 
in the first stage may be used along with 
reliability theory to gives us the initial 

deterioration rate as 
)(1

)(
)(

1

1'

tF

tf
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
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results in:  
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If (β>1), the initial deterioration rate is 
increasing with respect to time. 

If (β<1), the initial deterioration rate is 
decreasing with respect to time. 

If (β=1), the initial deterioration rate is 
constant and Weibull distribution turns into 
exponential distribution. 

 
The behavior of the initial deterioration 

rate, )(' tZ , as a function of time is shown in 

the figure 2. Note that )(' tZ is the 
deterioration rate for an item in inventory of 
the first stage at time t=0. In other words, 
this function is used when items are in 
inventory from the beginning of the planning 
period and we cannot use this function for a 
producer which produces gradually, i.e., 
items deteriorate after they are produced and 
all items are not produced at time t=0. 

Since the production rate is P, an item 
which is produced earlier begins to 
deteriorate earlier, too. 
 
 
 
 

 
 
 
 

Figure 2: The behavior of the initial deterioration 
rate 

 
We suggest finding a function for 

deterioration rate by take an average over 
time, so we will have: 

10

1

1 )( 



  






t
t

dxx
tZ

t

                       (3) 

 

According to the fact that items go to the 
inventory of the first stage immediately after 
production and their deterioration rate is zero 
at time t=0, it implies that  β <1. Comparing 
a situation in which the warehouse is related 
to a producer and the items enter the 
warehouse gradually to a situation in which 
warehouse is for a retailer who receives an 
order altogether, we find out that the 
deterioration rate in the first case is 1/β of 
the deterioration rate in the second stage: 

)(
1

)(1 tZtZ 


. 

I1(t): Inventory level at the first stage 
 
The following differential equation shows 
the rate of inventory at the first stage: 
 

PdtdttZtItdI  )()()( 111  
 
In fact the above equation shows that 
inventory increases with production and 
decreases with deterioration. By replacing 
the value of 1

1 )(  ttZ  in the above 
equation we get: 
 

dtttIPdttdI ))(()( 1
11

   

PttI
dt

tdI
 1

1
1 )(

)(   

Solving the above equation with standard 
method results in: 
 

)exp(

)exp(
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0

1 


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t

kdxx
tI

t

 
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To find the constant value of k, note that the 
inventory is equal to zero at t=0: 
 

1(0) 0 0I k    

Time

Deterioration 
Rate

 

 =1  <1

 >1 
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So we will have:
)exp(

)exp(
)(

0

1 
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
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

t

dxx
tI

t


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)(2 tf : Density function of item life-time at 

the second stage. 
 

As mentioned before, the deterioration 
rate in two-parameter Weibull case begins at 
time t=0 either with the rate of zero or 
infinity (see figure 2). Items after being 
produced and transferred to warehouse begin 
to deteriorate. While transferring the items to 
the warehouse of the second stage, 
deterioration rate is not zero or infinity. In 
fact it is not reasonable to use two-parameter 
Weibull distribution. This justifies the use of 
three-parameter Weibull which gives us 
more flexibility in modeling the 
deterioration.  We have used the results from 
Philip [8] for deterioration rate of product in 
the second stage when we have a Weibull 
distribution with three parameters. The pdf 
of this distribution is defined as follows: 

 
])(exp[)()( 1

2
    tttf  

 
 : Scale parameter (α>0) 
 : Shape parameter (β>0) 
 : Location parameter ( ≤λ t) 
 
F2(t): Cumulative distribution function of 
items life-time in the second stage can be 
used to find the deterioration rate of the 
second stage. Similar to the first stage we 
have: 

)(1

)(
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2

2
2 tF
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
  

2 ( ) 1 exp ( )F t t         
 
This gives us: 

1
2 )()(   ttZ  

 
In this deterioration function,  is not 
constant. Deterioration rate at TP, when the 
production in a cycle of the first stage 
finishes, is equal to the deterioration rate at 

t=0 at the second stage. Therefore, we will 
have: 
 

11)0(     pT  

 
By solving the above equation, we will 

have:
11 




 pT
 

)(2 tI : Inventory level at the second stage 
 
The following differential equation shows 
the inventory level at the second stage: 
 

1
2 2( ) ( ) ( )dI t I t t dt Ddt         

 
By solving the above equation, we get: 
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in which k is a constant and is determined in 
the following way: 
 

2 0
( ) 0 exp[ ( ) ]

T
I T k D x dx      
 
Moreover, by replacing k, we will have: 
 

])(exp[

])(exp[
)(2 


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
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
 

t

dxxD
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T

t  

 
Objective function 

The objective of this model is to minimize 
the total cost in both stages which has the 
following components:  

 
Total cost = Setup cost + Holding cost at the 
first stage + Deterioration cost in the first 
stage + Delivery cost + Holding cost at the 
second stage + Deterioration cost at the 
second stage. 

We will compute all parts of the objective 
function separately and at last, we will add 
them up to find the objective function as a 
whole. 
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Setup cost 
As mentioned in the problem 

assumptions, setup cost is supposed to be 
constant. Since this cost is imposed at the 
beginning of each production cycle, setup 
cost per time unit will be: 

Setup cost per unit of time=
T

S
 

Holding cost 
In order to compute the holding cost, we 

should analyze inventory behavior in both 
stages. 

As it is shown in figure 1, setup begins at 
time zero at the first stage and finishes s 
units of time later. At time s, production 
begins with a constant rate P and continues 
until Tp. At this time, all of the produced 
items are transferred to the second stage and 
with a constant rate D they are consumed. 
Note that in the figure 1, deterioration rate is 
not considered. According to the figure, 
maximum inventory at the end of production 
time at the first stage is equal to the 
maximum inventory at the moment of 
entering to the warehouse at the second 
stage. So maximum inventory at the second 
stage happens to be at t=0 and we have: 
 

])(exp[

])(exp[
)(

2max2 











 dxxD

ItI  

And because
21 maxmax II  , we can compute 

holding costs of the first stage 

as:
T

T
I

h p**
2 1max . 

The ratio
T

Tp  shows the fraction of time in 

which the first stage warehouse has 
inventory. Inventory cost of the second stage 

can simply be stated as:
2max*

2
I

h
. 

Delivery cost 
The delivery cost per unit of time is 

follows: 

Delivery cost per unit of time=
R

A
 

 
Deterioration cost for the first stage 

Total production at the first stage= PTp *  

Amount of deteriorated items at the first 
stage=

1max* IPTp   

Cost of deterioration at the first stage per 

unit of time=
T

IPTC p )*(
1max1 

 

 
Deterioration cost for the second stage 

At the second stage, the amount of 
deteriorated items is equal to the amount of 
items that enter the second stage minus the 
items that are used to fulfill the demand: 
Amount of deteriorated items at the second 
stage= DRI 

2max . 

Cost of deterioration at the second stage per 

unit of time=
R

DRIC )(
2max2 

. 

 
Model Constraints 

As mentioned before, the maximum 
inventory at the first stage is when 
production is finished just before the whole 
inventory is transferred to the second stage. 
Maximum inventory at the second stage is 
when the whole inventory is received from 
the first stage. So one of the problem 
constraints is the constraint which shows 

21 maxmax II  . 

])(exp[
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)exp(
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00
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 
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p

T
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T
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Next, note that the production cycle is 
equal to T, which consists of setup time, 
production time and idle time. Second 
constraint is the one that ensures setup time 
and production time does not exceed the 
production cycle. 

pTST 
 

In the above equations, we have: 

11 



 pT

 

Obviously, the model consists of 
nonlinear non-convex objective function, 
which has a nonlinear non-convex equality 
constraint and a nonlinear non-convex 
inequality constraint. This problem is 
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difficult to solve using exact methods and in 
a closed form.   
 

Numerical Analysis  
MATLAB is used and the near-optimal 

solutions are obtained using a coordinated 
search method. To implement the search in a 
narrower space, we can use a simple upper 
limit and lower limit for the production time: 

Clearly, the number of cycles cannot 

exceed
s

P

D
1

. On the other hand, we have: 

 number of cycles
P

D
Tp  . 

From the above inequalities, we will 
come to the following conclusion: 

( )p

Ds
T

P D


  
For an upper limit on pT , it is worthy to 

note that if pT  becomes very large, the 

deterioration rate grows so fast that the 
inventory level at the first stage does not 
increase at all. In other word, a very large 
production time may cause the deterioration 
rate to be greater than the production rate. 
Finding the upper limit in this way is very 
complicated though. Instead we have used 
the following very simple upper limit in our 
numerical study: Tp<1-s. 

In this section, for analyzing the proposed 
model, we have solved a numerical example 
and done sensitivity analysis so that we can 
find out what are the effects of changing 
different parameters in the model. 

 
Example 

Assume a system which has a producer at 
the first stage and a retailer at the second 
stage. The producer produces an item with 
the production rate P and stocks the item at 
its warehouse. The deterioration of the item 
at the first stage is following two-parameter 

Weibull in the form of 5.0
1 600

1
)( ttZ  . After 

finishing the production time and 
transferring items to the warehouse of the 
second stage, the deterioration function 

changes to a three-parameter Weibull of the 

form 5.0)((5.1)
600

1
()(2  ttZ .  

Other parameters values of the problem are 
as follows: 
  =1/600,  =1.5, h=0.1, C1=4, D=7, 
A=150, S=100, s=2, C2=4 
The optimal policy of the system is obtained 
as follows: 
Optimal production and delivery cycle 
(T=R)=171600 
Production time=64308 
Maximum inventory=1272277 
Total cost=9106 

 
Next we show the impact of different 

assumptions and parameters on the key 
elements of the optimal policy. 
1- The influence of the assumption that 
items are perishable on total cost, maximum 
inventory level, Imax,  and optimal production 
cycle, pT ,  is summarized in table 1. 

 As it is expected, adding the assumption 
of perishability to the problem assumptions 
will result in increasing the total cost. The 
behavior of the two variables pT  and Imax 

with and without perishable items are 
depicted in figures 3 and 4 respectively. 

By adding perishability assumption to the 
model, increasing Tp results in Imax being 
increasing up to some point and then 
declining. This is because by increasing the 
inventory, deterioration rate increases and 
after some time, it becomes larger than the 
production rate.  

The behavior of Tp and T are exactly the 
same as Tp and Imax. 
 

 
Item is not 
perishable 

Item is 
perishable 

Rate of 
change 

Total Cost 7755.90 9106 17.40 

Maximum 
Inventory 

157.16 127.22 -19.05 

Optimal 
 
Production 
Cycle 

22.56 17.16 -23.93 

Table 1: The effect of perishable items 
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Figure 3: Behavior when item is not perishable 
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Figure 4: Behavior when item is perishable 

 
2- Changing in α in the interval 
(0,1/300) will result in the following changes 
in the optimal solution: 

By increasing α, the rate of deterioration 
will increase too, so it is expected that total 
system cost increases too (see figure 5). By 
increasing α we predict that Imax decreases, 
because increasing α makes the rate of 
deterioration to increase. As a result, the 
inventory should decrease. This implies that 
the production cycle decreases too (see 
figure 6). 
3- The changes in the holding cost in the 
interval of (0, 0.1) will result in the 
following changes in the optimal solution: 

By increasing the holding cost, we predict 
Imax would decrease because increasing the 
holding cost, implies the inventory level to 
decline. 

The result of comparing the optimal 
points with respect to holding cost changes is 
summarized in the table 2. 
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7500
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Figure 5: The influence of α on total cost function
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k

T
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Figure 6: The influence of α on pT
 

 
The deterioration cost and setup time did 

not show any influence on TC, pT  and Imax.  

As we can see, the model is more 
sensitive to   and holding cost but it is not 
sensitive to other parameters. This means 
that using non perishable models for the case 
of perishable items may lead to the 
significant errors in total cost estimation as 
well as mistake managerial decisions such as 
quantity order. Also these experiments 
showed that having precise values of   and 
holding cost are very important from point of 
view of management. 
 

Conclusion  
In this paper we have developed a two-

echelon inventory model for perishable items 
with stochastic life-time. At the first stage, 
the deterioration rate is following a two-
parameter Weibull distribution while at the 
second stage, it is modeled via a three-
parameter Weibull distribution. 
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The optimal solution is obtained using 
numerical methods and the influence of 
different model parameters on the optimal 
policy is considered. The results reveal that a 
small change in the deterioration parameters 
has a great effect in the total cost. Our goal is 
to provide a general framework for these 
kinds of problems and illustrate how this 
complicated system can be modeled. To the 
best of our knowledge, this is the first paper 
which considers two different deterioration 
rates for two stages with a high level of 
flexibility in modeling. 

 

 

Inventory 
 cost 

Total 
Cost  

 

Maximum 
 Inventory 

Optimal 
Production 

Cycle 
%100 1.19 99.31 13.68 
%75 1.13 99.31 13.68 
%50 1.06 120.27 16.32 
%25 0.99 120.27 16.32 
٠ 0.91 127.22 17.16 

%-25 0.83 147.99 19.68 
%-50 0.73 147.99 19.68 

%-75 0.63 189.06 24.36 

%-100 0.50 216.06 27.24 
Table 2: The influence of changes in holding cost
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