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Abstract 

This paper presents an analytical solution for stability analysis of thick 

rectangular functionally graded plates with porosity subjected to in-plane 

loadings using the higher-order shear and normal deformable plate theory, 

for the first time. The plate material and its porosity are assumed to vary 

along the thickness direction. Also, three types of porosity pattern along the 

thickness direction are considered. Since the plate structure is not generally 

symmetry to the mid-plane it is assumed that the in-plane loads are applied 

to its neutral plane to remove the bending-stretching coupling. Stability 

equations are derived and then analytically solved for rectangular plates 

with simple supports using Legendre orthonormal polynomials and Navier’s 

method to determine the critical buckling load. The results are then 

compared with estimates made using higher-order shear deformation 

(HSDT) and classical plate theories (CPT) available in the literature for FG 

non-porous plates. It is shown that compared to the HSDT, the HOSNDT 

yields smaller values for the plate critical buckling load and the effect of 

HOSNDT is more important as the plate thickness increases. In addition, it 

is demonstrated that compared to the uniaxial load, the effect of HOSNDT is 

greater as the plate is subjected to a biaxial compression load. Finally, the 

effects of the porosity distribution, porosity, power-law index, loading 

condition, and thickness ratio are studied in detail using HOSNDT. The 

results show that the porosity effect is greater in smaller values of the power-

law index parameter. 

Keywords: Higher order shear and normal deformations plate theory; Functionally graded porous 

materials; Thick rectangular plates; Legendre orthonormal polynomials; Stability analysis; Porosity 

effect. 

1. Introduction 

The fact that the material properties of functionally graded materials can be formed technologically to meet 

different performance requirements in different parts of a structural member is the basic advantage of those 

materials over common structural materials [1]. 

Functionally graded materials (FGMs) can be classified into different types based on the size and the structure [2, 

3]. According to the thickness, these materials can be classified into thin and bulk FGMs. FGMs can also be 

classified as stepwise (or discontinuous) and continuous FGMs according to the type of grading [2, 4]. Conventional 
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functionally graded materials, constituted from two or more materials, are frequently used in various branches of 

practical engineering (such as aeronautics, nuclear reactors, electronics, biomedicine, and the automotive industry) 

because of their high durability, thermal resistance, corrosion resistance, flexibility, and toughness. However, there 

is another type of FGM that is graded in porosity or lattice structure [5, 6]. This type of FGM may have only one 

material and consequently the grading is represented by the gradually distributed porosity or lattice structure rather 

than the chemical composition [5, 6]. Also, it has been shown that common FGMs, having two or more material 

phase, can be further improved in terms of weight reduction and energy absorption by introducing the porosity while 

maintaining a significant amount of strength [7, 8]. Therefore, another type of FGMs can be that whose material and 

porosity distribution vary continuously in one or more direction. 

Different techniques have been reported for manufacturing functionally graded porous materials. For example, 

functionally graded porous structures of acrylonitrile butadiene styrene have been fabricated with a solid-state 

constrained foaming process [7]. Continuous functionally graded porous scaffolds based on the Schwartz diamond 

unit cell with a wide range of graded volume fraction were manufactured by selective laser melting [9]. Functionally 

graded materials with porosity can also be manufactured by 3D printing technology. For example, Ozbolat and 

Khoda [10] designed a new parametric path plan for manufacturing of porous structures with functionally graded 

materials. They designed the interconnected and continuous deposition path to control the internal material 

composition in a functionally graded manner. Their proposed layer-based algorithmic solutions generate a bilayer 

pattern of zigzag and spiral toolpath consecutively to construct heterogeneous three-dimensional (3D) objects. In 

addition, different techniques have been reported for manufacturing porous materials by Goyal and Pandey [11], 

which some of them may be expanded to two phase materials. 

Functionally graded materials with porosity have hopeful results for several engineering applications such as 

advanced refining [12], the automotive industry [13], and medical implants [9, 14]. 

Several researchers have investigated the mechanical responses of beams, plates and shells made from 

functionally graded porous materials. For example, Ebrahimi et al. [15] carried out thermo-mechanical vibration 

analyses of functionally graded beams made of porous material subjected to various thermal loadings. Rezaei et al. 

[16] investigated free vibration analysis of rectangular plates composed of functionally graded materials with 

porosities based on first-order shear deformation plate theory. Akbas [17] presented vibration analysis and static 

bending for a rectangular porous functionally graded plate with simple supports using the first-order shear 

deformation theory. Wang and Zhou [18] investigated large-amplitude vibration of sigmoid functionally graded thin 

plates with porosities. Their results indicate that the types of uniform and uneven porosity distributions have 

different effects on the resonance amplitude of the sigmoid functionally graded plate. Nam et al. [19] based on 

higher-order shear deformation theory studied buckling and post-buckling of stiffened porous functionally graded 

plate rested on Pasternak's elastic foundation. Zhao et al. [20] developed a new three-dimensional exact solution for 

vibration analysis of functionally graded porous thick plates with three different porosity distributions including 

even, uneven, and logarithmic-uneven. Ghorbanpour Arani et al. [21] studied free vibrations of rectangular plates 

made of porous materials in which Y-foam, G-foam, and Coustone are used. Enayat et al. [22] performed a 

comprehensive study of the mechanical behavior of functionally graded porous nanobeams resting on an elastic 

foundation. Rezaei and Saeedi [23] estimated the effect of the displacement coupling between solid and liquid on the 

free vibration characteristics of rectangular isotropic rigid porous plates under undrained conditions. They employed 

the Mindlin plate theory to model the moderately thick porous plate. Rezaei and Saidi [24] presented free vibrations 

of porous rectangular plates saturated with viscous fluid. Askari et al. [25] presented an exact Navier solution for 

free vibration analysis of thick rectangular FG porous plates surrounded by piezoelectric layers. They used third-

order shear deformation plate theory and considered two different porosity distributions for the variation of 

mechanical properties of porous material across the thickness of the plate. Khorshidvand et al. [26] presented 

numerical solutions for static bending and mechanical buckling analysis of functionally graded porous plates. They 

modeled the problem based on a refined plate theory and considered three porosity distributions with the same total 

mass density. Kumar et al. [27] investigated the temperature-dependent vibration characteristics of FG porous plates 

using first-order shear deformation theory. Arefi et al. [28] studied size-dependent deflection analysis of FG 

graphene nanoplatelets reinforced composite micro-plates with porosity subjected to transverse load. They used 

third-order shear deformation theory of Reddy’s. Radwan [29] investigated buckling and free vibration behaviors of 

functionally graded porous nanoplates embedded in an elastic medium are via a nonlocal strain gradient theory. 

Reddy and Reddy [30] investigated bending response of porous functionally graded plates using a higher order shear 

deformation theory. Zhou et al. [31] studied buckling analysis of functionally graded porous spherical caps 

reinforced by graphene platelets, including both symmetric and uniform porosity patterns in the metal matrix, 

together with five different graphene platelets distributions. Khatoonabadi et al. [32] investigated shear buckling 
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analysis of functionally graded porous annular sector plate reinforced with graphene nanoplatelets. They assumed 

that the plate is consisting of a layered model with uniform or non-uniform dispersion of graphene platelets in a 

metallic matrix including open-cell interior pores. Also, Asemi et al. [33] studied static, dynamic and natural 

frequency analyses of functionally graded porous annular sector plate reinforced by graphene nanoplatelets. They 

considered uniform and nonuniform dispersion of graphene platelets in a metallic matrix including open-cell interior 

pores. Arshid et al. [34] presented bending and buckling analyses of heterogeneous annular/circular micro sandwich 

plate located on Pasternak substrate. They assumed that the plate’s core is made of saturated porous materials and 

face sheets are made of functionally graded piezo-electro-magnetic polymeric nano-composites. Khatounabadi et al. 

[35] resented the low-velocity impact analysis of functionally graded porous circular plate reinforced with graphene 

platelets based on the first-order shear deformation theory. Babaei et al. [36] reviewed the mechanical properties of 

functionally graded saturated porous structures and presented a comprehensive review on the mechanical analyses of 

these structures in saturated condition. Also, they discussed the challenges and possible future works on this area. 

Alhaifi [37] investigated large deflection analysis of a functionally graded saturated porous rectangular plate 

subjected to transverse loading which is located on a nonlinear three-parameter elastic foundation. Babaei and 

Asemi [38] studied static response of functionally graded saturated porous rotating truncated cone is investigated. 

They considered three different patterns for porosity distribution along with the thickness of the cone. Babaei et al. 

[39] studied an axisymmetric rotating truncated cone made of functionally graded porous materials reinforced by 

graphene platelets under a thermal loading. 

It should be noted that functionally graded porous plates can generally be categorized into two different classes: 

a) those that are made from a single material phase and have a variable porosity distribution in at least one direction 

(i.e. homogenous ones), and b) those that consist of two material phases and have a uniform or non-uniform pattern 

of the porosity distribution (i.e. inhomogeneous ones). To the best of the authors’ knowledge, the researches on 

static, buckling and vibration analyses of homogeneous and inhomogeneous functionally graded porous plates have 

been performed based on common plate theories such as classical, first order shear deformation and higher order 

shear deformation theories. In general, the plate problems can be solved by using 3D elasticity theory or common 

plate theories. However, compared to the 3D elasticity theory, solving the plate problems based on the plate theories 

is more convenient. Nevertheless, because of some simplifying assumptions on the plate deformations (for example, 

ignoring some deformations and choosing some predefined patterns for the deformations) the common plate theories 

(such as classical plate theory, first-order shear deformation theory, higher order shear deformation theories, and 

etc.) are not as accurate as the 3D elasticity theory, especially for thick plates. However, the higher-order shear and 

normal deformable theory not only considers all possible deformations of the plate, but also does not use a 

predefined pattern for the plate deformations. So, this theory can cause results with the same degree of accuracy as 

the 3D elasticity theory.  Also, this theory is more convenient than the 3D elasticity theory, especially for thick 

plates due to its two-dimensional form. Therefore, in general, the higher-order shear and normal deformable theory 

can be preferred over the 3D elasticity theory. 

The above literature review indicates that the buckling analysis of functionally graded plates with porosity using 

the higher-order shear and normal deformable theory has not been investigated yet and the only published work on 

this area refers to the buckling analysis of functionally graded porous plates reinforced by orthogonal and/or oblique 

stiffeners based on the higher-order shear deformation theory performed by Nam et al. [19]. Therefore, this paper 

aims to investigate the effect of porosity on the buckling behaviour of thick plates made of functionally materials 

using the higher-order shear and normal deformable theory. The plate material and the porosity are considered to 

vary through the plate thickness direction according to, respectively, a power-law function and a cosine function. 

Also, three types of porosity gradation along the thickness are considered. Since the plate structure is not symmetry 

to the mid-plane, it is assumed that the plate is under in-plane loading on its neutral plane which is at a definite 

distance from the mid-plane [40]. The position of the neutral plane of the porous FG plate is determined. Stability 

equations are derived and then analytically solved to find the critical buckling load. The results are then compared to 

those obtained from common plate theories. Finally, the effects of the theory, porosity distribution function, 

porosity, power-law index, loading condition, and thickness ratio on the plate critical buckling load are studied in 

detail. In addition, the physical reasons for each finding are discussed in detail. The exact analytical results can be 

used as a benchmark solution for future numerical analysis. 

2. Material properties 

Consider a rectangular porous FG plate whose material and porosity distributions vary continuously along the 

thickness direction, as shown in Figure 1. Because of the isotropic behavior of its material, the constitutive relation 

for such plate is written as 
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2ij ij kk ij   = +                                                                                                                                             (1) 

where ( , 1,2,3)ij i j =  and 
ij  are, respectively, stress and strain components. Also, 

ij  is the Kroncker delta 

function, and   and   are Lamè constants, expressed in terms of the engineering constants in the following form 

( )( ) ( )
,

1 1 2 2 1

E E
 

  
= =

+ − +
                                                                                                                      (2) 

where E  is the Young’s modulus and   is the Poisson’s ratio. 

 
Fig 1. Schematic of rectangular porous FG plate 

The material distribution and the porosity distribution are considered to vary according to, respectively, a power 

law function and a trigonometric function. Therefore, a typical material property for such a plate can be expressed in 

terms of the thickness direction as follows [41, 42] 

( ) ( ) ( )3

3 3

1
1 ( )

2

N

c m m

x
H x H H H x

h


  
= − + + −     

                                                                                         (3) 

where H  is a typical material property of the plate, (e.g. Young's modulus E ). Also, 
cH  and 

mH  are material 

properties of the plate, respectively, at 
3 2x h=  and 

3 2x h= − . Here, since the variation of the Poisson's ratio 

through the thickness is relatively small, it is conveniently considered to be constant [30, 41]. Moreover, in equation 

(3) the function 3( )x  is the porosity distribution function which can be written as the following relations [42] 

Type1: 3

3( ) cos( )
x

x
h


 =                                                                                                                           (4-1) 

Type 2: 3

3

1
( ) cos ( )

2 2

x
x

h


 = +                                                                                                                    (4-2) 

Type 3: 3

3

1
( ) cos ( )

2 2

x
x

h


 = −                                                                                                                    (4-3) 

where   indicates the porosity coefficient. Figure 2 depicts the normalized porosity distribution functions versus the 

thickness-direction coordinate. This figure shows that based on the distribution function of type 1, the porosity is 
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symmetric to the mid-plane, and also the central part of the plate is more porous. This figure also shows that for 

plates with a distribution function of type 2, the porosity increases from the upper surface to the lower surface. The 

inverse pattern is observed for type 3 of the porosity distribution function. 

 

 

Fig 2. The normalized porosity distribution functions 

3
3

( )
( )

x
x





=  

Fig 3. Schematic of the rectangular porous FG plate under in-

plane loading 

3. Loading conditions 

As shown in Figure 3, the plate is assumed to be under in-plane uniaxial compressive ( 0R = ), in-plane biaxial 

compressive ( 1R = ), or tension-compression biaxial ( 1R = − ) loading. It can be seen from Eq. (3) together with Eqs. 

(4) that the plate structure is not symmetry concerning the mid-plane. Consequently, because of bending-stretching 

coupling, the plate will bend under any in-plane load, unless the loads (load per unit length) are applied along with 

its neutral plane. Therefore, since the buckling analysis is under investigation, it is considered here that the plate is 

under in-plane loads in the neutral plane of the plate [40]. 

4. Nonlinear equilibrium equations 

Equilibrium equations are derived here based on the geometrical nonlinearity assumptions of Von Karman. To 

this end, higher-order shear and normal deformable plate theory (HOSNDT) is chosen because, contrary to other 

plate theories, it considers all possible plate deformation and does not use a predefined pattern for the plate 

deformations. According to this theory, displacement components of the plate are expanded in terms of Legendre 

orthonormal polynomials in the thickness direction as follows [43] 

1 1 2 3 1 2 3 3 1 2

0

( , , , ) ( , , , ) ( ) ( , , )
K

a

a

a

u x x x t u x x x t L x u x x t
=

= =                                                                              (5-1) 

2 1 2 3 1 2 3 3 1 2

0

( , , , ) ( , , , ) ( ) ( , , )
K

a

a

a

u x x x t v x x x t L x v x x t
=

= =                                                                              (5-2) 

3 1 2 3 1 2 3 3 1 2

0

( , , , ) ( , , , ) ( ) ( , , )
K

a

a

a

u x x x t w x x x t L x w x x t
=

= =                                                                             (5-3) 

in which 3( )aL x  denotes Legendre polynomial functions generally defined in terms of the basic functions 

2 3

3 3 31, , , ,...x x x . For example, some of these polynomials are presented here as follows 
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2 3

0 3 1 3 3 2 3 3 3 3 3 3

4 5 3

4 3 3 3 5 3 3 3 3

2 6 10 1 3 14 5 3
( ) , ( ) , ( ) ( ), ( ) ( )

2 2 2 2 2 2 2 2

3 2 35 15 3 22 63 35 15
, ( ) ( ), ( ) ( )

2 8 4 8 2 8 4 8
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L x x x L x x x x

= = = − + = −

= − + = − +

                   (6) 

Generally, for 2K  , the plate theory is called high-order. It can be easily shown that the above functions satisfy 

the orthogonal property in the following form 

1

3 3 3
1

( ) ( ) , 0,1,...,a b abL x L x dx a b K
−

= =                                                                                                  (7) 

where 
ab  is Kronecker Delta. Also, the derivative of Legendre polynomials can be expressed as 

5

3 3 3

0

( ) ( ) ( )
K

a ab b ab b

b

L x D L x D L x
=

=

 = =                                                                                                                    (8) 

where, 
abD  are constant coefficients which can be written for 5K = in the following matrix form 

7 7

0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

0 15 0 0 0 0 0 0

7 0 35 0 0 0 0 0
[ ]

0 3 3 0 3 7 0 0 0 0

11 0 35 0 3 11 0 0 0

0 39 0 91 0 143 0 0

15 0 5 3 0 3 15 0 195 0

D 

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

                                                                           (9) 

It should be noted that generally there is no limitation on the value of K . Based on the geometrical nonlinearity 

assumptions of Von Karman, together with the relations in Eq. (5), one can write [44] 
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                                    (10) 

Equilibrium equations are derived using the minimum total potential energy ( ) 0)U W( + = . To this end, 

variations of the strain energy and the potential energy of the external loads are written as follows 
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2
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 
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                              (11) 

where, e  is the distance of the neutral plane from the mid-plane, which is determined in the next section. Upon 

substituting equation (10) into equation (11-1), one can obtain 
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By introducing the following normal and shear stress resultants 
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variation of the strain energy in Eq. (12) can be rewritten in the following form 
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According to the minimum total potential energy, the equilibrium equations can be obtained as follows [44] 
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1 2
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x x
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1 2

3 11 ,1 ,1 22 ,2 ,2 33 12 ,2 ,1
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                                        (15-3) 

Also, the plate boundary conditions are obtained in the form [44] 

1 1211 2: ( ( ) 0)()a a a

au PL MM e − =+n n                                                                                                                  (16-1) 

22 212 1) ( 0: ( ( ))a a

a

av M RPLM e −+ =n n                                                                                                                  (16-3) 

11 ,1 12 ,2 1 2 22 ,1 2 2 ,1 1 1 22( ) ) 0: (a ab b ab b ac b a ab b ab b ac b

bc

a

bcw M w M w TT D w M w M w T D wT + ++ + + =+ +n n                              (16-4) 

where, 1n  and 2n   are unit outward normal vectors in the 
1x - and 

2x - directions, respectively. It should be noted that 

the stress and moment resultants 
aM , 

abM , a

iT , and ab

iT  can easily be written in terms of the displacement 

components , ,a a au v w  upon using relations (1), (5), (10), and (13). 

5. Distance of the neutral plane from the mid-plane 

As mentioned earlier, in order to have essentially a buckling problem for the FG plates whose material properties 

vary continuously along the thickness direction, the external in-plane loads should be applied to the neutral plane, 

which is not generally the mid-plane (unless the plate material is symmetric to the mid-plane). If the in-plane loads 

are exerted on a different position, because of the bending-stretching coupling, the plate will bend immediately 

under any in-plane load and consequently it cannot sustain any in-plane load without bending. Therefore, the critical 

buckling load can be obtained only for the case of that assumption. 

Figure 4. Uniaxial in-plane compressive load P on the neutral plane 

In order to find the position of the neutral plane, for example, consider the plate is under uniaxial in-plane 

compressive load P  on its neutral plane located at a distance e  from the mid-plane (as shown in Fig 4). 

Consequently, the plate will remain flat before the buckling occurs. In other words, the plate deflection will be zero 

( 0w = ) before buckling. Clearly, the internal force and moments on the mid-plane at any section perpendicular to 

the   
1x axis can be expressed as 

xN P= −                                                                                                                                                        (17-1) 

xM Pe=                                                                                                                                                        (17-2) 

where 

2
11 3

2

h

hxN dx
−

=                                                                                                                                               (18-1) 

2
11 3 3

2

h

hxM x dx
−

=                                                                                                                                           (18-2) 
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Upon using Eqs. (1) and (10), and satisfying the condition 0w = , the stress component 
11  in the pre-buckling 

configuration can be expresses in the form 

( ) ( ) ( )0 0

11 0 3 ,1 0 3 ,22 L x u L x v   = + +                                                                                                              (19) 

Substituting the above equation into relations (18-1) and (18-2), yields 

0 0

11 ,1 12 ,2xN A u A v= +                                                                                                                                         (20-1) 

0 0

11 ,1 12 ,2xM B u B v= +                                                                                                                                        (20-2) 

where 

( ) ( )2
11 0 3 3

2

2
h

hA L x dx 
−

= +                                                                                                                         (21-1) 

( )2
12 0 3 3

2

h

hA L x dx
−

=                                                                                                                                      (21-2) 

( ) ( )2
11 3 0 3 3

2

2
h

hB x L x dx 
−

= +                                                                                                                     (21-3) 

( )2
12 3 0 3 3

2

h

hB x L x dx
−

=                                                                                                                                   (21-4) 

Upon substituting Eqs. 2 into relations (21), it can be easily show that 

12 11
1

A A



=

−
                                                                                                                                                (22-1) 

12 11
1

B B



=

−
                                                                                                                                                (22-2) 

Substitution relations (22) and (17) into relations (20), the distance e is obtained in the following form [40] 

11

11

B
e

A
= −                                                                                                                                                            (23) 

Also, the above relation can be written in terms of the Young’s modulus in the following form 

( )

( )

2
11 3 3 3

2

2
11 3 3

2

h

h

h

h

A x E x dx

e

B E x dx

−

−

=

= −

=





                                                                                                                              (24) 

6. Stability equations 

Stability equations are derived here using the adjacent equilibrium criterion. Consider the plate subjected to the 

compressive in-plane loading is under the neutral equilibrium configuration. Consequently, the plate will have 

another equilibrium configuration in the vicinity of the first equilibrium state and the loads are in fact the critical 
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buckling loads. Therefore, to derive the stability equations, a displacement field is introduced in the vicinity of the 

initial equilibrium state in the form 

a a au u u= +                                                                                                                                                    (25-1) 

a a av v v= +                                                                                                                                                    (25-2) 

a a aw w w= +                                                                                                                                                 (25-3) 

where, , ,a a au v w  refer to the initial equilibrium state and , ,a a au v w  are the corresponding incremental 

displacements from the initial state. 

By substituting Eqs. (25) into Eqs. (13), the stress resultants in the new equilibrium state are obtained as 

a a aM M M  = +                                                                                                                                        (26-1) 

ab ab abM M M  = +                                                                                                                                        (26-2) 

a a a

i i iT T T= +                                                                                                                                            (26-3) 

ab ab ab

i i iT T T= +                                                                                                                                          (26-4) 

By replacing Eqs. (26) into the nonlinear equilibrium equations (15), and satisfying the equations for the initial 

equilibrium state, also ignoring the nonlinear incremental small terms, the stability equations are obtained as follows 

[44] 

11 12

1

1 2

: ( ) 0
a a

a b

ab

M M
u T D

x x


 
− − =

 
                                                                                                                 (27-1) 

12 22

2

1 2

: ( ) 0
a a

a b

ab

M M
v T D

x x


 
− − =

 
                                                                                                                (27-2) 

1 2

3 11 ,11 22 ,22

1 2

: ( ) 0
a a

a b ab b ab b

ab

T T
w T D M w M w

x x


 
− − − − =
 

                                                                                    (27-3) 

where 
11

abM and 22

abM  are defined in terms of the external in-plane load parameter P . The stability boundary 

conditions are also obtained by using the vicinity equilibrium criterion as follows 

1 11 21 2) ) 0: ( (aa au MM + =n n                                                                                                                               (28-1) 

1 22 221 ) ( ) 0: (a a av MM + =n n                                                                                                                                (28-2) 

11 ,1 2 21 2 , 221( ) ) 0: (a ab b a ab baw M w MT T w + ++ =n n                                                                                                  (28-3) 

It should be noted that the incremental stress and moment resultants 
aM , 

abM , 
a

iT , and ab

iT can easily be written 

in terms of the incremental displacements , ,a a au v w  upon using relations (1), (5), (10) and (25). Therefore, the 

stability equations (27) together with the stability boundary conditions (28) can be expressed generally in terms of 

the incremental displacements , ,a a au v w . Generally, solving a system of highly coupled differential equation with 
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variable coefficient requires numerical method. However, for some especial cases, for example, for plates with all 

edges simply supported those equations can be solved analytically and the exact analytical solutions can be 

obtained, which can be used as a benchmark solution for future numerical studies. 

7. Solution procedure 

It is assumed that the plate has simple supports along all edges, so the stability boundary conditions of the plate 

can be written in the form 

1 1 1 11 210 0, 0, 0a a aon x and x l W M M= =  = = =                                                                     (29-1) 

2 2 2 22 120 0, 0, 0a a aon x and x l W M M= =  = = =                                                                    (29-2) 

According to the above boundary conditions, the solution of the stability equations (27) can be written in the 

following series form 

1 2

1 2

, 1 1 2

( , , ) ( )cos( )sin( )a amn

m n

m x n x
u x x t U t

l l

 

=

=                                                                                             (30-1) 

1 2

1 2

, 1 1 2

( , , ) ( )sin( )cos( )a amn

m n

m x n x
v x x t V t

l l

 

=

=                                                                                            (30-2) 

1 2

1 2

, 1 1 2

( , , ) ( )sin( )sin( )a amn

m n

m x n x
w x x t W t

l l

 

=

=                                                                                             (30-3) 

in which, amnU , amnV , and amnW  are some constant coefficients. Also, m and n are the half-wave numbers. 

Substitution of Eqs. (30) into the stability equations (27) gives an Eigenvalue problem to find the critical buckling 

load P . 

8. Numerical results and discussions 

In this section, the critical buckling load is obtained for functionally gradated rectangular porous plates according 

to the higher-order shear and normal deformable plate theory. Also, to validate the study, the results are compared 

with those reported in previous works. In addition, the effects of different material and geometrical parameters on 

the plate buckling behaviour are studied in detail. 

In order to determine the critical buckling load, minimum magnitude of the buckling load P  should be sought for 

different values of the Legendre polynomial number ( 0,1,2,3,...,a K= ) and the mode numbers m  and n  

( , 1,2,3,...m n = ). Generally, there is no limitation on the number of the Legendre polynomials ( K ). However, usually 

the critical buckling load occurs for 6a  . Therefore, seven Legendre polynomials and consequently seven terms of 

the series solutions are sufficient for finding the critical buckling load. 

 

Table 1. Comparison of the dimensionless critical buckling load parameter 
6

210cr crP P l−=   of a rectangular porous FG plate with 

refs [44] and [45] (
2 0.1h l =  and 0 = ) 

N  R  1 2l l  Present Study [43] (HOSNDT) [44] (HSDT) 

0 

1 
1 715.797(1) 715.808(1) 718.692(1) 

1.5 525.308(1) 525.308(1) 526.861(1) 

0 
1 1431.595(1) 1431.594(1) 1437.361(1) 

1.5 1519.588(2) 1519.588(2) 1527.903(2) 

-1 
1 2746.838(2) 2746.842(2) 2772.980(2) 

1.5 2746.838(3) 2746.842(3) 2772.980(3) 

1 

1 
1 350.034(1) 350.034(1) 351.124(1) 

1.5 256.194(1) 256.194(1) 256.776(1) 

0 
1 700.068(1) 700.068(1) 702.304(1) 

1.5 745.802(2) 745.801(2) 748.920(2) 

-1 
1 1361.175(2) 1361.174(2) 1371.653(2) 

1.5 1361.175(3) 1361.174(3) 1371.653(3) 

Superscript numbers in parentheses indicate the buckling load mode number 
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Table 1 compares the results of this study for 0 =  with those reported in Refs. [44] and [45]. As can be seen 

from this table, the presented results are in excellent agreement with those reported in Ref. [44] based on the higher-

order shear and normal deformable theory (HOSNDT). However, these results differ from those obtained according 

to higher-order shear deformation theory (HSDT) reported in Ref. [45]. This difference, however, refers to the fact 

that the HOSNDT takes into account normal deformations across the thickness, which results in a reduction in plate 

stiffness and hence in the critical buckling load. Also, this table indicates that the effect of HOSNDT for 
1 2 1l l =  is 

greater than for 
1 2 1.5l l = , which means that as plate stiffness increases, the effect of HOSNDT increases. 

 

Table 2. Comparison of the dimensionless critical buckling load parameter 2 2 3

1
ˆ 12 (1 )cr crP P l Eh= −  of a square porous FG plate for 

0 =  with those reported in Ref. [46] 

R  N   1 0.01h l =  
1 0.02h l =  

1 0.03h l =  

  Present Study Ref. [45] Present Study Ref. [45] Present Study Ref. [45] 

0 

0 1.1244 1.1222 8.9804 8.9104 30.2259 30.072 

1 0.9315 0.95022 7.4392 7.6018 25.0351 25.656 

2 0.8939 0.89103 7.1378 7.1283 24.0160 24.058 

5 0.8599 0.82293 6.8496 6.5834 23.0417 22.219 

1 

0 0.5622 0.55692 4.4902 4.4552 15.1130 15.036 

1 0.4658 0.44605 3.7196 3.6845 12.5175 12.435 

2 0.4469 0.44329 3.5689 3.5463 12.0080 11.969 

5 0.3920 0.42712 3.4248 3.4168 11.5209 11.532 

Table 2 compares the critical buckling load parameter 2 2 3

1
ˆ 12 (1 )cr crP P l Eh= −   for different power-law 

indices, load parameters, and thickness ratio values to those reported in Ref. [46] using the classical plate theory. 

This table reveals that as the thickness parameter is increased, the effect of HOSNDT increases. Moreover, it can be 

seen from this table that for thin plates, there is no considerable difference between the results of two theories. In 

addition, this table indicates that compared with the uniaxial loading, the effect of HOSNDT is more significant for 

biaxial loading. This issue, however, refers to the fact that normal deformations are more significant when the plate 

is subjected to biaxial compressive loading. 

 

Table 3. Material properties 

 
Epoxy 1 

9 21.44 10mE N m=   0.38m =  

Epoxy 2 
9 214.4 10cE N m=   0.38c =  

The results are presented here, for porous FG plates constructed from the materials listed in Table 3. Moreover, 

the critical buckling load is presented in the following non-dimensional form. 

2

2

3

cr

cr

P l
P

Eh
=                                                                                                                                                         (31) 

Table 4 shows the effects of the porosity distribution, thickness ratio 
1l h , power-law index N , and porosity   

on the critical buckling load parameter 
crP  for a square porous FG plate. As can be seen from this table, the 

dimensionless critical buckling load 
crP  increases with increasing the thickness ratio 

1l h . This issue, however, 

refers to the fact that according to Eq. (31), the buckling load is dimensionless with respect to the function 3h  and 

also the growth of the denominator and the numerator with respect to h  (or h l ) is not the same. Therefore, 

although the plate stiffness and consequently the buckling load decrease with increasing the length to thickness 

ratio, it is observed that the non-dimensional form of the buckling load decreases. Also, this table illustrates that as 

the value of the power-law index N  increases, the critical buckling load decreases. This issue refers to the fact that 

with the increase in its value, the volume fracture of the material with smaller Young's modulus (
mE ) increases and 

consequently the stiffness of the plate decreases. Therefore, the more value for N , the less value for 
crP . 

Furthermore, it is observed from the results of this table that by increasing the porosity, the critical buckling load 

parameter 
crP  decreases because the plate stiffness decreases with the increase in porosity. 

Moreover, the results presented in table 4 show that for 1N   the porous FG plates with the porosity distribution 
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functions 
1  and  

2  have, respectively, the largest and the least critical buckling load. According to relation (3), it 

can be said that compared to 
cE , volume fraction of the material 

mE  is more for the area above the mid-plane. Also, 

as can be observed from Fig 2, based on the function 
2 , the more porosity distribution is seen for the area above 

the mid-plane whose material is more from
mE  . However, based on the function 

3 , the more porosity distribution 

is seen for the area below the mid-plane whose material is more from 
cE . Since 

c mE E  the plate stiffness for the 

distribution function of type 3 is greater than it for the distribution function of type 2. Also, for the distribution 

function of type 1, the same porosity is distributed symmetrically to the mid-plane. Therefore, we observe that the 

distribution porosity functions of types 1 and 2 lead to the most and the least critical buckling load, respectively. 

 

Table 4. Effects of the porosity distribution, thickness ratio 
1l h , power-law index N  and porosity  , on the dimensionless critical 

buckling load parameter 2 3

2cr crP P l Eh=  for a square porous FG plate. 

 1l h    0N =  1N =  2N =  5N =  10N =  

1  

5 

0 30.0735 13.5487 9.2295 6.3834 5.4476 

0.2 27.3422 12.1799 8.2929 5.7490 4.9148 

0.5 22.9363 9.9833 6.7728 4.7034 4.0224 

10 

0 35.9456 15.5979 10.6278 7.7997 6.9561 

0.2 33.1414 14.1528 9.6404 7.1305 6.3906 

0.5 28.7977 11.8705 8.0643 6.0559 5.4696 

20 

0 37.7923 16.2130 11.0501 8.2665 7.4790 

0.2 35.0012 14.7528 10.0534 7.5965 6.9164 

0.5 30.7740 12.4656 8.4756 6.5395 6.0215 

2  

5 

0 30.0735 13.5487 9.2295 6.3834 5.4476 

0.2 26.3778 11.9158 8.0946 5.5522 4.7492 

0.5 20.2916 9.2468 6.2532 4.2028 3.5987 

10 

0 35.9456 15.5979 10.6278 7.7997 6.9561 

0.2 31.5916 13.6875 9.2833 6.7429 6.0362 

0.5 24.2894 10.5345 7.0869 5.0136 4.4984 

20 

0 37.7923 16.2130 11.0501 8.2665 7.4790 

0.2 33.2360 14.2184 9.6410 7.1334 6.4804 

0.5 25.5509 10.9173 7.3349 5.2752 4.8036 

3  

5 

0 30.0735 13.5487 9.2295 6.3834 5.4476 

0.2 26.3778 11.8124 8.0734 5.6324 4.7948 

0.5 20.2916 9.0266 6.2236 4.4086 3.7200 

10 

0 35.9456 15.5979 10.6278 7.7997 6.9561 

0.2 31.5916 13.6667 9.3616 6.9557 6.1842 

0.5 24.2894 10.5297 7.3107 5.5501 4.8768 

20 

0 37.7923 16.2130 11.0501 8.2665 7.4790 

0.2 33.2360 14.2264 9.7539 7.3973 6.6718 

0.5 25.5509 10.9877 7.6464 5.9394 5.2914 

 

 

 

Table 5. Effect of power-law index N  and loading type conditions R  on the dimensionless critical buckling load parameter 
crP  of a 

square porous FG plate (
1 10l h =  and  0.5 = ) 

R   0N =  1N =  2N =  5N =  10N =  

0 

1  28.7977 11.8705 8.0643 6.0559 5.4696 

2  24.2894 10.5345 7.0869 5.0136 4.4984 

3  24.2894 10.5297 7.3107 5.5501 4.8768 

1 

1  14.3988 5.9352 4.0321 3.0279 2.7348 

2  12.1447 5.2673 3.5434 2.5068 2.2492 

3  12.1447 5.2648 3.6554 2.7751 2.4384 

-1 

1  53.1858(2) 22.5842(2) 15.3290(2) 11.0150(2) 9.6468(2) 

2  46.0615(2) 20.5136(2) 13.8369(2) 9.5172(2) 8.3245(2) 

3  46.0615(2) 20.2497(2) 14.0050(2) 10.2317(2) 8.7894(2) 

Table 5 shows the effects of the loading conditions on the critical buckling load of porous FG plates. This table 

shows that the porous FG plates, subjected to bi-axial tensile-compressive loading and bi-axial compressive loading, 

have the highest and the lowest critical buckling loads, respectively. This table also reveals that the buckling occurs 

at higher modes when the plate is subjected to bi-axial tensile-compressive loading. 

Archive of SID.ir

Archive of SID.ir



360 E. Mohseni and A. Naderi 

 

  
Fig 5. The dimensionless critical buckling load parameter

crP   of a 

square porous FG plate versus the porosity φ for the porosity 

distribution function type 1 (
1 10l h = ) 

Fig 6. The dimensionless critical buckling load parameter
crP   of a 

square porous FG plate versus the porosity φ for the porosity 

distribution function type 2 (
1 10l h = ) 

The effect of the porosity   on the critical buckling load parameter 
crP  is illustrated in Fig 5 for different values 

of the power-law index N  and the porosity distribution function of type 1. It can be seen from this figure that the 

critical buckling load parameter 
crP  decreases almost linearly as the porosity φ increases. This issue, however, 

refers to the fact that the buckling load varies linearly with respect to the material properties. On the other hand, the 

material properties also vary linearly in relation to the porosity. Therefore, 
crP  varies linearly with respect to  . 

Furthermore, it is observed from this figure that by decreasing N , the porosity effect increases. Generally, by 

decreasing the power-law index N , volume fracture of the material with greater Young's modulus (
cE ) increases 

and consequently the plate stiffness increases. Also, by decreasing the plate porosity, the plate stiffness increases. 

Therefore, it can be concluded that for smaller values of N , decreasing the porosity causes more stiffness for the 

plate. Consequently, the effect of the porosity should be more considerable for smaller values of N . Similar results 

are presented in Figs 6 and 7 for the porosity distribution functions of type 1 and 2, respectively. 

  
Fig 7. The dimensionless critical buckling load parameter

crP   of a 

square porous FG plate versus the porosity   for the porosity 

distribution function type 3 ( 1 10l h = ) 

Fig 8. The dimensionless critical buckling load parameter 
crP  of a 

square porous FG plate versus the thickness ratio 1l h  for the 

porosity distribution function type 1 ( 0.5 = ) 

Figs 8, 9, and 10 illustrates 
crP  in terms of the thickness ratio 

1l h  for a square porous FG plate for various 

power-law index N  values and different porosity distribution functions. As shown in these figures, by increasing 

the thickness ratio 
1l h , the critical buckling load parameter 

crP  increases. These tables also show that the effect of 

the thickness ratio is more significant for the lower values of the power-law index N . Generally, by decreasing the 
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power-law index N  , volume fracture of the material with greater Young's modulus (
cE ) increases and consequently 

the plate stiffness increases. Furthermore, by increasing the plate thickness to length ratio, the plate stiffness 

increases. Therefore, it can be concluded that for smaller values of N , increasing the thickness causes more stiffness 

for the plate. Consequently, the effect of the thickness ratio should be more considerable for smaller values of N . 

 

  
Fig 9. The dimensionless critical buckling load parameter 

crP  of a 

square porous FG plate versus the thickness ratio 
1l h  for the 

porosity distribution function type 2 ( 0.5 = ) 

Fig 10. The dimensionless critical buckling load parameter 
crP  of a 

square porous FG plate versus the thickness ratio 
1l h  for the 

porosity distribution function type 3 ( 0.5 = ) 

Fig 11 shows the effect of the power-law index N  for different values of   and the porosity distribution function 

of type 1. Figs 12 and 13 show similar results for the porosity distribution function of types 2 and 3, respectively. 

These figures reveal that when the parameter N  is increased, the critical buckling load decreases especially for 

small values of this parameter. It can be seen that for 5N  , the buckling load does not vary considerably by 

increasing the value of N . 

 

 

  
Fig 11. The dimensionless critical buckling load parameter 

crP  of 

a square porous FG plate versus the power-law index N  for the 

porosity distribution function type 1 (
1 10l h = ) 

Fig 12. The dimensionless critical buckling load parameter 
crP  of 

a square porous FG plate versus the power-law index N  for the 

porosity distribution function type 2 (
1 10l h = ) 
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Fig 13. The dimensionless critical buckling load parameter   of a square porous FG plate versus the power-law 

index   for the porosity distribution function type 3. 

 

9. Conclusion 

This paper, studied buckling analysis of thick rectangular porous FG plates whose material and porosity 

distributions vary continuously along the thickness direction. Three types of porosity gradation along the thickness 

were considered. Since the material properties are asymmetry with respect to the mid-plane, it has been assumed 

that the in-plane loads are applied along its neutral plane, to eliminate the bending-stretching coupling. The 

governing stability equations were derived based on the higher-order shear and normal deformable plate theory and 

were solved analytically for rectangular plates with simple supports. To verify the results, the critical buckling load 

of the porous FG plate was obtained for the zero porosity factor and is then compared to those reported in the 

literature. Finally, the effects of different porosity distribution functions, porosity, power law index, thickness ratio, 

and loading condition have been investigated in detail on the critical buckling load of porous FG plates using 

HOSNDT. Also, the physical reasons of each effect have been discussed in detail. Some main results are listed 

below: 

• The higher order shear and normal deformable plate theory presents more accurate results than the other theories 

of plate because of the accounting for all the possible plate deformations. 

• The effect of HOSNDT is more important as the plate thickness increases. 

• Compared to uniaxial load, the effect of HOSNDT is more considerable as the plate is subjected to a biaxial 

compression load. 

• As the value of the power-law index increases, the critical buckling load and its sensitivity to that value decrease. 

• By increasing the porosity, the critical buckling load decreases linearly. 

• By decreasing the value of the power-law index, the effect of the porosity increases. 

• Porous FG plates with type 1 and type 2 porosity distribution functions have the highest and least critical 

buckling load, respectively. 

• Porous FG plates with symmetrical distribution of porosity to the mid-plane, behave stiffer than asymmetric 

pattern. 

• The effect of the thickness ratio is more considerable for the smaller values of the power-law index. 
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