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In this research, sol-gel experimental conditions are imposed to prepare a new Mn-containing SiO2-based 
bioactive glass. The current study primarily aims to investigate the impact of the presence of manganese 

ion on the glass structure, bioactivity, and cytotoxicity. The obtained glass-ceramics were characterized 

using a X-Ray Diffractometer (XRD). According to the observations, crystallization of silicorhenanite and 
calcite phases in the manganese-containing sample were inhibited before and after soaking in the simulated 

body fluid (SBF), respectively. In vivo bioactivity evaluation confirmed the bioactive nature of the obtained 

powders. Finally, the cellular test was carried out, the results of which demonstrated non-cytotoxicity of 
the samples towards human Bone Marrow Stromal Cells (hBMSCs) cells up to 7 days. 
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1. INTRODUCTION 
 

The term biomaterial refers to man-made materials 

used for repairing or restoring body functions after they 

have been injured or damaged. To be effective as bone 

tissue replacement, a biomaterial must be non-toxic with 

the ability to form a hydroxyapatite (HA) layer on its 

surface to decrease the rejection potential [1]. Generally, 

biomaterials can be divided into three groups: bioinerts 

(non-toxic and biologically inactive), bioactives (both 

nontoxic and biologically active), and biodegradables or 

bioresorbables (dissolved and replaced by the 

surrounding tissues, called the third-generation 

materials) [1,2]. Bioactive glasses (BGs) are nontoxic 

biomaterials that exhibit bioactivity in orthopedics 

through their interactions with body fluids [3-5]. 
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Recently, application of biologically active ions has 

gained more significance than ever to enhance the 

biological and physical effectiveness of BGs and develop 

multifunctional biomaterials with a wide range of 

biomedical applications [6-8]. In addition to their 

essential role in human health, metallic ions can be a cost-

effective alternative to pharmaceuticals [9-11]. 

Incorporation of metallic ions into BGs has been 

extensively studied in recent years [7,10,12-14]. 

Manganese plays a critical role in both bone and muscle 

metabolism [15,16]. Manganese present in the human 

body help prevent bone loss caused by free radicals and 

therefore, its prolonged deficiency can cause 

osteoporosis. Low manganese levels can be detected in 

osteoporotic patients [10,17]. Luthen et al. [18] 

investigated the effects of different manganese ion on the 

cellular functions like spreading, proliferation as well as 

gene expression in human osteoblasts by directly 

introducing different concentrations of MnCl2 to the cell 

suspension (0.01–0.5 mM). Their result showed a 

strongly concentration-dependent effect of manganese 

cations on the cell functions, which should be adjusted 

through incorporation to different biomaterial. 

Manganese-containing bioactive glasses have also been 

investigated in recent years [12,16,19-25]. Compared to 

Mn-free glasses, those glasses that contain manganese in 

their composition enjoy an increase in the osteoblast 

differentiation, bone mineralization, Alkaline 

Phosphatase (ALP), and bone morphogenetic protein 

expression [16]. It was found that Mn-doped samples 

exhibited significant bioactivity, given the formation of 

HA after only a few hours and their complete coverage 

after fourteen days [25]. Further, the antibacterial 

properties of these glasses were identified [26]. The 

research findings confirmed that 1.6 ppm of Mn2+ in basal 

Dulbecco’s Modified Eagle Medium (DMEM) 

stimulated the osteoblast proliferation without impairing 

cell viability [23]. Based on these studies, Mn 

incorporation into the bioactive glass networks can 

provide superior bone regeneration materials. However, 

in most studies, the presence of alkaline or alkaline earth 

elements has been completely neglected or small amount 

of these ions have been investigated. Considering the 

advantages of these elements, the current study aimed to 

synthesize and evaluate the bioactive glass containing 

significant amounts of alkaline and alkaline earth ions 

along with manganese ion, which can be considered an 

innovation in academic milieu. This research aimed to 

produce a sol-gel manganese-containing SiO2-based 

bioactive glass with high alkali and alkaline earth oxide 

content (52SiO2.(30-x)CaO.14Na2O.4P2O5.xMnO, x = 2 

(mol %)) to obtain a potential biomaterial for bone tissue 

regeneration. In addition, it evaluated the effect of Mn 

incorporation on the sample structure, cytotoxicity, and 

in-vitro bioactivity. 

 

 

2. MATERIALS AND METHODS 
 

2.1. Bioactive Glass Powder Synthesis 
All chemicals used in this study were purchased from 

Merck and Sigma-Aldrich and used as received. 

Calcium-nitrate-tetrahydrate (Ca(NO3)2.4H2O), 

manganese nitrate-tetrahydrate (Mn(NO3)2.4H2O), 

sodium nitrate (NaNO3), tetraethyl-orthosilicate 

alkoxides (TEOS, Si(OC4H9)4), and triethyl phosphate 

(TEP, P(C2H5O)) were used as precursors. Deionized 

water and absolute ethanol were used as solvents, and 

0.05 M citric acid was used as the sol-gel reaction 

catalyst. The sol-gel process was used to prepare Mn-free 

and Mn-containing glass powders as discussed in our 

previous work [27]. First, TEOS and TEP were diluted in 

ethanol and then, NaNO3 and (Ca(NO3)2.4H2O) were 

dissolved in an acidic solution, respectively. In the next 

step, the former solution was gradually added to the 

latter. The resultant solution was stirred for three hours 

until complete hydrolysis was achieved. Next, the 

solution was sealed and left at room temperature for gel 

formation. The obtained gel was aged at 70 °C for 24 h 

and dried at 110 °C in an oven for 24 h. Finally, the dried 

sample was calcined at 650 °C for an hour (3 °C/min). To 

obtain Mn-containing glass (2Mn-BG), Mn was 

introduced into the glass by partial replacement of the 

calcium content. For this purpose, a similar process to 

BG synthesis was applied except that (Mn(NO3)2.4H2O) 

was added to the acidic solution before (Ca(NO3)2.4H2O) 

dissolution. 

 

2.2. Powder Characterization 
The as-prepared products were analyzed using X-Ray 

Diffraction (XRD, DRON-8, Bourevestink, Russia, 

CuKα, 40 Kv, λ = 1.5418 Ǻ). Scanning was carried out 

from 15 to 100° with a step size of 0.026° per step at step 

time of 49.2 s. 

 

2.3. In Vitro Bioactivity Assessment 
The bioactivity of the synthesized powders was 

evaluated by immersing them in Simulated Body Fluid 

(SBF), according to the approved Kokubo protocol [28]. 

For this purpose, 15 mg of glass powders were immersed 

in 15 ml of SBF in polyethylene bottles and kept in an 

incubator (Memmert GmbH-CokG, Germany) at 37 °C 

for 14 days. The initial pH of SBF was kept at 7.4. The 

HA layer formation was confirmed by the EDX and XRD 

analyses after 14 days of immersion in the SBF. At each 

time, the point samples were removed from SBF, rinsed 

with distilled water, and dried in an oven at 60 °C. To 

study the dissolution process of the synthesized powders, 

the pH variation of the samples was also recorded. The 

pH variations for the SBF-soaked sample were measured 

at the intervals of 1, 3, 7, and 14 days by an electronic pH 

meter (BEL, PHS3-BW, Italy). 
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2.4. Biological Tests 
2.4.1. Cytotoxicity 

Cell viability was investigated by conducting MTS  

(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium) assay, a calorimetric 

method for quantification of tetrazolium compounds 

reduction into a water-soluble purple formazan by viable 

cell mitochondria. The indirect assay was then carried out 

following the 10993-5 States [29]. The ionic products of 

the samples were obtained as follows: the powder 

samples (BG, 2Mn-BG) were first sterilized by UV 

radiation for an hour and then, the samples were 

suspended in basal DMEM culture medium at the 

concentration of 1 mg/ml for 24 h at 37 °C. To obtain a 

better understanding of cell viability, the cells were 

treated with different concentrations of powders for 

prolonged periods. Consequently, the extracts were 

diluted using DMEM to achieve 1000, 100, and 

10 µg/mL final concentrations and filtered (0.22 µ), and 

the test was carried out at different time points (1, 3, and 

7 days). Meanwhile, human Bone Marrow Stromal Cells 

(hBMSCs) were seeded in a 96-well plate containing  

200 µl DMEM supplemented with 15 % FBS and 1 % 

antibiotic with the density of 5 × 103 cells/well. The 

cultured cells were incubated at 37 °C with 5 % CO2 for 

24 h. Subsequently, the cell culture media were removed 

and replaced by the extracted media and incubated for 1, 

3, and 7 days. During 1 and 3 days, the powders 

suspension added at the beginning was used and after 5 

days, the culture media was replaced by the new aliquots 

of extracts. The cells grown without sample extracts were 

next used as control. At the predetermined time, the 

extracts were removed and replaced with the 80 µl fresh 

medium and 20 µl of MTS solution (2 mg/ml). These 

cells were incubated for 3-4 h at 37 °C in a humidified 

atmosphere of 5 % CO2. Finally, the absorption was 

determined using a spectrophotometer (Synergy HT, 

BioTek, U.S.A.) at 490 nm wavelength. The cell viability 

is determined using Equation (1): 

 

 % Cell viability = 

Mean absorbance of samples

Mean absorbance of control
× 100 

(1) 

 

All materials used in the cell culture process were 

obtained from the Gibco brand (Thermo Fisher 

Scientific, USA). 

 

2.4.2. Statistical Analysis 
All experiments were conducted in triplicate and 

presented in means ± Standard Deviation (SD). Statistical 

differences of these values were evaluated using one-way 

Analysis of Variance (ANOVA) using prism software. 

Here, P < 0.05 was considered statistically significant. 

3. RESULTS AND DISCUSSION 
 

3.1. Phase Analysis 
Figure 1 shows the diffraction patterns of the 

synthesized powders stabilized at 650 °C for one hour at 

the heating rate of 3 °C/min. The BG diffraction pattern 

confirms the presence of combeite Na2Ca2Si3O9 

(PDF#075-1687) and pseudo-apatite crystalline phase of 

silicorhenanite Na2Ca4(PO4)2SiO4 (PDF#032-1053) 

without any traces of nitrate phases related to the used 

precursors. Apparently, the synthesized powders are 

glass-ceramic. Addition of manganese oxide caused a 

change in the powder color from white to light brown. A 

comparison of the diffraction patterns of BG and 2Mn-BG 

powder confirmed the diminishing of the peaks attributed 

to the silicorhenanite phase. Therefore, it can be 

concluded that the presence of manganese prevented the 

crystallization of this phase. Calcium content in the 52S4 

glass, combeite, and silicorhenanite phase is 

approximately 21, 23, and 33 wt. %, respectively. It 

should be noted that formation of the silicorhenanite 

crystalline phase requires a higher calcium content. In 

this respect, that silicorhenanite formation was hindered 

by addition of Mn instead of CaO is acceptable. The 

results from evaluating the effect of manganese on the 

structure of 45S5 glass-ceramic confirmed that the 

presence of manganese caused a decrease in the degree 

of powder crystallinity [30]. In addition, amorphous 

phases proved to show higher bioactivity than the 

crystallized samples with the same composition [31]. 

The XRD results revealed that the presence of MnO 

could not guarantee the formation of any new phase, 

and no peak attributed to the primary manganese 

precursor was observed in the diffraction pattern, 

indicating that Mn2+ was embedded in the glass-

ceramic structure. 

 

 

Figure 1. XRD patterns of BG and 2Mn-BG powders stabilized 

at 650 °C for 1 h with a heating rate of 3° C/min 
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3.2. In Vitro Bioactivity 
The in vitro HA layer formation on a material surface 

is indicative of the in-vivo bioactivity of the material 

[4,32]. The formation of the HA phase requires the ionic 

interaction of biomaterial and SBF; therefore, different 

factors including the material composition and its 

degradation rate affect the thermodynamics and kinetics 

of the reactions [33]. 

Figure 2 shows the pH variations during the SBF 

soaking for BG and 2Mn-BG. As observed, the pH values 

increased in the first three days of immersion and then up 

to day 7, these values decreased until they finally reach a 

rather constant value up to day 14. The pH variations in 

the SBF result from the exchange of ions between the 

SBF and the samples. As accepted, after the glass-

ceramic immersion in the SBF, alkaline, and alkaline 

earth ions, like Na+ and Ca2+, enter the SBF and react with 

the hydroxyl groups forming bases that increase the pH, 

such as Ca(OH)2 and NaOH. In the next step, Ca2+ ions 

are adsorbed onto the surface (CaO-P2O5-rich layer 

precipitation) and once again, the pH value is reduced. 

The constant pH values at longer times indicate a balance 

between these two processes, namely ion release into the 

solution from the material surface along with 

reabsorption of these ions from SBF and precipitation of 

CaO-P2O5-rich layer on the surface [16,34]. The above-

mentioned trend was detected for both samples, and no 

significant difference in the pH values was observed for 

the BG and 2Mn-BG samples while being soaked in the 

SBF environment. 

 

 

Figure 2. The pH value in the synthesized powders up to  

14 days immersion in SBF 

 

Table 1 shows the elemental analysis of the powders 

before and after in vitro test in SBF after 14 days. A 

decrease in the Ca and an increase in the Si content were 

observed on the surface of both samples, thus confirming 

the release of Ca2+ ions into the SBF and formation of a 

silicon-rich layer on the surface of samples. 

TABLE 1. Ion concentration of synthesized powders according 

to EDS analysis before and after immersion in SBF 

Elements 

BG 2Mn-BG 

Before 

soaking 

(wt. %) 

After 

soaking 

(wt. %) 

Before 

soaking 

(wt. %) 

After 

soaking 

(wt. %) 

Si 13.27 28.32 13.90 21.31 

Ca 20.29 13.15 16.56 7.49 

Na 11.74 0.13 12.76 2.52 

P 0.73 3.01 0.97 1.60 

Mn - - 3.5 2.95 

 

Figure 3 shows the XRD pattern of the samples after 

immersion in the SBF. The patterns confirm the 

formation of HA phase (Ca10(PO4)6(OH)2; PDF#09-

0432) with the main peak at around 32 degrees in both 

samples, confirming the bioactive nature of the powders. 

 

 

Figure 3. XRD patterns of the BG and 2Mn-BG samples after 

14 days of immersion in SBF 

 

The major peak for calcite at about 29° (CaCO3; 

PDF#00-001-837) appeared in the BG diffraction pattern 

after immersion. This peak, however, almost disappeared 

in the diffraction pattern of the manganese-containing 

sample. The reaction between the high contents of Ca2+ 

and (CO3)2− ions, released from glass powder particles 

and SBF solution, respectively, was the main reason for 

calcite phase precipitation [35-37]. 

The higher amounts of calcium oxide in the Mn-free 

sample could be the reason for calcite precipitation 

[38,39]. 

In addition, the presence of Mn in the glass would 

enhance its durability by creating stronger Mn–O–Si 

bonds than those created by Ca–O–Si [35,30]. The 

stronger bonds in turn reduce the Ca release rate into the 
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SBF and inhibit calcite precipitation. The peaks related 

to the combeite phase can be observed in the 2Mn-BG 

powders pattern. Based on the obtained results, it can be 

concluded that the presence of manganese stopputs an 

end in the ped calcite deposition without any negative 

effect on bioactivity. 

 

3.3. Cytotoxicity Evaluation 
The cytotoxicity was evaluated by hBMSCs exposure 

to the ionic dissolution of the synthesized powders. As 

indicated in Figure 4, no cytotoxic effect was observed 

with the dissolution products of the prepared samples at 

three different concentrations of 1000, 100, and 10 µg/ml. Of 

note, an increase in the cell proliferation was observed in 

the hBMSCs exposed to the conditioned media for up to 

seven days at higher concentrations. 

It can be concluded that the dissolution products of the 

synthesized powders can enhance the proliferation 

potential of cells and produce higher levels of cell 

function, compared to the control group, meaning that 

Mn-containing samples are not cytotoxic under the 

evaluated conditions. 

 

 
 

 
 

 

Figure 4. Viability of hBMSCs in the presence of increasing 

concentrations of synthesized powders (10, 100, and 1000 µg/ml). 

Green: BG, Red: 2Mn-BG. Data presented as mean ± SD of 

three independent sample, n=3. (ns indicates not significant 

differences, ** indicates p < 0.05, and *** indicates p < 0.02) 

 

4. CONCLUSION 
 

In this study, manganese-free and manganese-

containing glass-ceramic in the quaternary system 

SiO2–CaO–Na2O–P2O5 were synthesized using the  

sol-gel route. The results indicated that combeite and 

silicorhenanite were crystallized in the Mn-free sample 

followed by heat treatment at 650 °C for one hour. 

However, the Mn ion addition inhibited the 

crystallization of the silicorhenanite phase. The in-vivo 

bioactivity test on both BG and 2Mn-BG samples 

confirmed their noticeable bioactivity. Further, calcite 

precipitation was diminished in the 2Mn-BG sample. The 

MTS test results demonstrated the nontoxicity of BG and 

2Mn-BG samples towards the hBMSCs cells such that an 

improvement in the mitochondrial activity of these cells 

was observed until 7 days. 
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