
Journal of Computing and Security

2020, Volume 7, Number 2 (pp. 103–117)

http://www.jcomsec.org

TowardAMore Efficient Gröbner-basedAlgebraic Cryptanalysis

Hossein Arabnezhad-Khanoki a, Babak Sadeghiyan a,∗
aDepartment of Computer Engineering, Amirkabir University of Technology, Tehran, Iran.

A R T I C L E I N F O.

Article history:

Received: 24 June 2020

Revised: 15 July 2020

Accepted: 16 August 2020

Published Online: 4 October 2020

Keywords:
Algebraic Cryptanalysis, Gröbner

Basis, Universal Proning, S-Box

Representation

A B S T R A C T

In this paper, we propose a new method to launch a more efficient algebraic

cryptanalysis. Algebraic cryptanalysis aims at finding the secret key of a cipher

by solving a collection of polynomial equations that describe the internal

structure of the cipher. Chosen correlated plaintexts, as what appears in higher

order differential cryptanalysis and its derivatives such as cube attack or integral

cryptanalysis, forces many linear relations between intermediate state bits in

the cipher. In this paper, we take these polynomial relations into account,

so it becomes possible to simplify the equation system arising from algebraic

cryptanalysis, and consequently, solve the polynomial system more efficiently.

We take advantage of the Universal Proning technique to provide an efficient

method to recover such linear polynomials. Another important parameter in

the algebraic cryptanalysis of ciphers is to effectively describe the cipher. We

employ the so-called Forward-Backward representation of S-boxes together

with Universal Proning to help provide a more powerful algebraic cryptanalysis

based on Gröbner-basis computation. We show our method is more efficient

than doing algebraic cryptanalysis with MQ representation, and also than

employing MQ together with Universal Proning. To show the effectiveness of

our approach, we applied it for the cryptanalysis of several lightweight block

ciphers. By this approach, we managed to mount algebraic attack on 12-round

LBlock, 6-round MIBS, 7-round PRESENT and 9-round SKINNY light-weight

block ciphers, so far.

c© 2020 JComSec. All rights reserved.

1 Introduction

Algebraic cryptanalysis aims at finding the secret key
of the cipher by solving the collection of polynomial
equations that describes the cipher, usually in a known
plaintext or chosen plaintext scenario. In general, the
algebraic analysis takes two stages. In the first stage,
a cipher is described by a system of equations. In the

∗ Corresponding author.

Email addresses: arabnezhad@aut.ac.ir (H. Arabnezhad),

basadegh@aut.ac.ir (B. Sadeghiyan)

https://dx.doi.org/10.22108/jcs.2020.123673.1050

ISSN: 2322-4460 c© 2020 JComSec. All rights reserved.

second stage, the system is solved using an ”appropri-
ate” algorithm. There are many algorithms to solve
such a system of equations, where the computation
of Gröbner basis is one of such an approach. It is al-
ready well-known that the way a cipher is represented
with a system of equations has impacts on the running
time to obtain its solution employing a Gröbner-basis
computation [1].

Algebraic cryptanalysis of block ciphers in the cho-
sen plaintext scenario, leads to a more efficient crypt-
analysis. In [1–4] a series of algebraic attacks on block
ciphers were proposed, which all are based on highly

https://dx.doi.org/10.22108/jcs.2020.123673.1050


104

correlated plaintexts. Some other successful cryptanal-
ysis techniques of block ciphers are also based on cor-
related plaintexts, such as differential cryptanalysis
[5], integral cryptanalysis or square attack[6], cube
attack [7] and recently division cryptanalysis [8].

It is already known that highly structured plain-
texts such as what appears in integral or cube attacks,
impose some correlation between intermediate state
bits with different plaintexts in the structure. For ex-
ample, the multi-set of correlated plaintexts in integral
cryptanalysis, or cubes in cube attack, cause the sum
of some intermediate states bits overall plaintexts be
a constant value, for some number rounds.

The idea in this paper is to use such relations to
improve algebraic attacks that are based on computa-
tion of Gröbner basis. In integral cryptanalysis, these
relations are computed by a specific algebra that is de-
fined for the propagation of these relations on a multi-
set through the block cipher. In the cube attack, these
relations are described as Boolean polynomials. With
the probabilistic BLR linearity test [9] or its general-
ized form [7, 10], it is possible to mark off them. Then
if such a relation has been found to exist, the polyno-
mial is recovered using other algorithms introduced
in [7, 10]. Balancedness is one of the properties that
integral cryptanalysis examines. Balancedness defines
that the sum of some intermediate variables for all
vectors in the muli-set is equal to zero. This property
is attained by constant superpoly in a cube attack.
Instead of the conventional methods to recover such
polynomials for these attacks, we use the Universal
Proning technique [11].

After recovering polynomials, we add them to the
system that describe the block cipher. We found that
using these polynomials in combination with FWBW
representation of S-boxes allows a more efficient alge-
braic cryptanalysis.

In this paper, we propose an improved Gröbner
basis based algebraic cryptanalysis, with employing
FWBW representation together with Universal Pron-
ing technique to achieve a more efficient algebraic
cryptanalysis.

Contributions: To show the efficiency of our pro-
posed method, we also employed our improved
Gröbner basis based algebraic cryptanalysis on LBlock
[12], MIBS [13], PRESENT [14] and SKINNY [15].
The main contributions of the work are as follows:

(a) proposing a new method to launch a more effi-
cient algebraic cryptanalysis, with FWBW rep-
resentation of S-boxes and Universal Proning.

(b) proposing a framework for evaluation of alge-
braic attacks on light-weight ciphers.

(c) presenting first algebraic attack on 12 rounds of

LBlock
(d) presenting first algebraic attack on 8 and 9

rounds of SKINNY.
(e) presenting first algebraic attack on 7 rounds of

PRESENT.
(f) finding some unbalanced algebraic property for

encryption and decryption of SKINNY family
of ciphers.

The paper is organized as follows: In Section 2, we
review the higher-order differential cryptanalysis and
its derivations, i.e. integral cryptanalysis and cube at-
tacks. In Section 3, we review some different S-box rep-
resentations for algebraic cryptanalysis. In section4,
we discuss Universal polynomials and Universal Pron-
ing. In Section 5, we review some algebraic attacks in
the literature, and report our results for cryptanalysis
for four light-weight ciphers. We give conclusions and
future research directions in Section 6.

2 Higher Order Differential Crypt-
analysis

Higher order differential is a generalization of ordi-
nary differential cryptanalysis and it is introduced
in [16]. Let define XOR as the group operation, then
higher-order derivative of binary functions is defined
as follows:
Proposition 1 ([16]). Let L[a1, a2, . . . , ai] be the list
of all possible linear combinations of a1,a2,...,ai. Then,

∆(i)
a1,a2,...,ai

f(x) =
∑

c∈L[a1,a2,...,ai]

f(x⊕ c)

defines the higher order derivative of f on L.

Integral cryptanalysis and cube attack methods
somehow take advantage of higher-order derivative of
binary functions.

2.1 Integral cryptanalysis

The square or integral attack [17] is first proposed as a
dedicated attack for the Square cipher [17]. The tech-
nique study propagation of the sum of intermediate
values through the block cipher. The name integral
cryptanalysis coined by Knudsen et. al in [6]. In [8],
Todo introduced generalized integral property as divi-
sion property, which not only considers summation of
variables but also summation of monomials of higher
degree for example two.

We just review the idea of integral property. Suppose
intermediate values during the computation of block
cipher are represented by a Boolean vector. Let S be a
multi-set of vectors v. The integral over the multi-set
S is defined as the sum of all vectors in S. Considering
word-based block ciphers such as AES, the interme-



2020, Volume 7, Number 2 (pp. 103–117) 105

diate state is divided into n words. Attacker aims to
predict the integrals after some number of rounds of
encryption. Three cases may be distinguished for the
word i of the intermediate state vectors.

case 1. For all v in S, we have vi = c. where c is a
fixed value (known or unknown). This condition
is denoted by C

case 2. The set of vi’s takes all possible values, for
all v in S . This condition is denoted by A

case 3. The sum vi always lead to fixed value, usually
zero. This is denoted by S

The polynomial expression of the first case would be
the set of polynomials such that:

{∀j : v0i = vji }

The second and third cases could be expressed by
the polynomial such that:

m∑
j=0

vji = 0

2.2 AIDA/Cube Cryptanalysis

In block ciphers, any bit of ciphertext could be repre-
sented with a polynomial p on plaintext bits and key
variables.

ci = pi(x1, ..., xn, k1, ..., km)

where variables xi denote plaintext bits and variables
ki denote key bits. These polynomials are of high
degree and have an enormous number of monomials.
Let I be a set of indexes for plaintext variables and tI
be the monomial from product of the variables with
indexes in I. Then polynomial pi could be rewritten
as follows:

pi(x1, ..., xn, k1, ..., km) = tIpS(I) + q(x1, ..., xn,

k1, ..., km)

where pS(I) is called superpoly of tI in p, and monomi-
als in p does not share a common variable with tI . The
polynomial q does not have a monomial that contains
all of the variables in tI .

Cube attack main observation. Let pI denote
the sum of polynomial p over all possible 0/1 assign-
ment to variables with indexes in I. Then we have
pI = pS(I) (Theorem 2 in [7]).

Given the explicit description of pi, it would be easy
to factor the term tI , but usually due to the crypto-
graphic properties of block ciphers the polynomial is
already unknown or have an exponential length repre-
sentation. The cube attack provides an efficient way
to manipulate these polynomials implicitly or as a
black box.

If the pS(I) is linear polynomial or of small degree,
we could easily compute the pS(I) through the com-
putation of pI .

Attacker fixes the public variables that does not
appear in tI and then sum pi over all possible 0/1
assignments to variables in tI .

One problem that arises here is that degree of pS(I)

is not known a priori. Hopefully, with BLR test [9] it
is possible to check the linearity of a polynomial with
implicit description.

The test for linearity of the polynomial pS(I) is as
follows: If for a random assignments x and y to secret
variables, the following test is satisfied with a good
probability (> 0.5), the polynomial pS(I) is linear with
high probability.

pI [0] + pI [x] + pI [y] + pI [x + y] = 0

If we repeat the test for sufficiently many times
and the test is satisfied in all cases, we ensure that
pS(I) is linear with probability near to one. In [7]
a generalized version of BLR test was proposed for
detecting polynomials of degree 2.

pI [0]+pI [x]+pI [y]+pI [z]+pI [x+y]+pI [y+z]+

pI [x + z] + pI [x + y + z] = 0

It could be also generalized to degree D [10].

Cube attack consists of two parts: Off-line or pre-
processing phase and on-line phase. In the off-line
phase, the attacker collects a set of polynomials in
public (plaintext or ciphertext) and secret (key) vari-
ables. In the on-line phase, attacker evaluates these
polynomials to derive a system of equations to recover
some or all of key bits.

3 S-Box Representation

To attack a block cipher with Gröbner basis, first we
need to describe the whole encryption operation with
a set of polynomials. The block ciphers design usually
consists of applying a simple mixing function (round
functions) repeatedly to achieve security. The round
function usually consists of a non-linear layer which
is also called substitution layer and a diffusion layer
which consists of linear transformations [18, 19].

The algebraic description of S-boxes have a direct
effect on the efficiency of algebraic attack. n×m S-
boxes are vectorial Boolean functions which translate
a Boolean vector of dimension n to a Boolean vector
of dimension m.

S-boxes are usually implemented using look-up ta-
bles in software and logical gates in hardware. Yet, it
is possible to derive a set of polynomials that relates



106

input bits of S-box to its output bits, from hardware
implementation. Courtois et al. [20] observe that the
AES S-box could have low degree representation with
overdefined Multivariate Quadratic equations. For ex-
ample, the 4-bit S-box of PRESENT may be repre-
sented by 21 linear-independent equations of degree
two [21].

In [1], the polynomials that relate each output bit of
the S-box to some of the input bits, are called Forward
Equations. The following system of polynomials is
forward equations for PRESENT cipher S-box.

y0+ x0 + x1x2 + x2 + x3 = 0

y1+ x0x1x2 + x0x1x3 + x0x2x3 + x1x3 + x1+

x2x3 + x3 = 0

y2+ x0x1x3 + x0x1 + x0x2x3 + x0x3 + x1x3+

x2 + x3 + 1 = 0

y3+ x0x1x2 + x0x1x3 + x0x2x3 + x0 + x1x2+

x1 + x3 + 1 = 0

(1)

Conversely, the polynomials that relate each input bit
to some of the output bits, are called Backward Equa-
tions. The following system of polynomials expresses
backward equations for PRESENT cipher S-box.

x0+ y0 + y1y3 + y2 + 1 = 0

x1+ y0y1y2 + y0y1y3 + y0y2y3 + y0y2 + y0+

y1y3 + y1 + y2y3 + y3 = 0

x2+ y0y1y2 + y0y1y3 + y0y1 + y0y2y3 + y0y2+

y0y3 + y1y2 + y1y3 + y3 + 1 = 0

x3+ y0y1y2 + y0y1 + y0y2y3 + y0 + y1 + y2+

y3 = 0

(2)

The aggregation of Forward and Backward equations is
called FWBW representation [1]. It is experimentally
shown in [1] that FWBW representation would lead
to more efficient algebraic cryptanalysis with Gröbner
basis computation. Efficient attacks are also reported
on 11-Round LBlock, 6-Round MIBS and 6-Round
PRESENT, following FWBW representation. In this
paper, we follow the Forward-Backward approach for
algebraic representation of S-boxes.

4 Extracting All Linear Equations

As mentioned in Sections 2.1 and 2.2, both multi-
set of plaintexts in integral cryptanalysis and cubes
in cube attack may impose some linear equations in
intermediate states of cipher. In a cube attack, these
linear polynomials can be recovered by BLR test. In

integral cryptanalysis, these polynomials are derived
from its specific algebra. Utilizing linear algebra, it
is possible to recover a set of all linear polynomials
containing above-mentioned polynomials.

In [4, 11], Universal Proning is proposed to derive
the set of all linear equations that arises from a set of
plaintexts/ciphertexts and the structure of the cipher.
The technique is similar to derivation of ANF for an
S-box from its lookup table definition [22]. In this
technique, all variables appearing in the system of
equations are assigned to rows of a matrix. For each
column, a key is assigned. Then we extract the values
of variables from an encryption oracle, where they are
evaluated under the corresponding key.

In [1, 11], it is reported that choosing plaintext sam-
ples that are already employed in a successful cube
attack and/or integral cryptanalysis improves the effi-
ciency of algebraic cryptanalysis. This may be due to
the fact that these samples have a special algebraic
structure that causes many linear polynomials to ap-
pear (explicitly or implicitly) in the system of equa-
tions. So, we apply the Universal Proning technique
on each set of plaintexts/ciphertexts to extract all lin-
ear equations, that simplify the polynomial system
describing the cipher.

Universal Polynomials For this issue, we adopt no-
tations of [11]. Informally, a Universal Polynomial is
a polynomial that describes a relation in the cipher
and evaluates to zero for all choices of encryption keys.
Universal Proning is a technique for finding all such
polynomials, however, we are interested specifically
in linear ones. These polynomials allow us to simplify
the system for algebraic cryptanalysis. By SX,Y,k we
denote the polynomial system that describes the ci-
pher for a specific set of plaintexts X and the set of
corresponding ciphertexts Y under the key k.

Therefore, the following ideals can be defined [11]:

• The ideal of universal polynomials for encryption
under all keys, considering all plaintexts x in
the set X, is defined as PX =

⋂
k

〈SX,?,k〉.

• The ideal of universal polynomials for decryption
under all keys, considering all ciphertexts y in
the set Y , is defined as CY =

⋂
k

〈S?,Y,k〉.

• BX,Y = 〈SX,Y,?〉: This ideal contains set of all
linear polynomials that may relate intermediate
state bits of encryption operation for plaintexts
x in the set X and intermediate state bits of de-
cryption operation for ciphertexts y in the set
Y , when the encryption and decryption are de-
scribed by equations on different set of variables,
considering the same key. For more detail please
refer to [11].



2020, Volume 7, Number 2 (pp. 103–117) 107

We extract all linear polynomials belonging to the
above three sets by linear algebra. Algorithm 1 is
used to obtain linear polynomials from ideals PX and
CY [11]. This algorithm is a modified version of the
Universal Proning algorithm in [11].

Algorithm 1 Universal Forward/Backward Proning.

Input: B ⊆ V : a subset of variables ;
Input: Oracle← OracleEnc or OracleDec ;
Output: F : collection of linear polynomials ;
K ← random subset of key space such that |K| =
|B|+ constant.value ;
M ← matrix of dimension |B| × |K| ;
for all k ∈ K do
for all b ∈ B do
Mib,jk ← Oraclek(b) ;

end for
end for
ker ← find left kernel of matrix M ;
F ← ker ×B ;
return F

In Algorithm 1, the subset B is selected from the
set of all variables V . The elements of the subset K
are chosen randomly from the set all of the keys.

Then, a matrix M of dimension |B| × |K| is cre-
ated. For each variable b ∈ B, the unique index ib
is assigned, which refers to a unique row of the ma-
trix. For key k ∈ K, the jk column is assigned. The
entry Mib,jk is the value of variable b in the encryp-
tion/decryption operation under the key k. Then, the
basis for left nullspace of A is computed with Gaus-
sian elimination. The set F , which contains the linear
polynomials that reside in PX or CY , is calculated
with the multiplication ker ×B.

The original algorithm for Universal Proning re-
quires to iterate over all possible keys, which is not
practical. Hence, as mentioned in[11], a small subset
of key space is used and it is expected that with a high
probability the recovered polynomials to be Univer-
sal. In our experiments, the number of random sam-
ples is just slightly more than the size of B, which is
|K| = |B|+ constant.value . It should be noted that
in [11], |K| = 50 × |B|, which may lead to unneces-
sary computations. Insufficient number of keys may
lead the Algorithm to detect a non-universal polyno-
mial as a universal one [11]. We selected the number
constant.value = 256 experimentally. With this num-
ber, we did not encounter any inconsistency in the
system of equations. It should be noted that it might
require further research to find a formula or a rigorous
bound for constant.value.

To recover the linear polynomials from ideal BX,Y ,
we use Algorithm 2 [11]. In this algorithm, for each

variable two rows are assigned, one for the value of
variables in the encryption and another row for the
decryption. So, the indexes of variables have following
relation: i′b = ib + |B|. In other words, the matrix M
is comprised of two |B|×|K|matrices, where the rows
of one of them is indexed by ib and the rows of other
one indexed by i′b.

Algorithm 2 Universal Proning [11].

Input: B ⊆ V : set of allowed variables ;
Output: F : collection of linear polynomials ;
K ← random subset of key space such that |K| =
|B|+ constant.value ;
M ← matrix of dimension 2|B| × |K| ;
for all k ∈ K do
for all b ∈ B do
Mib,jk ← OracleEnc

k (b) ;
Mi′

b
,jk ← OracleDec

k (b) ;
end for

end for
ker ← left kernel of matrix M ;
F ← ker × (B||B) ;
return F

We break the Proning into three steps:

Step 1. Universal Forward Proning: In this step,
Algorithm 1 is run with encryption oracle and
recovers linear polynomials resides in PX .

Step 2. Universal Backward Proning: In this step,
Algorithm 1 is run with decryption oracle and
recovers linear polynomials resides in CY .

Step 3. Universal Proning: In this step, Algorithm 2
is run and recovers linear polynomials resides in
BX,Y .

We join the recovered linear polynomials to form
the set of universal polynomials.

5 Algebraic Cryptanalysis of Light-
Weight Ciphers

To present effectiveness of our method, we selected
four light-weight ciphers LBlock, MIBS, PRESENT
and SKINNY for algebraic cryptanalysis. The two
first ciphers follow Feistel structure but the two latter
are designed based on SPN.

Table 1 present some results on algebraic attack
reported in the literature on these ciphers [1, 4, 8, 23].
In this table, g denotes the number of guessed key bits
that might have been used in the attack.

In this section, we report how to algebraic cryptan-
alyze the above-mentioned ciphers with our method
and compare the efficiency of our proposed method.
Experiments are conducted on a desktop computer



108

Table 1. Algebraic Attacks on LBlock, MIBS and PRESENT, w.r.t Rounds.

Nr g RunTime Data note work

LBlock

8 0/80 Not Reported 8 CP ElimLin [4]

9 0/80 O(247) 1184 CP Cube Attack Recover 33 bit [23]

10 0/80 Not Reported 16 CP ElimLin [4]

11 0/80 10106 s 128 CP PolyBoRi-FWBW [1]

PRESENT

6 0/80 2009.03 s 32 CP PolyBoRi-FWBW [1]

MIBS

6 0/80 68.46 s 12 CP PolyBoRi-FWBW [1]

Table 2. LBock S-Boxes.

s0 14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5

s1 4, 11, 14, 9, 15, 13, 0, 10, 7, 12, 5, 6, 2, 8, 1, 3

s2 1, 14, 7, 12, 15, 13, 0, 6, 11, 5, 9, 3, 2, 4, 8, 10

s3 7, 6, 8, 11, 0, 15, 3, 14, 9, 10, 12, 13, 5, 2, 4, 1

s4 14, 5, 15, 0, 7, 2, 12, 13, 1, 8, 4, 9, 11, 10, 6, 3

s5 2, 13, 11, 12, 15, 14, 0, 9, 7, 10, 6, 3, 1, 8, 4, 5

s6 11, 9, 4, 14, 0, 15, 10, 13, 6, 12, 5, 7, 3, 8, 1, 2

s7 13, 10, 15, 0, 14, 4, 9, 11, 2, 1, 8, 3, 7, 5, 12, 6

s8 8, 7, 14, 5, 15, 13, 0, 6, 11, 12, 9, 10, 2, 4, 1, 3

s9 11, 5, 15, 0, 7, 2, 9, 13, 4, 8, 1, 12, 14, 10, 3, 6

with 32 GB of RAM, clocked by a Core i7 4770 pro-
cessor, and running a single core.

We use PolyBoRi library for comupting Gröbner
basis [24]. Instead of using its recommended Python
interface, we call it from our C++ environment. As the
Python implementation for computing the Gröbner
basis is more efficient than its implementation in C++,
we also re-implemented the Python version in C++.
We use M4RI C++ package [25] for operation on
Boolean matrices. Our laboratory implementation of
the tool can handle the set of plaintexts with up to
512 texts. We also slightly modified the Gröbner basis
computation algorithm for finding keys, such that it is
returned as soon as all key variables have been found.

After describing a cipher with FWBW representa-
tion of S-boxes, we simplify the system of equations by
recovering linear polynomials with employing Pron-
ing technique. Then, we solve the final system with

Gröbner basis computation. So, the following steps
are taken after description of the cipher: First, all
linear polynomials are found with the Universal Pron-
ing technique. Then, many of variables are eliminated
from the system of equations, with recovered linear
polynomials for the cipher. At the end, PolyBoRi is
used to solve the resulting system and find the key.

For efficiency, the Universal Proning step is applied
in several stages. The first type of Proning, i.e., Uni-
versal Forward Proning, is applied before the on-line
phase. Since the attack is a kind of chosen plain-text,
some polynomials might also be derived without ac-
cess to encryption oracle. The Universal Backward
Proning and Universal Proning are applied after find-
ing the corresponding ciphertexts. After each stage of
Proning, we can eliminate some of the variables from
the system. Therefore, the final system of equations
has fewer variables.

In our experiments, in chosen-plaintext scenario
attacks, the plaintexts are selected based on the in-
tegral characteristic for ciphers, except MIBS cipher.
For MIBS, we just selected highly correlated message
with a cube structure. For other ciphers, integral dis-
tinguishers are found by the method proposed in [26].

5.1 Attacking LBlock

Description of LBlock. LBlock [12] is a light-weight
64-bit block cipher with key sizes of 64/80 bits. The
cipher consists of 32 rounds. It is presented in ACNS
2011 and had been under much algebraic cryptanalysis
[1, 4, 27, 28]. The cipher uses 10 different S-boxes,
where 8 S-boxes in round function and 2 in key schedule
algorithm. Its round function consists of an S-box
layer and a permutation layer. The right branch is
rotated 8 bits to right in each round. The S-box layer



2020, Volume 7, Number 2 (pp. 103–117) 109

Table 3. Algebraic Attacks on LBlock Using FWBW Description of S-Boxes and Universal Proning.

Nr Data #vars #lin #fw #bw #pr #orph #eqs TU TG

Higher-Order Chosen Plaintext Scenario - FWBW representation

9 4 CP 1040 538 473 60 5 61 2493 0.09 6.43

10 16 CP 4284 3088 2547 536 6 509 10893 0.39 4.42

11 16 CP 4768 3112 2536 564 12 267 11691 0.52 2135.77

12 256 CP 82088 71205 50853 20324 28 9656 206440 123.91 5948.16

Higher-Order Chosen Plaintext Scenario - MQ representation

12
256 CP
(2/2)

82088 71248 50883 20342 22 9650 526208 161.71 54934.55

Known Plaintext Scenario - FWBW representation

6 64 KP 8312 7211 3644 3555 11 186 24842 2.70 4444.47

6 96 KP 12408 11311 5963 5336 11 1356 38300 4.68 1981.30

6 128 KP 16504 15404 8764 6628 12 2467 51699 12.63 78.28

7 256 KP 41088 37975 21409 16521 25 1553 116337 70.98 8907.58

7 512 KP 82048 78923 45984 32915 24 1258 230730 226.66 978.47

Known Plaintext Scenario - MQ representation

6 96 KP 12408 11309 5963 5337 12 1364 98342 5.70 110.00

6 128 KP 16504 15406 8769 6625 12 2486 131720 12.13 67.31

7
512 KP
(13/15)

82048 78915 45985 32904 25 1250 603614 165.00 6303.87

consists of the application of 8 different 4-bit S-boxes
over the 32-bit word of the left branch. Table 2, shows
the definition of S-boxes of LBlock.

The polynomial system for LBlock cipher is gener-
ated by following:

L0,j ⊕Xj |[0:31]
L1,j ⊕Xj |[32:63]
SbxPol(Li,j ⊕Ki, P

−1(Li−1,j ≪ 8⊕ Li,j+1))

LNr,j ⊕ Yj |[32:63]
LNr+1,j ⊕ Yj |[0:31]

(3)

In equation (3), and later equations (4),(5) and (6),
that describe the above mentioned ciphers with sys-
tem of polynomials, we use the following notations.
j denotes the index of the plaintext that is being en-
crypted or index of the ciphertext that is being de-
crypted, where 1 ≤ j ≤ Nm. i denotes the round num-
ber where 1 ≤ i ≤ Nr. Li,j denotes the intermediate

state vector in encryption of j-th plaintext, in the i-th
round of the cipher. P denotes bit or nibble oriented
permutation. M denotes Matrix multiplication opera-
tion in round functions. SbxPol denotes the system
of equation that describes the relationship between in-
put vector and output vector of the substitution layer.
For LBlock and MIBS, Li,j is a vector of dimension
32. For PRESENT and SKINNY, its dimension is 64.

We managed to attack the cipher in both chosen
plaintext and known-plaintext scenarios. In a chosen-
plaintext scenario, we could attack 9, 10, 11 and 12
rounds of LBlock cipher, but in a known-plaintext
scenario, we were able to break 6 and 7-round versions
of LBlock. Table 3 shows the results.

In Table 3, Data denotes the number of plaintexts
used in the attack. #vars, shows the number of vari-
ables in the system of equations before elimination.
#lin denotes the total number of linear polynomials
that are recovered by Proning Techniques. #fw, #bw
and #pr present the number of linear polynomials
that recovered from PX , CY and BX,Y , respectively.



110

#orph denotes the number of linear polynomials
that their leading terms have appeared in other poly-
nomials. Therefore, we need to add them to the system
of equations. TU denotes the average running time of
Proning step and elimination of variables. TG denotes
the average running time for solving the final system.

In a chosen-plaintext scenario, the plaintexts are
chosen and already known. Hence, we can recover
polynomials in 〈Sx,?,?〉 before retrieving samples from
target instance of the cipher. As this step needs to be
accomplished only once, we did not include the time
of Universal Forward Proning in TU . The combination
of FWBW representation of S-boxes with Universal
Proning enabled us to successfully attack 12 rounds
of LBlock with 256 chosen plaintexts, in the average
of 6,072.02 seconds. To our best knowledge, this is
the first algebraic attack on 12-round LBlock. The
average running time for Universal Proning is 123.91
seconds and for solving the system and finding the
key is about 5948.11 seconds.

We also managed to break 11 rounds of LBlock with
16 chosen plaintexts and a solving time of 2135.77
seconds on average. This is better than previous results
reported in [1] with 128 plaintexts and 10106 seconds
on average.

To investigate whether these results are due to
Universal Proning or efficiency of S-boxes algebraic
description, we also did some experiments with MQ
representation, in both chosen plaintext and known-
plaintext attack scenarios. In a chosen-plaintext attack
scenario, we tried to cryptanalyze 12 rounds of LBlock
with Universal Proning and MQ representation of S-
boxes. Experiments on only two instances yield an
average running time of 54934 seconds for solving the
system, which is 10 times worse than the results with
FWBW representation.

In a known-plaintext attack scenario, the polyno-
mial system of 6-round LBlock with 96 known plain-
texts with FWBW is solved on average 1981.30 sec-
onds, and the same with MQ is solved in just 110
seconds on average. For 128 known plaintexts the two
representations, are near to each other in terms of run-
ning time of computation of Gröbner basis. However,
for 64 plaintexts with MQ representation the tool was
not able to solve the polynomial system. For FWBW,
the polynomial system is solved in 4444.47 seconds on
average.

Considering a known-plaintext attack scenario for
7-round LBlock, the polynomial system with FWBW
representation and 256 known plaintexts is solved in
8907.58, averagely. But, MQ did not yield any result
with the same number of plaintexts. With 512 plain-
texts, the system with FWBW representation is solved

in 978.47 seconds on average, but the MQ represen-
tation leads to a solving time of 6303.87 seconds on
average. It should be noted that with MQ representa-
tion, PolyBoRi library failed to solve the system for
two instances, in this case.

With the above pieces of evidence, we have evi-
dences that FWBW is a better representation for
Gröbner basis based algebraic cryptanalysis. Consid-
ering the results reported in [1], it seems that FWBW
representation is the most convenient description of
S-boxes, among currently proposed representations,
for algebraic cryptanalysis.

5.2 Attacking MIBS

Description of MIBS. MIBS [13] is a 64-bit light-
weight block cipher based on Fiestel structure. It was
presented in CANS 2009. Its round function consists
of an S-box layer, a multiplication by 8-by-8 binary
matrix and a permutation layer. This cipher consists
of 32-rounds. Table 4 defines the MIBS cipher S-box.

Table 4. MIBS S-Box.

S 4,15,3,8,13,10,12,0,11,5,7,14,2,6,1,9

The binary matrix, represented with M, is given as
follows:

M =



0 1 1 1 1 1 1 0

1 0 1 1 0 1 1 1

1 1 0 1 1 0 1 1

1 1 1 0 1 1 0 1

1 1 0 1 1 1 0 0

1 1 1 0 0 1 1 0

0 1 1 1 0 0 1 1

1 0 1 1 1 0 0 1



.

It has a complicated diffusion layer. Some algebraic
cryptanalysis of reduced-round MIBS are reported in
[1, 27, 29, 30].

The polynomial system for MIBS cipher is generated
as following:

L0,,j ⊕Xj |[0:31]
L1,j ⊕Xj |[32:63]
SbxPol(Li,j ⊕Ki, P

−1(M−1(Li,j−1 ⊕ Li,j+1)))

LNr,j ⊕ Yj |[32:63]
LNr+1,j ⊕ Yj |[0:31]

(4)

We managed to attack 5 and 6 rounds of MIBS
cipher with 5 and 12 chosen plaintexts, respectively.



2020, Volume 7, Number 2 (pp. 103–117) 111

Table 5. Algebraic Attacks on MIBS Using FWBW Description of S-Boxes and Universal Proning.

Nr Data #vars #lin #fw #bw #pr #orph #eqs TU TG

Higher-Order Chosen Plaintext Scenario

5 5 CP 592 294 298 24 16 68 1748 0.09 7.61

6 12 CP 1656 831 842 292 8 16 4720 0.30 18.14

Table 6. PRESENT S-Box.

S 12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2

Table 5 present our result on MIBS cipher.

Using FWBW representation with the Universal
Proning technique, we were not able to improve the
number of rounds in comparison with [1], but we
achieved better running time for computation of
Gröbner basis. Intuitively it seems that adding more
linear polynomials to the system should make the
solving easier, but MIBS cipher was an exception. We
found that adding Backward universal polynomials
and Universal polynomials increase the running time
for MIBS, significantly. Therefore, we did not add
these polynomials to the final system.

5.3 Attacking PRESENT

Description of Present. PRESENT [14], presented
in CHES 2007, is a light-weight block cipher based
on SPN structure. It has a block size of 64-bit and
a key size of 64/80 bits. Its round function consists
of application of 16 4-bit S-boxes in parallel, then
applying a bit bit-oriented permutation. The cipher
consists of 31 rounds. Table 6 defines PRESENT S-
box.

It is also received much attention for cryptanalysis
in the literature [1, 27, 31, 32].

The polynomial system for PRESENT cipher is
generated by the following:

L0,j ⊕Xj

SbxPol(L0,j ⊕K1, L1,j)

SbxPol(P (Li−1,j)⊕Ki, Li,j)

P (Li,Nr)⊕KNr+1 ⊕ Yj

(5)

In above equation we have i = 2, . . . , Nr. Using
FWBW representation together with Universal Pron-
ing not only enabled us to break 5 and 6 rounds of the
cipher more efficient than our previous results, but
also allowed to break 7 rounds of the cipher with 256
chosen plaintexts. To our best knowledge, this is the
first algebraic attack on 7 rounds of PRESENT. The

average running for attacking 6 rounds of the cipher
was reduced from around 2000 seconds to 48.7 seconds
on average. 7 round version of the cipher is broken
with 256 chosen plaintexts and 59316.72 seconds on
average. Table 7 shows the results.

5.4 Attacking SKINNY

Description of SKINNY. SKINNY [15] is a fam-
ily of lightweight tweakable block ciphers following
AES design, but with some modification to minimize
hardware implementation costs. The major difference
between AES and SKINNY is that SKINNY uses a bi-
nary matrix for the MixColumn operation. The cipher
has two variants: 64-bit and 128-bit versions. The first
version operates on a state matrix with sixteen nib-
bles but the later version works on state matrix with
sixteen bytes. The 64-bit version uses 4-bit S-boxes
and the 128-bit version uses 8-bit ones. None of those
S-boxes posses strong cryptographic properties, in a
deal with a light implementations.

Its round function consists of the following four
operations, similar to AES:

(1) SubCells (SC): S-box is applied on nibbles
(bytes) in parallel, 4-bit S-boxes in 64-bit version
and 8-bit S-boxes in 128-bit version. The 4-bit
S-box is represented in following Table 8.

(2) AddConstants (AC): round constants de-
rived using a 6-bit LFSR are added into the
state.

(3) AddRoundTweakey (ART): For SKINNY
round keys depend on both the master key and
the tweak. This operations adds such key mate-
rial to half of the internal state.

(4) ShiftRows (SR): Similar to AES shift row op-
eration.

(5) MixColumns (MC): Each column is multi-
plied by a binary matrix M given below.

M =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

 .

The polynomial system for SKINNY cipher is gen-



112

Table 7. Algebraic Attacks on PRESENT Using FWBW Description of S-Boxes And Universal Proning.

Nr Data #vars #lin #fw #bw #pr #orph #eqs TU TG

Higher-Order Chosen Plaintext Scenario

5 6 CP 2020 1466 784 681 2 226 4490 0.14 13.19

6 32 CP 12392 9879 5752 4123 4 715 27387 1.63 47.07

7 256 CP (4) 114796 92141 51496 40461 4 5744 241320 253.27 59316.72

Table 8. SKINNY 4-Bit S-Box.

S 12,6,9,0,1,10,2,11,3,8,5,13,4,14,7,15

erated by following:

L0,j ⊕Xj

SbxPol(L0,j , L1,j)

SbxPol(M(P (Li−1,j ⊕ Ci−1 ⊕Ki−1)), Li,j)

M(P (LNr,j ⊕ CNr ⊕KNr))⊕ Yj

(6)

In above equation we have i = 2, . . . , Nr. We applied
our method to SKINNY with 64-bit block size and
key sizes of 64 and 128 bits. Results are presented in
Table 9.

We managed to attack 8 and 9 rounds of SKINNY
with 16 and 256 chosen plaintexts, respectively. The
running time for solving the system of equation for
SKINNY-64-64 and SKINNY-64-128, is 1757.58 and
3437.16 seconds on average, respectively. Although the
number of different type of equations that found by
Universal Proning for SKINNY-64-64 and SKINNY-
64-128 are close to each other, due to that both cipher
have structure and these equations arise from the
properties of the structure, the average running time
for SKINNY-64-128 is as twice as the average running
time for SKINNY-64-64.

We also report attacks in known-plaintext scenario
on 5 and 6 rounds of SKINNY. In a known plaintext
scenario, we noticed that encryption and decryption
of SKINNY exhibit some unbalanced properties. Con-
sidering 5 rounds of SKINNY-64-128, number linear
polynomials that recovered from decryption (back-
ward) direction is more than the number recovered
polynomials from encryption (forward) direction. So
we tried the attack in a known ciphertext scenario
which means recovering linear polynomials in back-
ward direction first. It shows a significant improve-
ment in TG. Considering the observation we have been
able to attack 6 rounds if SKINNY-64-128 with 256
known plaintexts.

5.5 A Comparison

In this section, we provide a comparison for our alge-
braic attacks of the lightweight block ciphers LBlock,
MIBS, PRESENT and SKINNY. Table 10 summa-
rizes other previous attacks on the above mentioned
ciphers. As the nature of attacks under considerations
are different, a comparison of them with our algebraic
cryptanalysis is not straightforward. For example, dif-
ferential attacks are probabilistic and their efficiency
can be relatively easily extrapolated, while algebraic
attacks are deterministic and their success depends
on solving a system of (nonlinear) relations. So far, a
generic algorithm that would solve (efficiently) any
system of nonlinear relations is not known, particu-
larly the system of nonlinear relations arising from
block ciphers for a large number of rounds. Due to
the behaviour of solving algorithms, it is difficult to
derive efficiency measurement, and tight bounds on
data, time and memory requirements of the algorithm
are not known. It worth noting that algebraic crypt-
analysis is still evolving and many of its aspects are
yet to be discovered, and many results in this area
are reported based only on experiments. So, we com-
pare the attacks only based on the number of required
plaintexts to be encrypted and the time needed for
cryptanalysis in the experiments.

Table 10 details previous differential, integral and
cube attacks for the ciphers.

Let’s consider the differential cryptanalysis of
LBlock. The best differential characteristics for 11-
round LBlock implies at least 22 active S-boxes [12].
If this characteristic is used in a 12-round key recov-
ery attack, the data complexity of the attack would
be of order O(244). Our algebraic attack requires a
much smaller number of plaintexts, i.e., only 256
plaintexts. The work in [28] reports an integral attack
on 22-round LBlock with data and time complexity
of 261 and O(270), respectively, where the attack is
based on a 15-round integral distinguisher.

Z’aba et al. [33] present a bit-pattern-based integral
attack on 6 rounds of PRESENT-80. The attack takes
advantage of a 4.5 round integral distinguisher. The
data and time complexity of the attack is 222.4 and



2020, Volume 7, Number 2 (pp. 103–117) 113

Table 9. Algebraic Attacks on SKINNY Using FWBW Description of S-Boxes and Universal Proning.

Nr Data #vars #lin #fw #bw #pr #orph #eqs TU TG

SKINNY-64-64 Higher-Order Chosen Plaintext Scenario

8 16 CP 8256 6819 4377 2431 9 700 18108 0.63 4.01

9 256 CP 147520 134637 85612 48973 46 9188 320484 82.44 1757.58

SKINNY-64-64 Known Plaintext Scenario

5 32 KP 10304 9807 4725 5034 48 681 23209 1.64 14.11

5 32 KC 10304 9806 4016 5742 48 757 15152 1.93 11.90

SKINNY-64-128 Higher-Order Chosen Plaintext Scenario

8 16 CP 8320 6814 4377 2437 0 752 18160 0.80 8.08

9 256 CP 147584 134586 85617 48969 0 9137 254946 101.04 3437.16

SKINNY-64-128 Known Plaintext Scenario

5 40 KP 12928 12315 6087 6228 0 865 29025 2.62 90.80

5 40 KC 12928 12314 5016 7298 0 1129 29289 3.4 27.68

6 256 KC 98432 94519 52171 42348 0 6442 219434 136.13 1501.70

241.7, respectively. Our algebraic cryptanalysis attack
requires only 32 chosen plaintexts only and a running
time of about 48.7 seconds on average. We have been
also able to attack 7-round PRESENT with just 256
chosen plaintexts. In [34], an integral attack for 7-
round PRESENT is presented. The attack has data
and time complexity of 28.3 and 260, respectively. The
best attack for PRESENT-80 reported in [36] which
covers 28 rounds of the cipher. This attack is based on
linear cryptanalysis and its data and time complexity
is 264 and 277.4, respectively.

For MIBS cipher, the best 4-round differential char-
acteristics has the probability of O(2−15) [13]. If this
characteristic is used in a hypothetical key recovery
attack on 6-round MIBS, it would require a data com-
plexity of at least O(215). In this paper, however, the
6-round MIBS cipher is broken with only 12 chosen
plaintexts in an algebraic cryptanalysis attack. In [29],
a differential cryptanalysis attack is proposed on 13
rounds of MIBS based on a 12-round differential char-
acteristic, with data and time complexity of 261 and
256, respectively .

Let’s consider the differential cryptanalysis of
SKINNY. The best differential characteristics for
7-round SKINNY-64 implies 28 active S-boxes [15].
This would lead to an attack on 8-round SKINNY-64
with a data complexity of 256. While our attack on
8-round SKINNY-64 needs only 16 chosen plaintexts.
Attacking 9-round SKINNY-64 requires only 256
chosen plaintexts. In [26], an integral distinguisher

for 10 rounds of SKINNY is also reported. A related-
tweaky impossible differential attack on 23-round
SKINNY-64-128 is reported by Sadeghi et. al in [37].
The data and time complexity of the attack is 2127

and 262.95, respectively.

6 Conclusions and Discussion

In this paper, we proposed a new method to launch a
more efficient Algebraic Cryptanalysis. We employed
an effective FWBW representation of S-boxes for al-
gebraic description of ciphers. Then, we showed that
combining this representation with carefully selected
plaintexts and Universal Proning in the solving stage
improves the running time for solving the system to
find the key.

In this work, we have also done experiments on a
limited number of light-weight block ciphers with 4-bit
S-boxes. These ciphers are designed based on different
strategies and we were able to report a successful
first algebraic attack on 12-round LBlock, 7-round
PRESENT and 9-round SKINNY. Although, we do
not yet have a theoretic result for the effectiveness
of our method, i.e., FWBW with Universal Proning,
for algebraic cryptanalysis in general, we can expect
that the reported results should be extended to other
ciphers as well. Consequently, our proposed method
could be used as a criterion for the evaluation of
resistance of light-weight ciphers against algebraic



114

Table 10. Some Integral and Differential Cryptanalysis of LBlock, MIBS, PRESENT and SKINNY.

Nr RunTime Data note work

LBlock-80

11 - O(244) CP Differential Characteristics [12]

22 O(270) 261 CP Integral Cryptanalysis [28]

PRESENT-80

6 241.7 222.4 CP Integral Cryptanalysis [33]

7 260 28.3 CP Integral Cryptanlysis [34]

9 260 220.3 CP Integral Cryptanlysis [34]

9 - 260 CP Integral Distinguisher [26]

16 264 264 CP Differential Cryptanalysis [35]

28 277.4 264 KP Linear Cryptanalysis [36]

MIBS-80

4 - O(215) CP Differential Characteristics [13]

13 256 261 CP Differential Cryptanalysis [29]

SKINNY-64

7 - O(256) CP Differential Characteristics [15]

10 - 248 CP Integral Distinguisher [26]

23 2127 262.95 CP Related-Tweakey Impossible Differential Cryptanalysis [37]

cryptanalysis, regarding the NIST competition of light-
weight cryptography.

In general, the Universal Proning technique alone
helps to find many linear equations. Since these poly-
nomials are universal and satisfied for all keys, they do
not contribute to finding the key, but help to simplify
the system of equations by removing much of vari-
ables from the system [11]. For example, considering
the attack on LBlock with 256 correlated plaintexts,
we could remove 71205 variables of total 98472 from
the system, with Universal Proning. Hence, the result-
ing system of equations is much simplified. This may
question the role of effective representation, for the
next step. To answer the question, we also applied our
method with MQ representation of S-boxes. As can
be seen in Table 3, the average running time of TG sig-
nificantly increased in comparison with FWBW rep-
resentation. Therefore, we can conclude that FWBW
is an effective method for the description of S-boxes.

We also found some irregular properties in MIBS
and SKINNY ciphers. For MIBS cipher, the running
time of TG would exceptionally increase, when the
linear polynomials that found by Universal Backward

Proning and Universal Proning are taken into account.
This contrasts the common intuition that removing
variables or adding linear equations should result in
more efficient solving time. For SKINNY, we found
that the cipher exhibits more linear equations in Back-
ward (decryption) direction than Forward (encryp-
tion) direction, in a known-plaintext scenario. As it is
shown in Table 9, this leads to more efficient attacks
in both known/chosen-ciphertext scenario. It worth
investigating the effect of this unbalanced algebraic
property on other types of attacks.

Our tool could not handle a large system of equa-
tions that arises from a large number of samples due
limitation in employed software and hardware. There-
fore, it is worth improving the implementation in order
to better investigate the limitations and capabilities of
algebraic cryptanalysis with Gröbner basis methods.

References

[1] H. Arabnezhad-Khanoki, B. Sadeghiyan, and
J. Pieprzyk. S-boxes representation and effi-
ciency of algebraic attack. IET Information Se-



2020, Volume 7, Number 2 (pp. 103–117) 115

curity, 13(5):448–458, 2019. ISSN 1751-8709.
doi:10.1049/iet-ifs.2018.5201.

[2] J. Faugere and L. Perret. Improving the recogni-
tion of faces occluded by facial accessories. In In-
ternational Conference on Information Security
and Cryptology, pages 266–277. Springer, 2009.
ISBN 978-3-642-16341-8. doi:10.1007/978-3-642-
16342-5 19.

[3] G. V. Bard, N. T. Courtois, J. Nakahara,
P. Sepehrdad, and B. Zhang. Improving the recog-
nition of faces occluded by facial accessories. In
International Conference on Cryptology in India,
pages 176–196. Springer, 2010. ISBN 978-3-642-
17400-1. doi:10.1007/978-3-642-17401-8 14.

[4] P. Sušilα, P. Sepehrdad, and S. Vaudenay. On
Selection of Samples in Algebraic Attacks and
a New Technique to Find Hidden Low Degree
Equations. In Information Security and Privacy,
pages 50–65. Springer, 2014. ISBN 978-3-319-
08343-8. doi:10.1007/978-3-319-08344-5.

[5] E. Biham and A. Shamir. Differential crypt-
analysis of DES-like cryptosystems. Journal of
Cryptology, 4(1):3–72, 1991. ISSN 0898-929X.
doi:10.1007/BF00630563.

[6] L. Knudsen and D. Wagner. Integral cryptanaly-
sis. In International Workshop on Fast Software
Encryption, pages 112–127. Springer, 2002. ISBN
978-3-540-44009-3. doi:10.1007/3-540-45661-9 9.

[7] I. Dinur and A. Shamir. Annual International
Conference on the Theory and Applications of
Cryptographic Techniques. In Proceedings of
the Seventh IEEE International Conference on
Computer Vision, pages 278–299. Springer, 1999.
ISBN 978-3-642-01000-2. doi:10.1007/978-3-642-
01001-9 16.

[8] Y. Todo. Structural evaluation by generalized
integral property. In Annual International Con-
ference on the Theory and Applications of Cryp-
tographic Techniques, pages 287–314. Springer,
2015. ISBN 978-3-662-46799-2. doi:10.1007/978-
3-662-46800-5 12.

[9] M. Blum, M. Luby, and R. Rubinfeld. Self-
testing/correcting with applications to numeri-
cal problems. Journal of computer and system
sciences, 47(3):549–595, 1993. doi:10.1016/0022-
0000(93)90044-W.

[10] S. Abdul-Latip, M. R. Reyhanitabar, W. Susilo,
and J. Seberry. Extended cubes: enhancing the
cube attack by extracting low-degree non-linear
equations. In Proceedings of the 6th ACM Sympo-
sium on Information, Computer and Communi-
cations Security, page 296–305. Springer, Berlin,
Heidelberg, 2011. doi:10.1145/1966913.1966952.

[11] P. SUŠIL. Algebraic Cryptanalysis of Deter-
ministic Symmetric Encryption. URL http:

//infoscience.epfl.ch/record/210605/

files/EPFL_TH6651.pdf.
[12] J. Faugere and L. Perret. LBlock: a lightweight

block cipher. In International Conference on Ap-
plied Cryptography and Network Security, pages
327–344. Springer, 2011. ISBN 978-3-642-21553-
7. doi:10.1007/978-3-642-21554-4 19.

[13] M. Izadi, B. Sadeghiyan, S. S. Sadeghian, and
H. A. Khanooki. Structural evaluation by gener-
alized integral property. In International Confer-
ence on Cryptology and Network Security, pages
334–348. Springer, 2009. ISBN 978-3-642-10432-
9. doi:10.1007/978-3-642-10433-6 22.

[14] A. Bogdanov, L. R. Knudsen, G. Leander,
C. Paar, A. Poschmann, M. J. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT: An
ultra-lightweight block cipher. In International
workshop on cryptographic hardware and embed-
ded systems, pages 450–466. Springer, 2007. ISBN
978-3-540-74734-5. doi:10.1007/978-3-540-74735-
2 31.

[15] C. Beierle, J. Jean, S. Kölbl, G. Leander,
A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich, and
S. M. Sim. The SKINNY family of block ciphers
and its low-latency variant MANTIS. In Annual
International Cryptology Conference, pages 123–
153. Springer, 2016. ISBN 978-3-662-53007-8.
doi:10.1007/978-3-662-53008-5 5.

[16] X. Lai. Higher order derivatives and differential
cryptanalysis. In Communications and cryptog-
raphy, pages 227–233. Springer, 1994.

[17] J. Daemen, L. Knudsen, and V. Rijmen. The
block cipher Square. In International Work-
shop on Fast Software Encryption, pages 149–
165. Springer, 2009. ISBN 978-3-540-63247-4.
doi:10.1007/BFb0052343.

[18] J. Faugere and L. Perret. The cipher SHARK. In
International Workshop on Fast Software Encryp-
tion, pages 99–111. Springer, 1996. ISBN 978-3-
540-60865-3. doi:10.1007/3-540-60865-6 47.

[19] J. L. Massey. SAFER K-64: A byte-oriented
block-ciphering algorithm. In International
Workshop on Fast Software Encryption, pages
1–17. Springer, 2009. ISBN 978-3-540-58108-6.
doi:10.1007/3-540-58108-1 1.

[20] N. T. Courtois and J. Pieprzyk. Cryptanalysis of
block ciphers with overdefined systems of equa-
tions. In International Conference on the Theory
andApplication of Cryptology and Information Se-
curity, pages 267–287. Springer, 2002. ISBN 978-
3-540-00171-3. doi:10.1007/3-540-36178-2 17.

[21] J. N. Jr, P. Sepehrdad, B. Zhang, and M. Wang.
Linear (hull) and algebraic cryptanalysis of the
block cipher PRESENT. In International Confer-
ence on Cryptology and Network Security, pages
58–75. Springer, 2009. ISBN 978-3-642-10432-9.
doi:10.1007/978-3-642-10433-6 5.

http://dx.doi.org/10.1049/iet-ifs.2018.5201
http://dx.doi.org/10.1007/978-3-642-16342-5_19
http://dx.doi.org/10.1007/978-3-642-16342-5_19
http://dx.doi.org/10.1007/978-3-642-17401-8_14
http://dx.doi.org/10.1007/978-3-319-08344-5
http://dx.doi.org/10.1007/BF00630563
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-642-01001-9_16
http://dx.doi.org/10.1007/978-3-642-01001-9_16
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1145/1966913.1966952
http://infoscience.epfl.ch/record/210605/files/EPFL_TH6651.pdf
http://infoscience.epfl.ch/record/210605/files/EPFL_TH6651.pdf
http://infoscience.epfl.ch/record/210605/files/EPFL_TH6651.pdf
http://dx.doi.org/10.1007/978-3-642-21554-4_19
http://dx.doi.org/10.1007/978-3-642-10433-6_22
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-60865-6_47
http://dx.doi.org/10.1007/3-540-58108-1_1
http://dx.doi.org/10.1007/3-540-36178-2_17
http://dx.doi.org/10.1007/978-3-642-10433-6_5


116

[22] A. Biryukov and C. D. Cannière. Block Ciphers
and Systems of Quadratic Equations. In Inter-
national Workshop on Fast Software Encryption,
pages 274–289. Springer, 2003. ISBN 978-3-540-
20449-7. doi:10.1007/978-3-540-39887-5 21.

[23] S. Islam, M. Afzal, and A. Rashdi. On the secu-
rity of LBlock against the cube attack and side
channel cube attack. In International Conference
on Availability, Reliability, and Security, pages
105–121. Springer, 2013. ISBN 978-3-642-40587-
7. doi:10.1007/978-3-642-40588-4 8.

[24] M. Brickenstein and A. Dreyer. Poly-
bori: A framework for gröbner-basis computa-
tions with boolean polynomials. Journal of
Symbolic Computation, 44(9):1326–1345, 2009.
doi:10.1016/j.jsc.2008.02.017.

[25] M. Albrecht and G. Bard. The M4RI Library –
Version 20140914. The M4RI Team, 2014. URL
http://m4ri.sagemath.org.

[26] Z. Eskandari, A. B. Kidmose, S. Kölbl, and
T. Tiessen. Finding Integral Distinguishers with
Ease. In International Conference on Information
Security and Cryptology, pages 115–138. Springer,
2018. ISBN 978-3-030-10969-1. doi:10.1007/978-
3-030-10970-7 6.

[27] N. T. Courtois, P. Sepehrdad, P. Sušil, and S. Vau-
denay. ElimLin algorithm revisited. In Inter-
national Workshop on Fast Software Encryption,
pages 306–325. Springer, 2012. ISBN 978-3-642-
34046-8. doi:10.1007/978-3-642-34047-5 18.

[28] Y. Sasaki and L. Wang. Comprehensive study of
integral analysis on 22-round LBlock. In Inter-
national Conference on Information Security and
Cryptology, pages 156–169. Springer, 2012. ISBN
978-3-642-37681-8. doi:10.1007/978-3-642-37682-
5 12.

[29] A. Bay, J. Nakahara, and S. Vaudenay. Crypt-
analysis of reduced-round MIBS block cipher. In
International Conference on Cryptology and Net-
work Security, pages 1–19. Springer, 2010. ISBN
978-3-642-17618-0. doi:10.1007/978-3-642-17619-
7 1.

[30] S. Wu and M. Wang. Automatic search of trun-
cated impossible differentials for word-oriented
block ciphers. In International Conference on
Cryptology in India, pages 283–302. Springer,
2012. ISBN 978-3-642-34930-0. doi:10.1007/978-
3-642-34931-7 17.

[31] M. Albrecht and C. Cid. Algebraic techniques
in differential cryptanalysis. In International
Workshop on Fast Software Encryption, pages
193–208. Springer, 2009. ISBN 978-3-642-03316-
2. doi:10.1007/978-3-642-03317-9 12.

[32] B. Collard and F. X. Standaert. A statistical satu-
ration attack against the block cipher PRESENT.
In Cryptographers’ Track at the RSA Conference,

pages 195–210. Springer, 2009. ISBN 978-3-642-
00861-0. doi:10.1007/978-3-642-00862-7 13.

[33] M. R. Z’aba, H. Raddum, M. Henricksen, and
E. Dawson. Bit-pattern based integral attack. In
International Workshop on Fast Software Encryp-
tion, pages 363–381. Springer, 2008. ISBN 978-3-
540-71038-7. doi:10.1007/978-3-540-71039-4 23.

[34] S. Wu and M. Wang. Integral attacks on reduced-
round PRESENT. In International Conference
on Information and Communications Security,
pages 331–345. Springer, 2013. ISBN 978-3-319-
02725-8. doi:10.1007/978-3-319-02726-5 24.

[35] M. Wang. Structural evaluation by generalized
integral property. In International Conference
on Cryptology in Africa, pages 40–49. Springer,
2008. ISBN 978-3-540-68159-5. doi:10.1007/978-
3-540-68164-9 4.

[36] A. Flórez-Gutiérrez and M. Naya-Plasencia. Im-
proving Key-Recovery in Linear Attacks: Appli-
cation to 28-Round PRESENT. In Annual In-
ternational Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 221–
249. Springer, 2020. ISBN 978-3-030-45720-4.
doi:10.1007/978-3-030-45721-1 9.

[37] S. Sadeghi, T. Mohammadi, and N. Bagheri.
Cryptanalysis of reduced round SKINNY
block cipher. IACR Transactions on Sym-
metric Cryptology, 2018(3):124–162, 2018.
doi:10.13154/tosc.v2018.i3.124-162.

http://dx.doi.org/10.1007/978-3-540-39887-5_21
http://dx.doi.org/10.1007/978-3-642-40588-4_8
http://dx.doi.org/10.1016/j.jsc.2008.02.017
http://m4ri.sagemath.org
http://dx.doi.org/10.1007/978-3-030-10970-7_6
http://dx.doi.org/10.1007/978-3-030-10970-7_6
http://dx.doi.org/10.1007/978-3-642-34047-5_18
http://dx.doi.org/10.1007/978-3-642-37682-5_12
http://dx.doi.org/10.1007/978-3-642-37682-5_12
http://dx.doi.org/10.1007/978-3-642-17619-7_1
http://dx.doi.org/10.1007/978-3-642-17619-7_1
http://dx.doi.org/10.1007/978-3-642-34931-7_17
http://dx.doi.org/10.1007/978-3-642-34931-7_17
http://dx.doi.org/10.1007/978-3-642-03317-9_12
http://dx.doi.org/10.1007/978-3-642-00862-7_13
http://dx.doi.org/10.1007/978-3-540-71039-4_23
http://dx.doi.org/10.1007/978-3-319-02726-5_24
http://dx.doi.org/10.1007/978-3-540-68164-9_4
http://dx.doi.org/10.1007/978-3-540-68164-9_4
http://dx.doi.org/10.1007/978-3-030-45721-1_9
http://dx.doi.org/10.13154/tosc.v2018.i3.124-162


2020, Volume 7, Number 2 (pp. 103–117) 117

Hossein Arabnezhad received his B.S. de-

gree in Computer Engineering from Ferdowsi
University, Mashhad, Iran, in 2007. He re-

ceived his M.S. degree in Information Technol-

ogy Engineering from Amirkabir University
Technology, Tehran, Iran, in 2010. Currently,

he is a Ph.D. candidate in Computer Engi-
neering at Amirkabir University of Technol-

ogy, Tehran, Iran. His research interest is the

cryptanalysis of block ciphers.

Babak Sadeghiyan received his B.Sc. in
1985 in Electrical (Electronics) Engineering

from Isfahan University of Technology, and
his M.Sc. in 1989 in Electronics Engineer-
ing from Amirkabir University of Technology,

Tehran, Iran. He received his Ph.D. in 1993,
in Computer Science from University College,
University of New South Wales, Australia, on

the design of secure hash functions. Then he
joined the Department of Computer Engineering, Amirkabir

University of Technology in 1993, where he is still continuing

his academic activities, and is currently an associate professor
of the department. His research area of interest includes all as-

pects of Cryptology and Information Security, more specifically,
he has contributed on the design and analysis of cryptographic
algorithms and cryptographic protocols.


