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Introduction
Currently, cancer is a major and widespread health 
concern, contributing significantly to global mortality and 
morbidity across various populations.1 According to the 
latest global cancer statistics in 2022, the most prevalent 
malignancies around the world include breast cancer in 
women (11.7%), lung cancer (11.4%), colorectal cancer 
(10.0%), prostate cancer (7.3%), and stomach cancer (5.6 
%).2 The conventional cancer treatment methods include 
surgery, chemotherapy, immunotherapy, and radiation 
therapy that can be used alone or in combination. 
However, multiple deficiencies, such as significant 
adverse effects, off-target effects of therapeutic agents, and 
drug resistance restrict the efficacies of the therapeutic 
modalities.3,4 Recently, to dominate the barriers and 
disadvantages correlated with traditional treatments in 
cancer, cell therapy as one of the most prominent emerging 
medical treatments has been extensively considered.5 
Mesenchymal stem cells (MSCs) are an appealing resource 
for cell-based therapy in a wide range of diseases including 

cancer due to their distinct characteristics.6 MSCs are 
fibroblast-like multipotent adult stem cells that can easily 
be derived, without ethical conflicts, from different tissues 
including bone marrow (BM), placenta, umbilical cord 
(UC), UC blood, menses blood, endometrium, Wharton’s 
jelly (WJ), adipose tissue, amnion, dental pulp (DP), 
etc.7 According to the definition of the International 
Society for Cell Therapy (ISCT), MSCs are characterized 
as plastic-adherent cells, with trilineage differentiation 
ability (osteoblasts, adipocytes, and chondroblasts), 
positive for CD105, CD73, and CD90, whereas negative 
for hematopoietic markers, e.g., CD45, CD34, CD14, 
CD19 and MHC class II (Figure 1).8 In addition, MSCs-
based therapeutic approaches provide a promising 
platform for the treatment of incurable diseases including 
cancer due to their pleiotropic activities such as paracrine 
effects, immunomodulation, tumor-tropism, tumor-
homing, and migration.9 Lazarus et al performed the first 
clinical trial of culture-expanded MSCs in patients with 
hematologic malignancies. They showed that expansion 
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Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of 
death globally. Although various cancer therapeutic strategies have been established, however, 
some issues confine the efficacies of the treatments. In recent decades researchers for finding 
efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer 
inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most 
widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord 
(UC), menses blood, Wharton’s jelly (WJ), adipose tissue and dental pulp (DP). These cells are 
capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique 
characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and 
migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs 
are an excellent living carrier for delivery of therapeutic genes and chemical agents to target 
tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as 
a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting 
several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are 
several challenges associated with the use of MSCs and their exosomes in the field of therapy 
that need to be considered. This review explores the significance of MSCs in cell-based therapy, 
focusing on their homing properties and immunomodulatory characteristics. It also examines the 
potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating 
the signal transduction pathways of cancer cells.
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and following infusion of human bone marrow-derived 
stromal progenitor cells (BM-MSCs) in patients caused 
no intensive side effects.10 Because of the many benefits of 
MSCs, extensive preclinical (Table 1) and clinical studies 
have been conducted in a variety of cancer (Table 2). The 
present review has focused on the mechanisms of MSCs in 
inhibiting the progression of cancer and has explored the 
therapeutic approaches for treating cancer using MSCs.

Mechanisms of MSCs function in cancer management
The tumor tropism and migration, homing properties 
of MSCs
For juxtacrine effects (cell-to-cell or cell-to-ECM 
signaling) to occur, the migration and homing of MSCs 
to the damaged tissue are essential initial stages for the 
treatment of cancer in MSCs-based therapy. Numerous 
studies have demonstrated the natural affinity of MSCs 
for tumors, as well as their ability to migrate and home 
in on tumor tissues. This makes stem cells an exceptional 
therapeutic approach for targeting cancer cells. It has been 
found that the recruitment of MSCs towards tumor cells 
is thought to be due paracrine signaling loop between 
the chemoattractants from the tumor microenvironment 
(TME) and the corresponding receptors on MSCs.17,18 
The inflammatory microenvironment of malignant cells 
due to the secretion of factors including growth factors, 
chemokines, and cytokines plays a substantial role in 
stimulating tumor tropism of MSCs.19 The most plentiful 
secreted chemokines in the TME are interleukin-6 (IL-6), 

monocyte chemotactic protein(MCP-1/CCL2), CCL15, 
macrophage inflammatory protein-3 (MIP3A/CCL20), 
CCL25, C-X-C motif chemokine ligand 1 (CXCL1), 
interleukin-8 (IL-8/CXCL8), stromal-derived factor 
1(SDF-1/CXCL12) that contribute to the recruitment 
of MSCs derived from different sources toward cancer 
cells through interaction with their specific chemokine 
receptors at their surface.20-22 Further, several other 
trophic factors released from tumor cells and stroma such 
as vascular endothelial growth factor (VEGF), epidermal 
growth factor (EGF), basic fibroblast growth factor 
(bFGF), tumor necrosis factor (TNF-α), granulocyte 
colony-stimulating factor (G-CSF), and granulocyte-
macrophage colony-stimulating factor (GM-CSF) 
induce MSCs attraction and homing in tumor sites.23,24 
Furthermore, MSCs exhibit a remarkable tendency to 
migrate toward cancer through the expression of a large 
number of molecules including chemokines and their 
receptors, growth factors, toll-like receptors (TLRs), 
adhesion molecules, and growth factors.25 MSCs can 
express a variety range of functional chemokine receptors 
such as CCR1, CCR4, CCR7, CXCR4, CXCR6 which have 
been extensively related to tumors tropism.26,27 Based on 
a growing body of evidence, CXCR4 is one of the most 
important chemokine receptors in MSCs that plays a pivotal 
role in targeted homing of MSCs through interaction with 
stromal cell-derived factor 1 (SDF-1).28 In addition, the 
expression of different growth factor receptors on MSCs 
is involved in the migration and homing process. For 

Figure 1. Mesenchymal stem cells sources and characterization. The web-based application BioRender was employed to design the figure. MSCs are isolated from 
various tissue sources such as dental pulp, adipose tissue, placenta, umbilical cord, Wharton’s jelly, menses blood, endometrium, and bone marrow. These plastic 
adherent cells are identified by their ability for trilineage differentiation, consistent expression of nonhematopoietic cell markers such as CD105, and CD73, and 
absence of hematopoietic cell markers such as CD34, CD 45, etc
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example, c-met (HGF-R) is expressed on MSCs derived 
from cord blood, bone marrow, adipose tissue, cord 
blood, and skin and can induce cell migration and homing 
to the target site by binding to hepatocyte growth factor 
(HGF). To date, a multitude of studies have shown that the 
expression of PDGFR α and β, EGF-R, and IGF-R1 in BM-

MSCs allows homing of these cells.29-31 MSCs recruitment 
into injured tissue is dependent on the expression of a 
variety of adhesion molecules including integrins. MSCs 
have been shown to express various integrin subunits 
such as α1, α2, α3, α4, α5, αv, β1, β3, and β4.32 Integrin 
heterodimer α4/β1, composed of CD49d and CD29, plays 

Table 1. Preclinical studies of MSCs for the treatment of cancer

Condition Model Treatment agent Findings

Breast cancer Nude Mice rBM-MSCs + PS-SiO 2 NPs
The suppression of tumor growth, resulting from injecting PS-loaded MSCs, is 
due to the naturally high affinity of MSCs toward tumors.11

Lung cancer
Nude Mice 

Rabbit Monkey
MSCs/NP/DTX

The lung targeting ability of MSC in different animal models is highly efficient 
for MSCs/NP/DTX systems in tumor inhibition rather than NP/DTX.12

Breast cancer Mice Mouse BM-MSCs-derived exosomes
Downregulation of VEGF expression in tumor cells, inhibition of angiogenesis, 
and tumor growth.13

Multiple myeloma SCID Mice pIL6-TRAIL-engineered hUC-MSC Induction of apoptosis in MM cells.14

Kaposi's sarcoma Nude mouse hMSCs-CXCR4/Fluc2 Inhibition of Akt activity within KS cells and tumor-suppression.15

Hepatoma SCID Mice HMSCs Inhibition of cancer cell phenotypes.16

rBM-MSCs: Rat bone marrow-derived mesenchymal stem cells, PS: Photo-sensitizer, SiO 2 NPs: Silica nanoparticles, MSCs: Mesenchymal stem cells, BM-
MSCs: Bone marrow-derived mesenchymal stem cell, DTX: Docetaxel, NP: Nanoparticle, VEGF: vascular endothelial growth factor, SCID: Severe combined 
immunodeficiency, pIL6: Interleukin-6 promoter, TRAIL: transduced to express the tumor necrosis factor-related apoptosis-inducing ligand, hUC-MSCs: Human 
umbilical cord-derived mesenchymal stem cells, MM: Multiple myeloma, KS: Kaposi's sarcoma, CXCR4/Fluc2: CXC chemokine receptor 4/ firefly luciferase2, 
hMSCs: Human mesenchymal stem cells.

Table 2. Clinical studies of cancer treatment using MSCs

Trial NCT number Condition Treatment agent Phase Start date Status Results

NCT01129739 Myelodysplastic syndromes hUC/PL-MSCs II 2010 Unknown No results available

NCT01092026 Hematological malignancies UCB-HSCT with MSCs I, II 2010 Completed No results available

NCT01045382 Hematological malignancies MSCs II 2010 Terminated No results available

NCT01844661 Solid tumors metastases
CELYVIR (BM- MSCs infected 

with ICOVIR5 (oncolytic 
virus)

I, II 2013 Completed

A reasonably safe and well-tolerated 
medication that may help patients with 
advanced malignancies experience a 
therapeutic response

NCT01983709 Prostate cancer Allogeneic BM-MSC I 2013 Terminated No results available

NCT02270307 Hematological malignancies MSCs and Cyclophosphamide II, III 2014 Unknown No results available

NCT02079324 Head and neck cancer
Genetically Modified 

Mesenchymal Stem Cells 
(GX-051)

I 2014 Unknown No results available

NCT03106662 Hematological malignancies MSCs III 2014 Completed No results available

NCT02513238 head and neck cancer ASCs II 2015 Completed

Primary results include changes in salivary 
flow rate, with secondary outcomes focusing 
on safety, quality of life, and gland evaluations 
using MRI and core-needle samples.

NCT02530047 Ovarian cancer BM-MSCs-INFβ I 2016 Completed No results available

NCT02648386 Rectal cancer HUC-MSCs I, II 2016 Unknown No results available

NCT03896568 Glioma

Allogeneic BM- MSCs loaded 
with the oncolytic adenovirus 

DNX-2401(BM-MSCs-
DNX2401)

I 2019 Recruiting Study is ongoing

NCT03298763 Adenocarcinoma of lung MSC-TRAIL I, II 2019 Recruiting Study is ongoing

NCT04657315 Recurrent glioblastoma
MSC11FCD the suicide gene, 

cytosine deaminase
I, II 2020 Completed No results available

NCT03608631 Pancreatic cancer
MSCs-derived Exosomes 
with KRAS G12D siRNA 

(iExosomes)
I 2021 Recruiting

Reduction of STAT3 levels, Inhibition of ECM 
deposition, and improving liver function 
in mice with liver fibrosis, presenting a 
promising anti-fibrotic therapeutic approach.

NCT03184935 Myelodysplastic syndromes Allogeneic hUC-MSCs I, II 2023 Suspended Study is ongoing

MSCs: Mesenchymal stem cells, hUC/PL-MSCs: Human umbilical cord/placenta-derived MSCs, UCB-HSCT: Umbilical cord blood-hematopoietic stem cell 
transplantation, hUC-MSCs: Human umbilical cord-derived mesenchymal stem cells, BM-MSCs: Bone marrow-derived mesenchymal stem cells, ASCs: Adipose 
tissue-derived mesenchymal stem cells
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a crucial role in MSCs rolling and migration into targeted 
sites via binding to the vascular cell adhesion molecule 
1 (VCAM-1) or CD106 expressed on endothelial cells.33 
Matrix metalloproteinases (MMPs), zinc-dependent 
proteolytic enzymes, play a pronounced role in regulating 
the migratory activity of MSCs.34 Ho and colleagues 
reported for the first time that the expression of MMP-1 
on BM-MSCs is most vital for the migration of these cells 
onto human glioma via the MMP1/PAR1 axis.35 MMP-
1 can be considered as an IGFBP2 protease which may 
regulate MSCs tropism and migration to tumor through 
cleavage of IGF‐2/IGFBP 2 complex and extracellular 
release of free IGF‐2.36 Furthermore, it has been shown 
that blocking MMP-2 in tumor cells leads to the inhibition 
of human UC blood-derived MSCs attraction to tumor 
sites by preventing SDF1/CXCR4 signaling (Figure 2).37 

While the recruitment of MSCs into the TME through 
growth factors and cytokines released by cancerous 
cells implicates tumor suppression, the interaction 
between MSCs and tumor cells may also contribute to 
the advancement of cancer.38 For instance, MSCs can 
differentiate into cancer-associated fibroblasts (CAFs) 
by cancer microenvironment-derived TGF-β, WNT, and 
IL-6/STAT3 signaling, increasing tumor cell heterogeneity 
and directly being involved in the progression of cancer.39-41 

Accumulating evidence has indicated that MSCs, by 
upregulating EMT markers including vimentin, Twist, 
N-cadherin, and Snail and downregulating E-cadherin, 

could trigger cancer cell metastasis.42,43 It is also reported 
that MSCs have the ability to accelerate cancer progression 
by the secretion of multiple growth factors such as VEGF 
and bFGF and the prevention of apoptosis in tumor cells.17 
In addition, MSCs were found to play a supportive role in 
tumor proliferation and promotion via the release of IL8 
and the recruitment of leukocytes, such as macrophages 
and neutrophils.44,45 Consequently, the presence of MSCs 
in TME can have contradictory effects.46 Even though the 
precise mechanisms of MSCs migration to sites of tumor 
are not yet completely understood, the tumor-seeking 
behavior of MSCs has been utilized to develop more 
specific and efficient anticancer therapeutic strategies.

Immunomodulatory
MSCs mainly exert low immunogenicity and reveal a 
remarkable capacity to modulate immune responses.47 
In a study by Bartholomew and colleagues, the 
immunomodulatory potential of baboon-derived 
MSCs was demonstrated through the inhibition of 
allogeneic peripheral blood lymphocyte proliferation 
and also the prevention of rejection in a baboon skin 
allograft model in vivo.48 It is well proven that MSCs 
elicit the immunomodulation functions through various 
mechanisms including direct interaction with immune 
cells and mediation of paracrine activity.47 The different 
kinds of innate immune cells such as dendritic cells 
(DCs), natural killer (NK) cells, monocytes/ macrophages, 

Figure 2. The mechanisms of mesenchymal stem cells tropism, migration, and homing. The web-based application BioRender was employed to design the figure. 
MSCs are attracted into the tumor microenvironment by interacting with multiple factors including chemokines, cytokines, and growth factors released by tumor 
cells. Moreover, the expression of some proteins such as integrin and matrix metalloproteinases (MMPs) in MSCs can favor tropism/migration and homing features 
of them. interleukin-6 (IL-6), monocyte chemotactic protein1(MCP-1/CCL2), Chemokine (C-C motif) ligand 25 (CCL25), macrophage inflammatory protein-3 
(MIP3A/CCL20), C-X-C motif chemokine ligand 1 (CXCL1), interleukin-8 (IL-8/CXCL8), stromal-derived factor 1(SDF-1/CXCL12), vascular endothelial growth 
factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), tumor necrosis factor (TNF-α), granulocyte colony-stimulating factor(G-CSF), 
granulocyte-macrophage colony-stimulating factor (GM-CSF)

Archive of SID.ir

Archive of SID.ir



Kangari et al

Advanced Pharmaceutical Bulletin, 2024, Volume 14, Issue 3578

neutrophils, and adaptive immune cells such as T cells and 
B cells are suppressed or activated by MSCs (Figure 3).49 
A significant focus has been placed on the paracrine 
effects of MSCs in this context as multiple factors derived 
from MSCs including cytokines and exosomes are related 
to their immunomodulatory capacity.50 For example, 
MSCs-derived indoleamine 2, 3-dioxygenase (IDO) 
and prostaglandin E2 (PGE2) inhibit the polarization 
of pro-inflammatory macrophage, proliferation of T 
cells, and cytotoxic activity of NK cells. The MSC-
derived transforming growth factor-β (TGF-β) plays 
an indispensable role in maintaining systemic immune 
tolerance by promoting the induction of regulatory 
T cells (T reg).51 Additionally, MSCs can inhibit the 
maturation of DCs by releasing IL-10 and activating the 
signal transducer and activator of transcription (STAT) 
3 signaling. This leads to reduced IL-12 production 
by DCs, which in turn prevents the proliferation and 
activation of NK cells, cytotoxic T cells (CTLs), and 
type 1 T helper (Th1) cells.47 The immunomodulatory 
effects of MSCs are primarily influenced by the solid 
tumor environment. This suggests that the immune 
regulatory responses induced by MSCs may vary or 
change depending on the surrounding microenvironment 

in which they are present.52,53 In addition to the ability of 
MSCs to modulate immune responses, they can regulate 
immunocompetence via stimulating immune cells to 
recruit into inflammatory conditions.54 MSCs can exhibit 
either pro-inflammatory or anti-inflammatory functions 
in an inflammatory environment. This is based on the 
levels or amounts of various factors they secrete or 
release into the surrounding environment.55 Accordingly, 
Waterman et al, suggested a new type of MSCs in which 
MSCs-1 express toll-like receptor 4 (TLR 4), and exert 
antitumor activity, while, due to the expression of TLR3, 
MSCs-2 inhibit immune cell activity and support tumor 
growth.56 The investigations have shown that MSCs adopt 
a pro-inflammatory phenotype or characteristics in the 
presence of low levels of the IFN-γ and TNF-α. In such 
environments, MSCs secret certain soluble factors such 
as MIP-1α/β, RANTES, CXCL9, CXCL10, and CXCL-11 
to further activate T cells. Furthermore, in the absence 
of the IL-6, but in the presence of IFN-γ and IL-1, MSCs 
can activate M1 macrophages. These macrophages then 
further release high levels of IFN-γ and TNF-α within 
the damaged tissue environment.57 The findings of an 
in vivo study carried out by Ohlsson et al showed that 
co-administration of cancer cells and MSCs facilitated 

Figure 3. Schematic summarizing the immunomodulatory mechanisms of mesenchymal stem cells in cancer therapy. The web-based application BioRender 
was employed to design the figure. MSCs produce a variety of soluble factors that by interaction with immune cells activate or suppress their function and 
display immunomodulatory effects. macrophage Inflammatory Protein -1α/β(MIP-1α/β), regulated upon activation, normal T cell expressed and presumably 
secreted(RANTES), C-X-C Motif Chemokine Ligand 1(CXCL), toll-like receptor 4(TLR 4), interferon‐gamma (IFN‐γ), Tumor necrosis factor α (TNFα) indoleamine 
2,3-dioxygenase(IDO), transforming growth factor-β (TGF-β), prostaglandin E2 (PGE2), Interleukin(IL), dendritic cell (DC), natural killer cells(NK cell), cytotoxic T 
lymphocytes (CTL), T helper cells (Th1 cell)
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infiltration of monocytes and granulocytes in contrast 
to tumor cells or mesenchymal progenitor cells alone. 
This research demonstrated that MSCs are capable of 
preventing colon carcinoma growth.58 Further, it has been 
found that MSCs can cause cancer cell death through the 
production of unique immunomodulatory cytokines. For 
example, it was demonstrated that the overexpression of 
IL-12 in MSCs increased antitumor responses of T cells and 
repressed tumor growth.59 Due to the immunomodulatory 
trait of MSCs, they are recognized as an excellent focal 
point in anticancer therapeutic strategies. 

Current strategies in MSCs-based cancer therapy 
Exploitation of innate abilities of MSCs including tumor 
tropism, homing, and immunomodulatory endows new 
and innovative applications for inflammatory disorders 
including cancer. Recently, significant research attempts 
have concentrated on the use of stem cells as the vehicle 
for to targeted delivery of anti-cancer agents to tumor 
cells. Moreover, many studies have highlighted that 
MSCs-derived exosomes can serve as a potent cell-free 
tool for cancer treatment.60 Resistance against anti-cancer 
payloads is one of the most substantial barriers in the 
treatment of divergent types of solid tumors. Resistance 
develops due to the continuing utilization and elevated 
concentration of anti-cancer compounds, which augment 
the toxicity of anti-cancer drugs in noncancerous 
proliferating cells.61 Inadequate selectivity of a variety of 
anticancer therapeutic agents could be responsible for 
the problem.62 To overcome the mentioned problems, 
MSCs have been considered an appropriate vehicle for 
the targeted delivery of chemotherapeutic drugs, suicide 
genes, oncolytic viruses (OVs), cytokines, and growth 
factors to tumor cells, because of their intrinsic ability in 
tumor tropism and deep migration into the TME.63

MSCs as a delivery system for chemotherapeutic agents
In this regard, research teams have investigated the 
potential of MSCs as a delivery system for widely 
recognized chemotherapeutic drugs, such as paclitaxel 
(PTX), doxorubicin (DOX), sorafenib, and gemcitabine. 
After loading with drugs MSCs can locally release their 
consignment through passive diffusion in the tumor 
stroma thereby leading to the death of cancer cells.64 The 
previous studies showed the effectiveness of PTX-loaded 
BM-MSCs and DP-MSCs in inhibiting the growth of 
certain malignant conditions including glioblastoma,65 and 
breast cancer66 through mitigation of the cell proliferation 
and inducing apoptosis. Moreover, conditioned medium 
obtained from ASCs-PTX significantly inhibited the 
proliferation of ovarian cancer cells compared with free 
PTX, and diminished PTX resistance in cancer cells.67 
Likewise, the assessment of the potential antitumor 
activity of human DOX-loaded BM-MSCs in xenograft 
mouse models of thyroid or breast cancer demonstrated 
significant cytotoxic effects on tumor cells.68 Additionally, 

ASCs loaded with DOX showed impressive antitumor 
effects in l- B16F10 melanoma lung metastasis in vivo.69 
A study has shown that human MSCs isolated from 
gingival papilla can serve as a reliable delivery system for 
gemcitabine release in an active form and in appropriate 
quantities to inhibit the proliferation of oral squamous 
cells.70 Another experimental study indicated that 
gemcitabine-loaded human BM-MSCs could dramatically 
repress the growth of human pancreatic malignant cells 
(Figure 4A).71

MSCs as a protective tool for the delivery of oncolytic 
viruses
Oncolytic viruses, as anti-tumor biological compounds, 
are considered an innovative and promising therapeutic 
strategy for the amelioration of malignancies, which 
can selectively kill infected cancer cells by apoptosis 
induction.72 Oncolytic viruses with a natural affinity for 
tumor cells, can selectively target the malignant cells and 
lead to their lysis.73 Talimogene laherparepvec (T-VEC) 
is a genetically modified form of human herpes simplex 
virus type 1 (HSV-1). In 2015, T-VEC was approved by 
the United States Food and Drug Administration (US-
FDA) as the first OV for melanoma treatment.74 In a late 
study, Zhang and colleagues reported that oncolytic HSV-
1 can influence TME by decreasing the proportion of anti-
inflammatory macrophages and elevating the presence 
of tumor-infiltrating lymphocytes. Furthermore, they 
represented that the combination of oncolytic HSV-1 and 
immune checkpoint modulators significantly extended the 
lifespan of the pancreatic tumor-bearing mice.75 However 
numerous factors contribute to the effectiveness of the 
virus in spreading within a cancerous tissue, including 
the quick elimination of the virus by the immune system 
and viral captivation by tissues and organs.76,77 Several 
research studies have indicated that MSCs can serve as 
eligible vehicles to protect OVs from neutralizing host 
effects, facilitate the targeted delivery of OVs, and improve 
their capacity to infect and eliminate cancer cells.78 The 
experimental findings demonstrated that MSCs loaded 
with oncolytic adenovirus promote virus replication 
leading to increased production of virus particles and 
a high accumulation of virions in tumors. Ultimately 
MSCs infected with oncolytic adenoviruses were able 
to effectively destroy hepatocellular carcinoma cells in 
vitro.79Additionally, in vivo findings displayed that MSCs 
can prevent immune response by suppressing the release 
of interferon-γ (IFN-γ) from activated T cells. Also, MSCs 
enhanced the distribution and persistence of adenovirus 
in comparison to the injection of the virus alone in vivo.80 
For enveloped OVs, MSCs can transport these viruses 
to tumor tissues through a process that involves hetero-
cellular fusion. Ong et al introduced the oncolytic measles 
virus into bone marrow-derived MSCs and carried out in 
vitro co-culture experiments with human hepatocellular 
carcinoma cells.72 The findings indicated that the number 
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of syncytia (cell fusions) increases when MSCs carry the 
measles virus, whereas this effect is not observed with 
non-enveloped viruses. Moreover, when high-titer anti-
measles virus antibodies are present, virus-infected MSCs 
notably induce the formation of heterocellular structures 
when compared to the naked virus. These results align 
with the observations reported by of Castleton et al, who 
studied the use of MSCs to deliver the measles virus in a 
model of acute lymphoblastic leukemia. They suggested 
that using MSCs for OVs delivery could substantially 
extend survival and improve the effectiveness of anti-
tumor interventions compared to using the virus alone.81 
The different investigations demonstrated that MSCs 
with their unique abilities such as tumor tropism and 
immunosuppression help the virus to precisely reach 
the tumor site and enhance the virus persistence.82,83 
In recent years, an increasing amount of evidence from 
both preclinical and clinical studies has highlighted 
the immunosuppressive abilities of MSCs, as they can 
inhibit the activity of specific immune cell types, such as 
T and B lymphocytes, as well as NK cells. Consequently, 
this modulation extends to affecting the function of 
monocytes, DCs, and macrophages.84-87 MSCs influence 
the activation, growth, maturation, cytokine release, and 
cytotoxic capabilities of both innate and adaptive immune 
cells.88 Certainly, MSCs can decrease cytokine production 
by helper T cells, diminish the cytotoxic effects of 
effector T lymphocytes,89 impede the differentiation 
of B lymphocytes, and hinder their capacity to release 
immunoglobulins.90,91 Additionally, they can confine 
INF-γ secretion by NK cells and attenuate their cytotoxic 

potential. Furthermore, MSCs hinder the differentiation of 
CD14 + monocytes and CD34 + progenitor cells into fully 
mature DCs.92 Crucially, MSCs foster the development of 
regulatory immune subgroups, such as CD8 + CD28− T 
lymphocytes,93 CD4 + CD25 + FOXP3 + T lymphocytes,94 
IL-10 producing B lymphocytes and DCs (Figure 4B).95,96 
Hence, the inhibition of immune cell activities and 
the promotion of regulatory immune cell subsets may 
play beneficial roles in enhancing immunosuppressive 
capabilities of MSCs. These functions are essential MSCs 
features in protecting OVs from immune system clearance 
guaranteeing enhanced OV spread and increased viral 
persistence.80 It has been acknowledged that MSCs-
mediated delivery of OVs in animal models of solid 
tumors has shown successful outcomes in improving 
hepatocellular carcinoma,97 glioblastoma,98 glioma,99 
colorectal cancer,100 prostate cancer,100 and lung metastases 
of breast carcinoma.101

MSCs as a new platform for the delivery of suicide genes
Another modality for cancer treatment is using suicide 
genes which provide the possibility for selective 
destruction of malignant cells without harming the 
surrounding normal cells.102 Suicide gene therapy or gene-
directed enzyme prodrug therapy, is based on the transfer 
of a foreign gene that encodes an enzyme into cancer cells. 
This enzyme converts a prodrug into toxic metabolites 
leading to the death of the cancer cells.103 The bystander 
effect is an intriguing characteristic of the suicide gene 
resulting in the elimination of both cancerous cells in 
which the toxic metabolites are formed and the adjacent 

Figure 4. Mesenchymal stem cells as an appropriate carrier for drug agents, viruses, and gene delivery to tumor microenvironment. The web-based application 
BioRender was employed to design the figure. MSCs due to inherent tropism and high migration potential to cancer cells are convincing vehicles to load (A) 
chemotherapeutic drugs, (B) oncolytic viruses, and(C) suicide genes. MSCs with immunosuppressive ability protect from oncolytic viruses against immune cells 
(B). Various suicide genes have been transferred into MSCs by viral and non-viral vectors and expressed at tumor sites for therapy (C)
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non-transgenic cancer cells.104 The major limitation that 
restricts the success of suicide gene cancer therapy is the 
low efficiency in delivering and expressing the therapeutic 
genes.105 To address the challenges associated with using 
suicide gene therapy for treating tumors, scientists have 
identified the beneficial role of MSCs due to their homing 
ability to target cancerous cells, as the appropriate cellular 
carriers for suicide genes.106 Expression of the suicide genes 
by the MSCs at the tumor local converts the administered 
non-toxic prodrug to an active toxic compound that 
is fatal to tumor cells.107 The herpes simplex virus 
thymidine kinase complexed with ganciclovir (HSV-TK/
GCV system) and yeast cytosine deaminase (CD) with 
5-fluorocytosine (5-FC) are the most common enzyme-
prodrug complexes that in combination with MSCs can 
target different types of tumors. 108 For example, the 
injection of hMSCs transfected with the suicide gene CD, 
which was followed by the administration of 5-FU in a 
mouse model with gastric cancer was found to suppress 
the growth of the tumor.109 Furthermore, in vitro and in 
vivo experiments demonstrated that MSCs expressing 
cytosine deaminase::uracil phosphoribosyl transferase 
(CD::UPRT) can trigger complete tumor regression in 
prostate cancer models.110 CD::UPRT can convert the 
non-toxic 5-fluorocytosine into the cytotoxic anti-tumor 
drug known as 5-fluorouracil.111,112 Recent findings 
showed the safety of adipose tissue–derived allogeneic 
MSCs which carry herpes simplex virus-thymidine kinase 
(HSV-TK) gene, as a suicide gene therapy in patients 
with recurrent glioblastoma.113 Another investigation 
displayed that when MSCs expressing the HSV-TK were 
used in conjunction with the ganciclovir (GCV) prodrug, 
it exhibited its possible anti-tumor effectiveness both in 
laboratory settings and in mice models using the human 
glioblastoma cell line U87TK. During this, MSCs preserved 
cell proliferation, karyotype stability, and retained their 
MSCs characteristics. Moreover, genetic modification 
had a notable impact on their secretory profile, leading 
to a substantial increase in various anti-tumor immune 
soluble factors such as IFN-γ, IL-2, MCP-1, and IL12p40 
(Figure 4C).114 Several studies in the recent decade have 
shown that anticancer drug-conjugated nanoparticle-
loaded MSCs, due to the increasing migration activity 
of MSCs and controlled and gradual drug- release in 
target tissue, can be introduced as a novel tool in cancer 
therapy.115-117

MSCs-derived exosomes for cancer therapy 
Extracellular vesicles (EVs) are a diverse group of 
small, membrane-enclosed structures ranging from 
approximately 30 to 1000 nanometers in diameter. These 
EVs are actively released by all types of cells into the 
extracellular space and plentifully found in different body 
biofluids such as saliva, synovial fluid, amniotic fluid, 
ejaculate, cerebral spinal fluid, milk, and even urine.118-121 
These spherical, bilayered particles are rich in proteins, 

lipids, nucleic acids, and other bioactive metabolites.122,123 
EVs, as a modern messaging system, can mediate cell-
to-cell contact and intercellular crosstalk transfer via 
transferring their bioactive cargo to recipient cells.124 
Different types of EVs can be broadly categorized into three 
major groups based on their mode of biogenesis: exosomes, 
ectosomes, and apoptotic bodies.125 Exosomes generally 
constitute the smallest EVs, less than 150 nm in size. They 
are produced as intraluminal vesicles in the endosomal 
system through the fusion of multivesicular bodies with 
the plasma membrane.126-128 In contrast, ectosomes, or 
microvesicles, are larger, varying from approximately 
100–1000 nm, and are secreted by direct outward 
budding and shedding from the plasma membrane.129 
Similarly, exosomes and ectosomes play crucial roles in 
intercellular communications.130 Tetraspanins form a 
diverse superfamily of small transmembrane proteins 
that are present in both types of EV and are accepted as 
a critical cellular effector during the biogenesis of these 
EVs.131,132 Apoptotic bodies are a peculiar type of EV 
with a large size (1000–5000 nm) secreted by cells that 
have undergone apoptosis, or programmed cell death.133 
MSCs from different tissue sources possess the ability to 
generate and release various types of EVs.134 Exosomes are 
the most important secreted extracellular particles from 
MSCs with a diameter of 30–100 nm that not only express 
common surface biomarkers such as CD81 and CD9, but 
also express MSCs surface markers, such as CD29, CD44, 
CD73, and CD90.135,136 MSCs-derived exosomes owing 
to containing multiple therapeutic cargoes including 
proteins, lipids, nucleic acids (DNAs and RNAs), and 
metabolites, have distinct effects on cell interactions 
through various mechanisms.137 Furthermore, MSCs-
derived exosomes have been proposed as a prospective 
and powerful cell-free-based tool for combatting cancer 
due to having numerous exclusive features such as low 
immunogenicity, biosafety, biocompatibility, prolonged 
circulation time, sustained release, and tumor-particular 
homing.138-140 Angiogenesis, as a process involved in new 
vessel formation, can accelerate tumor growth, while 
exosomes derived from MSCs can prevent angiogenesis by 
regulating VEGF expression. The study by Miranda and 
colleagues found that exosomes derived from MSCs can 
inhibit angiogenesis in prostate cancer (PC3) cells. This 
inhibition is achieved by reducing the secretion of the pro-
angiogenic factor VEGF, suppressing the activity of the 
transcription factor NF-κB, and promoting the production 
of reactive oxygen species within the cancer cells.141 The 
researchers further investigated the anticancer features 
of exosomes by examining how MSCs-derived exosomes 
affect the expression of genes involved in angiogenesis 
and apoptosis in several cancer cell lines. They indicated 
that MSCs-released exosomes can induce apoptosis by 
enhancing p53 gene expression and decreasing BCL2 
gene expression, meanwhile impeding the proliferation of 
cancer cells.142 The available evidence suggests that MSCs 
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exosomes can serve as effective nano-carriers for the 
delivery of antitumor drugs/ genes (miRNA or siRNA), 
facilitate tumor-targeted drug delivery, and enhance the 
bioavailability and efficacy of drugs.143 Ono et al found 
that MSCs-derived exosomes can suppress the cell cycle 
and promote dormancy in breast cancer cells via secretion 
of miR-23b, leading to the inhibition of migration and 
metastases of breast cancer cells.144 Besides, it has been 
presented that MSCs-derived exosomes containing miR-
379 can inhibit growth of T47D breast cell lines expressing 
miR-379, indicating their potential as an effective cell-
based therapy for targeted therapy of breast cancer.145 
Small interfering ribonucleic acid (siRNA), which 
selectively inhibits a target gene, possesses great features 
in cancer treatment. Recently, a group of researchers 
found that MSCs-released exosomes carrying polo-like 
kinase 1 (PLK-1) siRNA leading to apoptosis and necrosis 
in bladder cancer cells.146 Pascucci et al were the first 
to investigate the ability of MSCs-derived exosomes to 
encapsulate and deliver PTX as a chemotherapeutic agent. 
The obtained data from this study showed that exosomes 
have good efficacy to uptake/release PTX, indicating that 
MSCs-derived exosomes can be a new method for drug 
delivery.147 The results of another investigation confirmed 
the anticancer function of exosomes loaded with PXT 
by reducing the tumor size and inhibiting the distant 
metastasis of breast cancer cells in the liver, spleen, and 
kidneys.148 Further, it has been reported that the uptake 
and cytotoxicity of MSCs-derived exosomes loaded 
with DOX are significantly higher than the free DOX in 
the osteosarcoma MG63 cell line. Therefore combined 
exosome-DOX was introduced as a super candidate for 
osteosarcoma treatment.149 Collectively, MSCs-derived 
exosomes exhibit distinct characteristics such as paracrine 
effects, immunomodulatory capabilities, gene transfer 
potential, biocompatibility, and stability. These attributes 
make them valuable biological tools for enhancing the 
efficacy and safety of conventional anticancer therapies 
(Figure 5).150,151 

Signaling pathways regulated by MSCs
Numerous studies in recent decades have suggested 
that different signaling pathways are implicated in 
the development and progression of cancer.152 Based 
on different evidence, MSCs show a high capability 
to inhibit cancer through the modulation of diverse 
signaling pathways in the TME.153 In this section, several 
primary cancer-related signaling pathways influenced by 
MSCs were chosen for a thorough assessment of their 
anti-tumor effects. The Wnt signaling pathway, as one of 
the most important pathways in controlling the processes 
of cell growth and specialization, plays a prominent role 
in cancer progression.154 MSCs can suppress the growth 
of cancer cells by overexpressing P21CIP1 and P27KIP1, 
which in turn inhibit the Wnt signaling pathway by 
down-regulating c-Myc and cyclinD2 and promoting the 

production of the tumor suppressor Dickkopf-related 
protein 1.155 The wnt/β-catenin pathway promotes 
tumorigenesis in various types of cancer.156 The research 
conducted by Visweswaran et al has proven that factors 
derived from ASCs can inhibit cancer cell growth by 
reducing the expression of activated protein β-catenin 
and cyclin D1, and key target proteins of the Wnt 
pathway, and also can induce apoptosis via inhibition of 
the anti-apoptotic protein expression such as Bcl-XL.157 
Blocking the β-catenin signaling pathway had a profound 
impact on preventing both tumor formation and 
metastasis in breast cancer cells overexpressing HER2.158 
The PI3K/AKT/mTOR signaling pathway, as one of the 
most common intracellular pathways, can influence 
various downstream target proteins and is implicated 
in tumorigenesis, proliferation, drug resistance, the 
emergence of stem-cell-like traits, invasion, and 
metastasis of malignant cells.159,160 MSCs can induce 
cell cycle arrest and reduce cancer growth by inhibiting 
proliferation-related signaling pathways, such as the 
phosphatidylinositol 3-kinase/protein kinase B (PI3K/
AKT).161 Inhibition of AKT was showed in a Kaposi’s 
sarcoma model in which intravenously injected MSCs 
migrated to tumors and significantly suppressed tumor 
growth. The JAK/STAT signaling pathway is a key factor 

Figure 5. Mesenchymal stem cells-derived exosomes as an attractive cell-
free approach in cancer therapy. The web-based application BioRender was 
employed to design the figure. MSCs-derived exosomes as an attractive cell-
free approach in cancer therapy. MSCs-exosomes can be loaded with various 
types of compounds such as chemical or genetic drugs to target tumor tissues 
and inhibit tumor growth and metastasis. Exosomes can also influence cancer 
cells by promoting apoptosis and preventing angiogenesis
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in the progression of cancer, serving as a driver of cancer 
growth and metastasis within tumors, or as a regulator of 
immune surveillance.162 Thus, suppressing the JAK/STAT 
pathway is encouraging for remedying various illnesses. 
He et al have presented that the MSCs-conditioned 
medium impedes the STAT3 signaling pathway in breast 
cancer cells and inhibits tumor progression. This finding 
indicates that paracrine-soluble factors secreted by 
MSCs could regulate JAK/STAT signaling and suppress 
the growth of breast tumors.163

Limitations and disadvantages of MSCs-and exosome-
based therapies for cancer
During the past decades, there has been a discernible 
advancement in MSCs-based therapies for different 
cancer type.164 In spite of the amazing therapeutic 
potential of MSCs, there have been some inconsistent 
results from the use of MSCs in preclinical and clinical 
studies that may be caused by the heterogeneity of 
them.165 The heterogeneity of MSCs depends on different 
factors, including cell origin (tissue), the conditions 
of donors (age, diseases, or unknown factors), dosage, 
administration route, expansion protocol, and culture 
passage number of cells.166,167 Therefore, strategies and 
methods are needed that can manage these challenging 
issues. The use of standardized procedures for MSCs 
isolation, characterization, and expansion is critical to 
mitigating variability and improving the clinical efficacy 
of MSCs.168 Also, the dosage, route, and timing of 
administration should be optimized.169 Although the ideal 
MSCs dosage is still unknown, systematic intravenous 
injection (IV) of MSCs at a dose of 100–150 million 
cells per patient has been recommended to be beneficial 
for cancer therapy approaches.170 Meanwhile, many 
studies have shown that IV infusion of MSCs leads to the 
entrapment of cells in the lung, resulting in a reduction in 
the population of cells and the homing of less than 1% of 
them to target sites.171,172 Another of the most important 
reasons for MSCs utilization in the therapeutic area is 
their differentiation potential and immunomodulatory 
potency.173 These properties are affected by the specific 
tissue source from which the MSCs are derived, the age 
and health status of the donor, and the culture conditions 
and environment in which the MSCs were grown and 
expanded outside the body before being administered.174 
So, MSCs derived from different tissues have some 
divergence in their proliferative and differentiation 
capacities and levels of secreted immunoregulatory 
cytokines. Furthermore, multiple studies provide 
evidence that aging causes a considerable reduction 
in the differentiation ability and immunomodulatory 
function of hMSCs.175-177 Among the major challenges to 
the application of MSCs to treat diverse pathologies is 
the need for large and sufficient amounts of cells that can 
only be obtained through long-term ex vivo expansion.178 
Genomic instability and chromosomal aberrations are 

recognized as the most important occurrences during 
long-term culture that elevate the risk of tumorigenicity 
of MSCs after transplantation in patients. Therefore, 
MSCs can be unsafe for clinical use.179,180 In this regard, a 
number of studies have suggested exosomes derived from 
MSCs as an appropriate substitute option for overcoming 
the restrictions and disadvantages associated with cell-
based therapy.181,182 Exosomes, the natural nanocarriers 
of bioactive signals, due to their hydrophilicity and small 
size, can even cross the blood-brain barrier and placental 
barrier, exerting favorable therapeutic effects in different 
types of disease.183,184 So far, several clinical trials have 
confirmed the helpful effects of MSCs-exosomes on the 
improvement of patients with cancer.185 Nevertheless, 
employing exosomes in clinical trials encounters 
challenges and limitations. The outstanding obstacles 
include the absence of a standardized exosome extraction 
and purification procedure, weak characterization, low 
yield of exosomes, sterility and biosafety, long-term 
maintenance, optimal therapeutic dosage, injection 
root, , and a short half-life.186,187 Exosome isolation is a 
determining process for getting a pure and uncontaminated 
sample with a high concentration, which facilitates precise 
evaluations of the functions and characteristics unique to 
exosomes.188 The heterogenicity of exosomes, arising from 
differences in their size, contents, and surface markers, 
poses a significant problem for efficient isolation, 
purification, and characterization of them.189 In order to 
overcome the heterogeneity of exosomes, it is necessary 
to recruit an efficient separation strategy, enabling the 
distinction of exosomes from various sample matrices.190 
Currently, several techniques have been established 
for the sorting of exosomes based on their density, size, 
and surface proteins, including ultracentrifugation, 
size-exclusion chromatography, immunoaffinity, and 
polymer-based precipitation. These procedures, along 
with analysis methods such as nanoparticle tracking, 
electron microscopy, flow cytometry, and western blots, 
have helped advance the use of purified exosomes as an 
efficient drug delivery vehicle for cancer therapy.188,190-192 
Nevertheless, the approaches used to extract, purify, and 
store exosomes need to conform to Good Manufacturing 
Practice (GMP) standards in order to generate a product 
with high biosafety to enter clinical settings.193 Determining 
the optimal dose, as one of the impressionable factors in 
exosome-based therapy, is affected by some considerations, 
such as the administration route and half-life.194 Due to 
the short circulation half-lives of exosomes and rapid 
fluid turnover (blood, sweat, or tears), systemically and 
locally administered injections cause rapid clearance from 
blood circulation and cumulation of the exosomes in the 
spleen, liver, and lung.195,196 Thus, the short half-life is an 
important limitation for the effective transfer of exosomes 
to damaged tissue and the continuity of their presence 
in the target location.197 Despite considerable advances 
in the study of MSCs and their derived exosomes, there 
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are numerous issues and restrictions that have hindered 
their clinical use and should be addressed more in 
future research.

Conclusion
Cancer is one of the most significant causes of people 
life-threatening worldwide. Even though the disease 
conditions are highly progressive, there is no definitive 
cure, and nearly all current therapeutic approaches aim 
to control the advancement and progression of cancer. 
MSCs-associated cell therapies are considered promising 
treatment candidates with potential ameliorating effects 
on disease progression. MSCs due to having robust 
tumor-tropic capacity can migrate to tumor tissues, 
therefore these cells are a good option for targeted delivery 
of different chemical and genetic agents to tumor sites, 
reducing the side effects of various drugs on healthy tissues. 
They also can modulate inflammation conditions in the 
TME via producing higher levels of paracrine factors and 
suppression of T cell proliferation, NK cells activation, and 
DCs maturation, as a result, can be the favorite therapy for 
controlling cancer. In addition, MSCs-derived exosomes, 
as a cell-free tool, offer unique advantages for use in 
cancer therapy and are notable for the delivery of several 
therapeutic molecules including chemotherapeutic drugs, 
miRNAs, specific siRNAs, and suicide gene mRNAs. 
Overall, the numerous experimental studies and clinical 
trials provide promising results regarding the use of MSCs 
in cancer therapy and confirm the potential of MSCs 
to combat cancer. In conclusion, hopeful progressions 
have been made in oncology research, so MSCs-based 
therapies can be a surprising revolution in medicine and 
the treatment of patients suffering from cancer.
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