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Introduction 
According to the World Health Organization (WHO), 
antimicrobial resistance (AMR) and cancer are severe 
threats to human health.1 Recently, global AMR and 
use surveillance system (GLASS) reported laboratory-
confirmed AMR cases in 3 106 602 patients in 70 countries 
in 2019.2 In the era of antibiotic or multidrug resistance 
(MDR), there is a need to look for alternative and stable 
treatment options beyond these small molecules.3 Amongst 

non-communicable diseases, cancer is the leading cause 
of death that decreases life expectancy in every country 
globally. According to the international agency for 
research on cancer (IARC) GLOBOCAN (2020) database 
statistics, there were an estimated 19.3 million new cancer 
cases, and 10 million cancer deaths reported worldwide 
in 2020.4 Traditional anticancer therapeutics involve 
surgery, radiation therapy, and chemotherapy as the 
major treatment options for primary tumors to extensive 
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Abstract
Introduction: Peptide-based research has 
attained new avenues in the antibiotics and 
cancer drug resistance era. The basis of 
peptide design research lies in playing with 
or altering physicochemical parameters. 
Here in this work, we have done exploratory 
data analysis (EDA) of physicochemical 
parameters of antimicrobial peptides 
(AMPs) and anticancer peptides (ACPs), two 
promising therapeutics for microbial and 
cancer drug resistance to deduce patterns and 
trends. 
Methods: Briefly, we have captured the natural AMPs and ACPs data from the APD3 database. 
After cleaning the data manually and by CD-HIT web server, further data analysis has been done 
using Python-based packages, modlAMP and Pandas. We have extracted the descriptive statistics 
of 10 physicochemical parameters of AMPs and ACPs to build a comprehensive dataset containing 
all major parameters. The global analysis of datasets has been done using modlAMP to find the 
initial patterns in global data. The subsets of AMPs and ACPs were curated based on the length of 
the peptides and were analyzed by Pandas package to deduce the graphical profile of AMPs and 
ACPs.
Results: EDA of AMPs and ACPs shows selectivity in the length and amino acid compositions. 
The distribution of physicochemical parameters in defined quartile ranges was observed in the 
descriptive statistical and graphical analysis. The preferred length range of AMPs and ACPs was 
found to be 21-30 amino acids, whereas few outliers in each parameter were evident after EDA 
analysis. 
Conclusion: The derived patterns from natural AMPs and ACPs can be used for the rational design 
of novel peptides. The statistical and graphical data distribution findings will help in combining 
the different parameters for potent design of novel AMPs and ACPs. 
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candidates as most of these candidate peptides are the 
analogs or modified derivatives of natural peptides.21,22 

Therefore, compared to synthetic peptides, the analysis of 
physicochemical parameters of natural AMPs and ACPs 
can decode design principles better which can help in the 
designing of novel agents.20 Furthermore, several natural 
or synthetic AMPs and ACPs have been collected from the 
literature to curate peptide databases.16-19,23-30 The peptide 
datasets from these databases can provide insights into the 
overall design parameters for the potent design of novel 
AMPs and ACPs.22,31

In the current age of data science, exploratory data 
analysis (EDA) is the process of deriving hidden and 
unknown information from datasets to discover new 
patterns and trends in the data.32 Graphical representation 
of dataset analysis is the main aim of EDA, through which 
hidden patterns and facts can be easily detected.33 EDA 
helps gather instant intelligence about the data through 
visual inspection of graphs, plots, or images that the 
human brain can easily interpret.34 The statistical analysis 
during EDA provides only a summary of the data and 
may miss crucial patterns in the datasets. In contrast, the 
graphical analysis in EDA displays hidden patterns and 
facts. EDA prefers multiple plots compared to a single 
plot because there is no single “best plot” but rather, 
each different plot helps to identify a unique feature of 
the dataset.35,36 Recently, the EDA approaches have been 
used on datasets of different domains to explore hidden 
information and facts. The datasets analyzed for deducing 
statistical patterns and different graphical representations 
were also plotted for visual analysis of data.37-43

EDA of natural AMPs and ACPs datasets can provide 
insight into the design parameters. In addition, the 
uncertainty in physicochemical parameters of some AMPs 
that have shown anticancer activity can also be inferred to 
develop new potent AMPs or ACPs. Thus, EDA will not 
only provide a statistical description of physicochemical 
parameters for rational-based peptide design but can 
also contribute to the understanding of peptide data for 
machine learning based model-building.

Hence, here in this work, we have used a new 
methodology for EDA of physicochemical parameters of 
natural AMPs and ACPs. The methodology approach was 
implemented using Python based packages to decipher 
the patterns and trends in peptide datasets. EDA was 
performed on a complete dataset termed as global dataset 
here and subsets (partitioned based on length interval) of 
both AMPs and ACPs. 

Materials and Methods
Dataset preparation
Natural AMPs and ACPs were retrieved from the APD3 
database (https://aps.unmc.edu/).30 APD3 contains mostly 
natural peptides from literature sources with only a few 
synthetic peptides as derivatives of natural AMPs.20,30 
We used “anti-Gram+/Gram- bacteria” and “anticancer” 

metastases. However, these traditional therapeutic 
options suffer from serious problems of drug resistance 
and adverse side-effects; for instance, data from a clinical 
study of patients suggest that above 80% of cancer patients 
acquired single or multiple drug resistance.5

Given the rising prevalence of microbial and cancer 
drug resistance, there is an essential need to look for 
alternative therapeutics. Therapeutic peptides (THPs) 
such as antimicrobial peptides (AMPs) and anticancer 
peptides (ACPs) are being seen as new arsenals in the era 
of microbial and cancer drug resistance, respectively.6,7 
These peptides provide many advantages over traditional 
therapeutics drugs because of their better safety.8,9 AMPs 
are short, cationic, amphiphilic molecules of host defense 
produced by almost all life forms as components of the 
innate immune response. They display a broad spectrum 
of antimicrobial activity against Gram-negative, Gram-
positive bacteria, fungi, viruses, and parasites.10 Besides 
antimicrobial activity, the immunomodulatory role of 
AMPs in mammals to stimulate pro or anti-inflammatory 
response by activating cells of the immune system 
(macrophages and mast cells) and anticancer or antitumor 
activities in various cancer cell lines or mice models are 
well established.11 

The potential of AMPs as safe, effective, and highly 
selective drugs against several different types of cancers 
can be exploited to design novel ACPs as potential drugs.12 

ACPs share most of the characteristics with AMPs, such 
as both possess high hydrophobicity (H), net positive 
charge, and fold into a well-defined alpha helix or beta-
sheet structure upon interaction with cell membranes. 
However, despite sharing common characteristics, 
there is still enough uncertainty in the physicochemical 
parameters that determine the activity of some AMPs 
against cancer cells.13

The current challenges in peptide therapeutics such 
as low oral bioavailability, sensitivity to host protease, 
hemolysis and cytotoxicity, and short half-life hinder the 
development of successful AMPs or ACPs candidate.14,15 

Furthermore, a lack of understanding of rational design 
approaches further increased the snag in therapeutics 
peptides development.6 Several previous efforts to explore 
the physicochemical parameters from the datasets of 
AMPs or ACPs were mainly made during the curation 
of peptide databases.16-19 Though, these efforts explored a 
few physicochemical parameters of the peptides but lack 
sufficient statistical analysis. Furthermore, a combination 
of synthetic and natural peptide datasets was used in these 
studies that may have prevented the overall representation 
of physicochemical parameters of natural peptides.

The challenges in AMPs or ACPs development 
and design can be better solved by understanding the 
underlying principles of designing natural peptides, 
as recently stated by Wang.20 Additionally, the study 
of physicochemical parameters of natural AMPs or 
ACPs may prove advantageous to the clinical peptide 
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filters to retrieved AMPs and ACPs, respectively. The 
peptide sequences and physicochemical parameters such 
as length, charge, Bowman index, and structure and 
activity types were captured from the APD3.

Dataset preprocessing
By default, the retrieved AMPs also contain ACPs; 
therefore, we remove ACPs to get AMPs exclusively for 
analysis. Furthermore, both datasets were checked for the 
presence of any synthetic peptides by manual checking 
the annotated name of each peptide. Redundancy in 
the dataset was checked using the CD-HIT (http://
weizhong-lab.ucsd.edu/cdhit-web-server/cgi-bin/index.
cgi?cmd=cd-hit-2d) web server.44 Both datasets were 
cleaned to obtained >99% non-reductant AMPs and ACPs 
datasets. 

Extraction of additional physicochemical parameters
In addition to basic physicochemical parameters captured 
from the APD3 database, we also calculated other 
important peptide parameters like molecular weight, 
isoelectric point (pI), instability index, aromaticity, 
and aliphatic index. We used modlAMP version 4.2.3 

(molecular design laboratory’s antimicrobial peptides 
package), a Python-based package for peptide data analysis 
to extract additional physicochemical parameters.45 
Globaldecsriptor class of descriptors module of modlAMP 
was used for this purpose. We installed and used modlAMP 
using Spyder IDE (integrated development environment) 
of the Anaconda platform.46 Sequence data of AMPs 
and ACPs were converted into CSV (comma separated 
values) files to be read by Globaldecsriptor. The output of 
each parameter was stored in columns in a separate out.
csv file. The collected (from APD3) and extracted (from 
modlAMP) physicochemical parameters of AMPs and 
ACPs were stored in excel spreadsheets (Supplementary 
files 1 and 2) for EDA.

Global analysis of AMPs and ACPs
EDA was performed on Spyder, a Python IDE available for 
data analysis on the Anaconda platform. Python’s pandas 
version 1.2.2 package47 and Globalanalysis class of the 
modlAMP analysis module were used for EDA. Datasets 
were checked for null values, dimensions, and variable 
types using standard commands of pandas. Descriptive 
statistics of datasets were calculated using the “describe 
()” function of the pandas package.

To analyze the initially hidden pattern and trends 
graphically in basic physicochemical parameters of global 
datasets of AMPs and ACPs, we used Globalanalysis 
class of modlAMP. The sequences of AMPs and ACPs 
were stored in CSV formats to be read by Globalanalysis. 
Furthermore, box plots and heatmaps were generated for 
all physicochemical parameters using the pandas package 
for graphical analysis. 

Subset analysis 
Due to the unequal size of the datasets, we avoided a 
direct comparison of AMPs and ACPs. However, in 
order to gain insight into the influence of length on other 
physicochemical parameters, we partitioned each dataset 
into a length interval of 10, as described in the previous 
studies.48,49 Usually, the basis of partition depended on 
the significance of the length parameter in the peptide 
designing. The number of amino acid (aa) residues in the 
peptides influences other physicochemical parameters 
and even the activity of the designed peptides.50

The different subsets of peptides datasets were also 
analyzed for descriptive statistics using the “describe ()” 
function. The graphical analysis (boxplot and heatmaps) of 
subsets was done using the pandas package. Furthermore, 
we also calculated the amino acid compositions of subsets 
by using “aa.freq ()” function of modlAMP. The overall 
methodology used in the study is summarized in Fig. 1.

Results
Dataset characterization
A total of 2680 & 226 natural AMPs and ACPs were 
retrieved from APD3. Both datasets contain peptides with 
natural amino acids. Any synthetic peptides in the datasets 
were removed manually to get precisely natural AMPs 
and ACPs. After screening AMPs datasets for anticancer 
or antitumor active peptides, we finally got 2384 AMPs, 
whereas the ACPs dataset contains 226 ACPs. A total of 
ten physicochemical parameters of peptides were taken 
into account for the analysis in which five parameters 
(such as length, charge, Bowman index, hydrophobicity, 
and structure type) were retrieved from APD3 and the 
remaining five (molecular weight, isoelectric point (pI), 
instability index, aromaticity, and aliphatic index) were 
calculated using Globaldecsriptor. Out of ten parameters, 
structure type was the only object data type, and the 
remaining were of the variable data types. The complete 
datasets (global and subsets) used in the study can be 
found in Supplementary file 1 (AMPs dataset) and 
Supplementary file 2 (ACPs dataset).

Trends and patterns in global analysis
To identify trends and patterns in the global AMP dataset, 
we have performed EDA in two steps. First, we calculated 
descriptive statistics of all physicochemical parameters to 
get the data’s statistical pattern. The anomaly observed 
in the statistical pattern of basic physicochemical 
parameters was visually inspected by the modlAMP. In 
the second step, we performed the graphical analysis of all 
physicochemical parameters using pandas to find the data 
patterns in each parameter.

Descriptive statistics of AMPs global dataset
The descriptive statistics of the AMPs dataset gave mean, 
minimum, interquartile range (Q1 (25%), Q2 (50%, 
median), and Q3 (75%)) and maximum value of all 
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physicochemical parameters along with standard deviation 
(Table 1). As previously mentioned in section 2.5, the 
length of AMP played an important role in determining 
the peptide activity. Additionally, the length also affects 
the mode of action, structure type, and cytotoxicity against 
red blood cells.50 The descriptive statistical analysis results 
showed that the mean or average length of AMPs is 34.12 
aa, whereas the length of 2 aa and 183 aa are minimum 
and maximum, respectively. The mean length of 34.12 aa 
can relate to the mechanism of action of AMPs required 
for traversing the lipid bilayers. Furthermore, a recent 
study also suggests the approved peptides in this category 
range.49 Thus an AMP designed with this length can be 
of potent activity. The interquartile length range of AMPs 
was from 20 to 40 aa with a median length of 28 aa. So, 
designing de-novo or template-based AMPs within these 
length ranges may provide a potent active AMP. 

The net charge is defined as the sum of all charges 
of ionizable groups of the peptide and is an essential 
parameter for AMP activity. The net charge of AMPs can 
be negative or positive, which can be altered during peptide 
design to change antimicrobial or hemolytic activity.50 We 
found that the natural AMPs contain an average charge of 

+3.86; this observation was consistent with the previous 
finding of Wang.20 The net cationic charge is required for 
the initial electrostatic attraction of AMPs to negatively 
charged phospholipid membranes.6 But a minimum and 
a maximum charge of -12 and +30 respectively were also 
evident from the analysis in the dataset. The interquartile 
range of charge lies between +2 to +5, with +3 being the 
median charge. These findings suggest that natural AMPs 
preferred a cationic charge range from +2 to +5. Therefore, 
modulation of AMPs towards this charge range may result 
in better interaction with negatively charged phospholipid 
membranes. 

Hydrophobicity is the percentage of hydrophobic 
residues present in the peptide. Previous studies showed 
that most AMPs were 50% hydrophobic. This parameter 
plays a key role in the AMP-membrane interaction and also 
modulates the activity.51 We found mean hydrophobicity 
of 42% in the global dataset of AMP. Surprisingly, the 
minimum hydrophobicity in the dataset was found to be 
0% and a maximum of 87%. The interquartile range of 
hydrophobicity spans 34% to 42%, with a median value 
of 51%. These results reflect the presence of variable 
hydrophobic amino acid residues in the natural peptides. 

Fig. 1. Overall methodology used for exploratory data analysis of physicochemical parameters of natural AMPs and ACPs.

Table 1. Descriptive statistics of AMPs global dataset calculated using pandas package

Physicochemical parameters Mean SD Min Q1 Median, Q2 Q3 Max

Length 34.12 23.14 2 20 28 40 183

Charge 3.86 3.39 -12 2 3 5 30

Hydrophobicity (%) 42 13 0 34 42 51 87

Boman index (kcal/mol) 0.84 1.54 -3.35 -0.24 0.80 1.90 8.72

Molecular weight (Da) 3724.09 2538.84 294.35 2114.28 3081.69 4323.66 19842.55

Isoelectric point (pI) 9.54 1.89 2.42 8.55 10.02 10.70 13.53

Instability index 27.95 27.61 -43.43 8.28 24.52 43.18 190.38

Aromaticity 0.08 0.06 0 0.04 0.07 0.12 0.50

Aliphatic Index 92.00 45.88 0 56.66 90.67 121.21 256.25

SD, Standard deviation; Min, Minimum; Q1, First quartile or 25%; Q2, Second quartile or 50%; Q3, Third quartile or 75%; Max, Maximum.

Archive of SID.ir

Archive of SID.ir



Saini et al

BioImpacts. 2024;14(1):26438 5

The Boman index was proposed by Boman to calculate 
the potential of peptides towards binding to other proteins 
(such as receptors) or membranes.52 A peptide having 
a calculated Boman index value of >2.48 kcal/mol is 
supposed to have a high binding potential.53 Furthermore, 
peptides having a high Boman index suggest their 
multiple roles in the cell due to their tendency to interact 
with different types of proteins.54 Surprisingly, we found a 
significantly lower mean value of 0.84 kcal/mol for AMPs. 
The minimum value was -3.35 kcal/mol, but the maximum 
value of 8.72 kcal/mol exceeds the threshold value of 2.48 
kcal/mol. The interquartile range falls between -0.24 kcal/
mol to 1.90 kcal/mol. Despite the active AMPs dataset, 
the statistical pattern of the Boman index value looks 
impertinent.

AMPs are usually low molecular weight (<10000 Da) 
peptides.55 Previous studies have demonstrated that the 
activity of peptides also relies on the molecular weight,56 
which is the sum of the molecular weight of amino acid 
residues of the peptides.53 The peptide weight often limits 
its therapeutic value compared to small drug molecules; 
for example, a 5000 Da peptide production cost increases 
10 fold compared to a 500 Da small molecule.57 Hence, 
understanding the natural peptides weight pattern along 
with other physicochemical parameters may help in cost-
effective and efficient design. In our study, we found a 
mean weight of 3724.09 Da for AMPs. Active AMPs with a 
minimum weight of 294.35 Da and a maximum weight of 
19842.55 Da were observed from the dataset. The weight 
of AMPs was found to be in the interquartile range of 
2114.8 to 4323.66 Da. The pattern observed shows that an 
active AMP must not be of large molecular weight.

The pI is defined as the pH at which the net charge of 
the protein or peptide is equal to 0; this physicochemical 
parameter affects the solubility of peptides at different 
pH. The peptide becomes inactive if the pH of the solvent 
medium is equal to the pI of the peptide.53 The mean pI 
of AMPs is found to be 9.54 that suggests a preference for 
basic pH. In contrast to a basic mean value of pI, an acidic 
pI value of 2.42 and a higher basic pI value of 13.53 were 
also found from the dataset. Except for these extreme pI 
values, the interquartile range (8.55 to 10.70) revealed a 
preference for basic pH in most AMPs. The observed basic 
pH may be attributable to the high frequency of positive 
charge basic amino acid residues in the AMPs.

The instability index parameter was given by Guruprasad 
et al. This parameter is used to predict the stability of a 
protein in the in-vivo environment based on its amino 
acid composition. An index value of less than 40 for a 
peptide reflects the stability of the peptide.53,58 We found a 
mean value of 27.95 for the AMPs dataset with -43.43 and 
190.38 as a minimum and maximum value, respectively. 
The interquartile range of 8.28 to 43.18 with a median of 
24.52 also indicated that most AMPs are stable in-vivo. 

According to Lobry and Gautier, aromaticity is the 
relative frequency of aromatic amino acids (F, W, and Y) 

in the protein or peptide sequence.59 Previous research 
works on the role of aromaticity described its importance 
in membrane interaction and structural integrity, which 
are critical to AMP activity.60,61 In another study, the role of 
aromatic interactions in the identification of biomolecules 
was highlighted, which may help in biomaterial research 
and molecular recognition.62 We found a mean value 
of 0.08 equivalent to 8% from the global dataset, but a 
minimum value of 0 reflects the lack of aromatic residues 
in some AMPs, whereas the interquartile range of 0.04 to 
0.12 shows the presence of few aromatic residues. 

Ikai purposed the aliphatic index parameter to measure 
the thermal stability of proteins by calculating the relative 
volume occupied by aliphatic side chains of amino acid 
residues, A, V, I, and L.63 The higher value of this parameter 
means higher heat stability.64 Descriptive statistics showed 
higher values of instability index in the range of 56.66 to 
121.21. The mean value was found to be 92. 

modlAMP analysis of AMPs global dataset
The initial descriptive statistics gave insight into the 
statistical pattern of physicochemical parameters but 
revealed unusual trends in the data (Table 1) compared 
to known patterns about physicochemical parameters.50,65 
For example, the maximum length of 183 aa and the 
maximum charge of 30 are lesser-known facts when 
considering literature that shows AMPs length up to 100 
aa and net charge in the range of +2 to +9.65 Therefore, 
to uncover the hidden pattern, we used the modlAMP 
package that contains Globalanalysis class for plotting 
the peptide dataset's basic physicochemical parameters. 
Moreover, it also gave amino acids frequency distribution 
in the peptide dataset. 

The amino acid composition pattern observed in 
the AMPs dataset revealed the preference for G, K, L, 
I, and A (Fig. 2A) amino acids over other amino acids. 
Furthermore, the parameter length (Fig. 2C) was found 
to contain outliers in the dataset that may have resulted 
in unusual trends during the descriptive statistics. 
The graphical representations by modlAMP (Figs. 2A, 
2B, 2C, 2D, 2E and 2F) uncover some of the unusual 
patterns observed in descriptive statistics. Additionally, 
it also provided the most favorable patterns for the basic 
physicochemical parameters; for instance, the global 
charge tends to accumulate around +2 to +5 (Fig. 2B) 
with the most frequent value of +4. The length of AMPs 
distributed around 20-40 aa (Fig. 2C) is consistent with 
descriptive statistics.
Interestingly, a graphical global analysis summary of the 
AMPs dataset by modlAMP shows that the data points in 
the hydrophobicity (Fig. 2D) and hydrophobic moment, 
µH (a measure of the helix amphipathicity)) (Fig. 2E) are 
uniformly distributed in the violin plot. Moreover, a 3D 
scatterplot (Fig. 2F) in the global summary also revealed 
a good correlation pattern among the hydrophobicity (H), 
charge, and hydrophobic moment (µH).
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Graphical profile analysis of global AMPs dataset
The patterns observed above in the global summary plot 
of basic physicochemical parameters were not evident in 
the descriptive statistical analysis; thus, it prompted us to 
visually inspect each physicochemical parameter of the 
global AMPs dataset. This task constituted our second 
stage of global data analysis, where we have used the 
Python pandas package to plot the distribution of AMPs 
data points graphically. Box plots were obtained for each 
parameter to analyze the distribution pattern further and 
trends in AMPs global data set. Only object data type, i.e., 
structure type, was also considered in this analysis for 
which descriptive statistic was not possible. To explore 
the correlation among each physicochemical parameter, 
we plotted a heatmap. The box plots obtained by the 
pandas package for each physicochemical parameter were 
compiled with heatmap and amino acid composition 
patterns to form a graphical profile of the AMPs global 
dataset, as shown in Figs. 3A-L.
The graphical profile of the AMPs global data set helps 
to find the unusual pattern observed in descriptive 
statistical analysis. For instance, the boxplot of the most 
parameter contains outlier beyond the Q3 (Figs. 3A, 3B, 
3C, 3D, 3E, 3G, 3H, 3I, 3J, 3K and 3L) except pI (Fig. 3F) 
in which outliers were detected below Q1. The correlation 
pattern in the parameters was found using a heatmap. 
The dark blue color shows a more positive correlation, 
whereas lighter blue to white colors shows a decrease 
or a negative correlation among the two variables. A 
value of 1 represents the highest correlation, whereas -1 

shows a negative correlation. We found that parameters 
such as hydrophobicity, aromaticity, aliphatic index, and 
pI show a negative correlation with the length of AMPs 
(Fig. 3J). The charge was positively related to pI, whereas 
a negative correlation was found with the aliphatic index 
and hydrophobicity (Fig. 3J). This correlation analysis 
of natural AMPs will be helpful in the rational design of 
novel peptides. By analyzing the relationships between two 
variables in the natural dataset, we can better modulate 
the template peptides for activity.
AMPs can adopt different secondary structures, such as 
α-helix, β-sheet, extended or mixed structures. α-helix 
peptides are unstructured in an aqueous solution, whereas 
β-sheet peptides are more ordered. The α-helical AMPs 
are usually more active against microbes due to their 
ability to undergo conformation change upon interaction 
with membrane.57,66 We found that secondary structures 
of the large number (1561 AMPs) of natural AMPs were 
unknown, and structure type α-helix (319) dominates 
over other structure types, as shown in Fig. 3L.

Descriptive statistics of ACPs global dataset
The same procedure which has been followed in AMPs 
dataset analysis was used for the ACPs dataset. The 
descriptive statistics of the ACPs dataset are summarized 
in Table 2 also revealed some unusual patterns and trends; 
for example, the maximum and minimum length of ACPs 
in the dataset is 111 aa and 5 aa, respectively. The mean or 
average length was found to be 26.47 aa. The maximum 
length of 111 aa among ACPs is an unusual pattern 

Fig. 2. Global analysis of physicochemical parameters of AMPs global dataset plotted using modlAMP. The global summary plot showing the distribution 
of basic physicochemical parameters of AMPs like the relative abundance of individual amino acids (A), global charge (B), sequence length (C), global 
hydrophobicity (D), hydrophobic moment (E) and 3D scatter plot (F) that shows the correlation.
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observed compared to the known facts.13 Therefore, the 
modlAMP analysis was conducted to explore the hidden 
information in the dataset.

modlAMP analysis of ACPs global dataset
The amino acid composition of the ACPs dataset shows 
the preference of G, K, L, I, A, and C amino acids over 
others as shown in Fig. 4A. The most frequent charge on 
ACPs was +2 (Fig. 4B), and the most preferred charge 
range was +1 to +5. We observed outliers above the length 
of 50 aa (Fig. 4C), containing a peptide of 111 aa (largest 
ACP) as also depicted in descriptive statistics. Most ACPs 
were present in the length range of 17-31 aa as shown in 
the Fig. 4C. Global hydrophobicity and moment (µH) 
were also distributed uniformly as depicted in Fig. 4D and 
4E, respectively. However, the correlation pattern in the 
3D scatter plot (Fig. 4F) between charge, hydrophobicity, 
and moment (µH) shows minimal correlations compared 
to the AMPs dataset.

Graphical profile analysis of global ACPs dataset
Graphical profile of ACPs global dataset revealed the 
distribution of ACPs data points on the box plots. It was 
observed that compared to AMPs data points distribution, 
the numbers of outliers in ACPs are very few (Fig. 5A-
5L). This observed pattern is may be due to the small set 
of ACPs dataset. But as observed in the AMPs dataset, 
the number of outliers for each parameter in the ACPs 
dataset also contains outlier beyond the Q3 except pI. 
We found the same correlation (dark brown color shows 
a more positive correlation, whereas lighter brown color 
shows a decrease or a negative correlation) among the 
different parameters in ACPs dataset as was present in the 
AMPs dataset but with different magnitude (Fig. 5J). The 
analysis of the structure type object variable in the ACPs 
dataset shows that the secondary structure type, α-helix 
was the most preferred conformation adopted by ACPs, as 
shown in Fig. 5L. Fig. 5A-5L shows the graphical profile of 
the ACPs global dataset.

Fig. 3. Graphical profile of global dataset of natural AMPs. (A) Distribution of length (B) charge (C) hydrophobicity (D) Boman index (E) molecular weight (F) 
pI (G) instability index (H) aromaticity (I) aliphatic index (J) correlation heatmap (K) amino acid frequency, and (L) structure type in global dataset of natural 
AMPs.
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Trends and patterns in subsets analysis
Although descriptive statistics, a summary of the 
modlAMP global analysis, and a graphical profile analysis 
provide interesting facts about the global data sets, since 
the parameters length and amino acid composition are 
important in peptide design, we have created and analyzed 
subsets of AMPs and ACPs data sets based on lengths. 
The purpose of the subset analysis was to deduce the 
parameters of correlation among each parameter based on 
the length and the relative compositions of amino acids 
in the peptide. For this purpose, each dataset was divided 
into a length range of 10 intervals until each length range 
contains a significant number of peptides (in the case of 
AMPs >20 aa and ACP >10 aa)

Subsets analysis of AMPs
AMPs dataset was divided into 11 subsets (Supplementary 
file 1) in which the first 10 sets were of length interval 10 
each. The 11th subset contains AMPs that were >100 aa 
and for which there were less than 20 AMPs in the length 
range. The subsets formed after splitting the AMPs dataset 
show that approximately 74% of natural AMPs present 
in the length range of 11-40. The maximum numbers of 
AMPs were present in the length range 21-30 (674 AMPs), 
followed by 11-20 (559 AMPs) and 31-40 (529 AMPs), as 
shown in Fig. 6. The amino acids distribution pattern in 
most AMPs subsets were found to be slightly different 
with the presence of high frequency of C, R, S, T, and V 
residues as compared to global AMPs datasets. However, 

Table 2. Descriptive statistics of ACPs global dataset calculated using Pandas package

Physicochemical parameters Mean SD Min Q1 Median, Q2 Q3 Max

Length 26.47 14.44 5 17 25 31 111

Charge 3.09 3.11 -6 1 3 4.75 16

Hydrophobicity (%) 47 12 0 40 48 56 100

Boman index (kcal/mol) 0.44 1.55 -3.82 -0.74 0.25 1.28 8.33

Molecular weight (Da) 2871.14 1596.92 407.44 1744.84 2618.24 3279.91 12251.12

Isoelectric point 9.08 2.27 2.55 7.82 9.83 10.70 12.80

Instability index 26.61 27.77 -31.77 10.91 24.16 41.20 141.26

Aromaticity 0.076 0.059 0 0.037 0.065 0.107 0.307

Aliphatic Index 105.35 52.54 0 61.75 97.73 142.39 264.28

SD, Standard deviation; Min, Minimum; Q1, First quartile or 25%; Q2, Second quartile or 50%; Q3, Third quartile or 75%; Max, Maximum.

Fig. 4. Global analysis of physicochemical parameters of ACPs global dataset plotted using modlAMP. The global summary plot showing the distribution 
of basic physicochemical parameters of AMPs like the relative abundance of individual amino acids (A), global charge (B), sequence length (C), global 
hydrophobicity (D), hydrophobic moment (E) and 3D scatter plot (F) that shows the correlation.
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the frequency pattern of G, K, L and I residues was found 
to be relatively consistent throughout all AMPs subsets 
which highlighted the significance of these amino acid 
residues even in the longer form of AMPs. 

Similar to the amino acid composition analysis, we 
analyzed the other physicochemical parameters of each 
subset by calculating descriptive statistics and graphical 
profile analysis. The descriptive statistics of each AMPs 
subset can be found in Table S1, Supplementary file 3 
and the graphical profile analysis of AMPs subsets in 
Figs. S1-S11, Supplementary file 4. The subsets 21-30 and 
31-40 containing most of the AMPs and are included in 
the interquartile range of the global dataset, have been 
discussed here. 

Trends in AMP subset 11-20
The subset 11-20 containing 559 AMPs (as shown in 
Fig. 6) shows the average length of 16 aa residues; the 

maximum and minimum lengths of residues were 20 
and 11, respectively (Table S1, Supplementary file 3). 
This subset has 121 AMPs, of which peptides with 13 aa 
residues were the most frequent. Amino acid composition 
analysis (Fig. S2-K, Supplementary file 4) shows the same 
amino acid preferences as the global dataset (Fig. 3K) and 
subset 21-30 (Fig. S3-K, Supplementary file 4). Similar to 
subset 21-30, this subset also shows few outliers among 
other parameters, but the central distribution of AMPs 
data points in quartile regions was also observed, as shown 
in Fig. S2 (Panels A-L) (Supplementary file 4).

Trends in AMP subset 21-30
The analysis of subset 21-30 shows that the average 
lengths of AMPs are ~25 aa (Table S1, Supplementary file 
3), less than the average length of the global dataset that is 
34.12 aa. The maximum and minimum lengths are 30 aa, 
and 21 aa respectively (Table S1, Supplementary file 3), 

Fig. 5. Graphical profile of global dataset of natural ACPs. (A) Distribution of length (B) charge (C) hydrophobicity (D) Boman index (E) molecular weight (F) 
pI (G) instability index (H) aromaticity (I) aliphatic index (J) correlation heatmap (K) amino acid frequency, and (L) structure type in global dataset of natural 
ACPs.
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and the 134 AMPs were found to be 24 aa residues long, 
the most frequent count in the subset. The frequency 
distribution of amino acids in this subset was similar to 
that of the AMPs global dataset, with K, L, G, I, and A 
residues as most frequent (Fig. S3-K, Supplementary file 
4). These results reflect that this subset largely determined 
the composition of AMP's global dataset. The other AMPs 
parameters, though centered in the quartile regions in the 
box plots, but also contains few outliers, as shown in Fig. 
S3 (Panels A-L) (Supplementary file 4). 

Subsets analysis of ACPs
The global data set of ACPs (226 ACPs) was divided into 6 
subsets (Supplementary file 2). The first five subsets were 
of length interval of 10, whereas the sixth subset (>50 

residues) contains ACPs, which cannot be partitioned 
into subsets because of a smaller number of peptides (<10 
ACPs). Segregating the ACPs global dataset into subsets 
unraveled the preferable ranges of length parameter. As 
shown in Fig. 7, most of the ACPs were found in the 
residue range 21-30 (83 ACPs), followed by 11-20 (71 
ACPs) and 31-40 (34 ACPs). Though the number of ACPs 
in the global dataset (Supplementary file 2) is lesser than 
AMPs (Supplementary file 1), the preferred length range is 
similar in both types of peptides. Both therapeutic agents 
preferred the length range 21-30, followed by 11-20 and 
31-40 as shown in Fig. 6 and Fig. 7, respectively.

The analysis of amino acid patterns in ACP subsets 
revealed the dominance of the G, K, L, A and C as in 
the global ACPs dataset but the high frequencies of the 

Fig. 6. Number of AMPs present in each subset. The subset 21-30 contains the most AMPs, followed by subsets 11-20 & 31-40. 

Fig. 7. Number of ACPs present in each subset. The subset 21-30 contains the most AMPs, followed by subsets 11-20 & 31-40.
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R and S as compared to I was also seen in most of the 
subsets. The other physicochemical parameters of all six 
subsets (Supplementary file 2) of ACPs were analyzed 
for descriptive statistics, outlier detection by boxplot, 
and correlation analysis by plotting heat maps using the 
Pandas package. The subset 21-30 that contains most 
of the ACPs was discussed here. The remaining subset 
analysis was given in Table S2 (Supplementary file 3) and 
graphical profiles in Figs. S1-S6 (Supplementary file 5).

Trends in ACP subset 21-30
The analysis of subset 21-30 shows that the average lengths 
of ACPs are ~26.33 aa residues (Table S2, Supplementary 
file 3), similar to the average length of AMPs preferred 
subset 21-30 (Table S1, Supplementary file 3). The 
maximum and minimum lengths were found to be 30 aa 
and 21 aa residues, respectively (Table S2, Supplementary 
file 3). The frequency distribution of amino acids in 
this subset of ACPs was similar to that of the AMPs 
global dataset and subset 21-30, with K, L, G, I, and A 
residues as the most frequent ones as shown in Fig. S3-K, 
Supplementary file 5. But the presence of C and P were 
also observed. The other ACPs parameters are centered in 
the quartile regions in the box plots but also contain few 
outliers, as shown in Fig. S3 (Panels A-L) (Supplementary 
file 5). 

Discussion
In the era of antibiotics and cancer drug resistance, the 
research community has put tremendous effort into 
designing safe and reliable AMPs and ACPs, respectively, 
which is evident from number of published literature over 
the last few years.57 Many research groups have collected 
the published peptide sequences and physicochemical 
parameters data to curate peptide databases, servers and 
machine learning algorithms like AntiCP 2.0, MLCPP 
2.0, and xDeep-AcPEP, etc.16,17,24,29,67-71 Several previous 
efforts have used the peptide datasets for designing novel 
peptides. For instance, Mishra and Wang used the DFT 
(database filtering technique) approach, in which they 
exploited the most likely physicochemical parameters 
derived from APD3, to design novel potent peptides 
against Staphylococcus aureus.72 In another study by 
Pearson et al. (2016), potent peptides were designed 
against Mycobacterium tuberculosis using database-
derived peptide physicochemical parameters.73

The evidence from the above studies shows that the 
pattern information of physicochemical parameters 
derived from datasets can be proved significant in 
designing potent novel peptides. However, there is 
still a need to quantitatively examine these peptides' 
physicochemical parameters that can help in future 
design and application.15 In this context, natural peptides 
that serve as a template for most of the designed synthetic 
AMPs and ACPs and for which a vast amount of data 
is available in the peptide databases can be exploited to 

retrieve quantitative information.6,20,66 
Hence in the present study, we have done EDA of the 

physicochemical parameters of natural AMPs and ACPs 
retrieved from the APD3 database. To the best of our 
knowledge, this is the first attempt to perform EDA on 
natural AMPs and ACPs datasets. Furthermore, the 
study's uniqueness lies in the fact that both AMPs and 
ACPs datasets contain only natural peptides. Additionally, 
anticancer peptides were removed from the AMPs dataset 
to get unique AMPs. The major limitation of the study 
was the unequal size of AMPs and ACPs datasets. Hence, 
we avoided the direct comparison of descriptive statistical 
analysis results of the two datasets and emphasized the 
independent interpretation of these derived parameters. 

The descriptive statistical analysis of global AMPs and 
ACPs datasets revealed a uniform pattern of interquartile 
ranges (Q1-Q3) with some unobvious trends in the data. 
For instance, in AMPs global dataset each parameter 
shows some extreme lower and upper values (length 
(min = 2 aa, max = 183 aa) charge (min = -12, max =30), 
detailed analysis is shown in Table 1. The extreme lower 
and upper trends were also observed in the ACPs global 
dataset (length (min = 5 aa, max = 111 aa) charge (min 
= -6, max =16), detailed analysis is shown in Table 2. 
This quantitative information derived from statistical 
analysis of each parameter can be used for rational-based 
peptide design. In short, the mean, median, and Q1, Q2 
and Q3 values of the different peptide parameters can be 
combined to design novel peptides that may likely have 
more stability and activity. For instance, an AMP or ACP 
can be designed with a selection of either minimum, 
maximum, Q1-Q3, or mean length combining with the 
minimum, maximum, Q1-Q3, or mean observations of 
other parameters like charge, hydrophobicity, Boman 
index, isoelectric point, and instability index etc.

In the era of AMR, the computer-aided peptide design 
approaches such as template and de-novo based has 
been widely used to design the novel optimized peptide 
analogs.74 Both of these approaches rely on the pattern 
information of amino acid frequency that plays a crucial 
role in selecting an individual or group of amino acids 
residues for the substitutions in selected template or 
a seed fragment for new peptide analogs. The amino 
acid frequency-based pattern information assisted the 
substitutions of residues during the computational design 
of new analogs with improve activity in many previous 
works.75,76 Hence the amino acid composition information 
derived from the natural AMPs and ACPs datasets in this 
study could be used for the selection of the most probable 
amino acids for substitutions in design of template or de-
novo based computational approaches. 

The frequency pattern of amino acid composition in 
AMPs and ACPs is similar (G, K, L, I, and A), with the 
exception of C in the ACPs. A recent study pointed to 
the role of cysteine in the stabilization of the extracellular 
domain or motif structure during the interaction of 
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ACP on the cell surface receptor.9 Thus, these most 
probable amino acids could be used for the substitution 
during computer-aided design of more potent AMPs and 
ACPs. The EDA of the AMPs subgroups revealed the 
high probability of C, R, S, T, and V residues compared 
to the global dataset pattern whereas the R and S were 
dominant as compared to I in the ACPs subsets. These 
patterns of amino acid frequency observed in subsets of 
natural AMPs and ACPs in our study could be helpful for 
the length specific computer-aided peptide design by the 
substitutions of amino acids which are more frequent in 
the particular range length of AMPs and ACPs datasets. 

Moreover, these observed frequency patterns of amino 
acid compositions can be used in combination with the 
quantitative statistical values of other physicochemical 
parameters such as length, charge, hydrophobicity etc for 
the computer aided rational design of AMPs and ACPs 
with improve activity. 

Given the significance of the length parameter in the 
peptide therapeutics,77 we formed subsets and analyzed 
each subset of AMPs and ACPs. The partition of AMPs 
and ACPs in the subsets shows that both follow a similar 
pattern. For instance, it has been observed that subset 21-
30 contains most of AMPs and ACPs followed by 11-20 
and 31-40 as compared to other AMPs and ACPs subsets. 
Moreover, due to the significance of subsets information 
in the computer aided design of peptides as shown by 
few recent studies78 we also extracted descriptive statistics 
(Table S1 & S2, Supplementary file 3) and prepared a 
graphical profile (Figs. S1-S11, Supplementary file 4 & 
Figs. S1-S6, Supplementary file 5) of each subset that can 
be used in the computer-aided peptide design. Different 
researchers working on AMPs and ACPs can use the 
pattern observed among the different parameters to 
design novel peptide agents. 

Conclusion
To succeed in designing more effective and stable AMPs 
& ACPs for therapeutics, the research community now 

needs to look for the data-based selection of the peptide 
physicochemical parameters. Here in this work, our study 
provides a blueprint of physicochemical parameters of 
natural AMPs and ACPs datasets. Some of the broad 
conclusions drawn from the results are: most natural AMPs 
and ACPs were present in the particular length ranges of 
21-30 followed by 11-20 and 31-40, the frequency pattern 
of amino acid composition in natural AMPs and ACPs was 
found to be similar (G, K, L, I, and A) except the presence 
of C in the ACPs. However, AMPs and ACPs subsets were 
found to have high abundance of C, R, S, T, V and R and 
S amino acid residues respectively as compared to their 
respective global datasets. The alpha-helix conformation 
was found to be preferred by both AMPs and ACPs. 
The present observations found in global and subset 
datasets of AMPs and ACPs might help to design more 
potent and stable peptides. These statistical and graphical 
profiles of AMPs and ACPs can impact the decision-
making while selecting the design parameters for 
computer-aided design of AMPs and ACPs for instance, 
preferred length ranges pattern, amino acid compositions 
among the global and subsets, the correlation pattern 
as heatmaps, quartile ranges of parameters and the 
information of which preferred secondary structure types 
adopted by AMPs and ACPs global and subsets can prove 
advantageous during tuning the different physicochemical 
parameters for novel analogs designs. Moreover, the 
outliers in graphical profiles will help the in detection of 
anomalies among each parameter.
Furthermore, the methodology used in this work can be 
used for EDA of other peptide datasets such as anti-allergic, 
anti-hypertensive, anti-diabetic, anti-inflammatory and 
immunomodulatory peptides, etc. Additionally, our future 
work includes designing novel AMPs or ACPs based on 
the derived parameters.
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