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 This research devised a cutting-edge artificial intelligence methodology to enhance 
flood forecasting in Quebec, Canada, an area frequently affected by floods. The 
core of this project was creating a novel artificial intelligence (AI) model (i.e., 
Generalized Structure of Group Method of Data Handling) dedicated to the early 
detection of potential flood events. Utilizing data from two key hydrometric stations, 
Saint-Charles and Huron, located within the region, the study aggregated data from 
15-minute intervals into comprehensive hourly averages. An initial analysis sought 
to understand the relationship between river flow rates and the environmental 
factors of temperature and precipitation upstream and downstream. The 
investigation uncovered intricate relationships among these factors, presenting 
challenges in accurately predicting floods. To address this, a specialized AI model 
was developed to translate the flow data from the Huron station to predict potential 
flooding at the Saint-Charles station. This model, leveraging 48-hour lag data from 
upstream, was designed to forecast flood events at the Saint-Charles station with 
lead times ranging from one to eighteen hours. The model demonstrated significant 
predictive accuracy, with a correlation coefficient surpassing 0.9. Consequently, 
this innovative AI model emerges as a promising tool for improving Quebec's flood 
prediction and early-warning systems. 
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1. Introduction 
 
The failure to adapt or mitigate climate change represents the most 
significant challenge facing communities worldwide in the future 
decade. The dynamics of vital hydro-climatic variables worldwide have 
experienced remarkable changes due to climate change. Floods, as 

one of the critical hydro-climatic variables, are the most frequently 
happening natural hazard to the environment, infrastructure, property, 
economy, and life around the globe, especially in Canada (Ebtehaj and 
Bonakdari, 2023). According to the damages caused by floods, It 
stands as one of the most lethal catastrophes globally, so it is ranked 
third after the earthquake and tsunami (Zaji et al., 2018). Some 
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prominent causes of flooding can be expressed as the runoff from 
melting snow in spring, precipitation from storms, barriers formed by 
nature, inundation along coastlines, waterlogging in urban areas, and 
failure of flood management structures, and groundwater (Shrubsole et 
al., 1993; Letessier et al., 2023; Ebtehaj et al., 2023a). According to the 
large variety of hydrological features, weather, and landscape in 
Canada, floods are triggered through three main mechanisms such as 
rain on snow, heavy rainfall, and spring snowmelt (Zahmatkesh et al., 
2019), which is the most prominent causes of floods in Canada 
(Shrubsole et al., 2003). Floods occur most along with large river 
systems in the spring, when maximum flow rates are predominantly 
determined by the volume of runoff resulting from snowmelt and rain, 
yet can also happen in the summer (Hildebrandt, 2013), characterized 
by sudden flooding in city environments due to heavy rainfall over brief 
periods. 

Several significant floods have occurred in Canada in previous 
decades. One of the oldest ones is the Fort Calgary flood in 1879, with 
a maximum flow rate of 2265 m3/s corresponding to a 1:200 year event 
for Bow River. The flood in Southern Alberta resulted in the largest 
evacuation of a natural disaster in Alberta's history, leading to around 
100,000 Albertans leaving their homes in June 2013. An average of 75 
to 150 mm of rainfall over three days was the main reason for this 
catastrophic event, with four deaths. The Elbow and Bow rivers in 
Calgary were flooded, and 3,000 buildings overflowed, affecting over 
4,000 businesses and compelling approximately 75,000 residents to 
evacuate the city. This event cost $2,715,742,000 (Canadian Disaster 
Database (CDD)). This flooding represents the highest estimated 
financial impact of any flood in Canada. Southern Manitoba (June 2014) 
and Southern Alberta and Saskatchewan (June 2010) floods with 
$1,164,679,000 and $1,031,670,000 are ranked second and third 
(respectively) with the highest estimated total costs. 

Floods can occur with a wide spatiotemporal variation in Canada, 
with different severity and damage based on the mainstream involved, 
location, and watershed size. An improved early flood detection system 
and mitigation measures are crucial for decision-makers in watershed 
management. Accurate and reliable flood anticipating can decrease 
some of the adverse effects of flood events and provide reliable and 
accurate predictions with suitable lead time. Hydrologic models serve 
as analytical instruments for systems, capable of mimicking 
hydrological behaviors to reanalyze the historical incident and/or 
forecast the responses of the basin to the future hydrological process.  

A conceptual model and a physically based model can be classified 
according to their underlying equations, while lumped and distributed 
catchment areas can be classified according to how the catchment area 
is represented (Sahraei, Asadzadeh, Unduche, 2020). A variety of 
physically-based hydrological models (PBHM) are used for water 
management, such as WEAP (Gao, Christensen, Li, 2017), MIKE Basin 
(López et al., 2020), the Hydrologic Engineering Center's Hydrologic 
Modeling System (HEC-HMS) (Ramly et al., 2020), and the Soil and 
Water Assessment Tool (SWAT) (Li et al., 2018). Various physically-
based hydrological models (PBHMs) are available for water 
management in the watershed, including SWAT (Li et al., 2018), MIKE 
Basin (López et al., 2020), HEC-HMS (Ramly et al., 2020), and WEAP 
(Gao et al., 2017). Nonetheless, while PBHM models have shown 
remarkable capabilities in predicting different types of flooding, they 
require extensive computational resources and a variety of hydro-
meteorological and geomorphological data, such as soil characteristics, 
land use, vegetation, and slope. The necessity for numerous input 
variables, each prone to measurement errors, can accumulate, 
adversely affecting the outcomes of the models (Kollet and Maxwell, 
2006). Furthermore, missing data in any of the input variables can 
significantly limit the practicality of PBHMs (Soltani et al., 2021). Thus, 
employing a PBHM for flood prediction is notably complex, demanding 
specialized knowledge and a comprehensive understanding of 
hydrological variables, which presents significant challenges (Kim et al., 
2015). 

Successful application of Artificial Intelligence (AI) in solving 
complex nonlinear problems persuades decision-makers and scholars 
toward AI techniques to model the nonlinear behavior of flood events 
and their characteristics in different stages of floods utilizing past data 
without understanding the physical mechanics of flooding. AI models 
are applied to induce patterns and regularities through fast modeling 
with high performance (Ebtehaj and Bonakdari, 2016; Khozani, 
Bonakdari, Ebtehaj, 2017; Ebtehaj, Bonakdari, Zaji, 2018; Sihag et al., 
2019; Safari et al., 2019), as well as more straightforward 
implementation, less complexity, and lower computation compared to 
PBHM (Mekanik et al., 2013). Application of the AI models in two past 
decades showed the pertinence of these models in flood forecasting 
with an admissible rate of outperforming classical techniques (Walton 

et al., 2019). Different AI approaches, including artificial neural network, 
neuro-fuzzy (Mosavi and Edalatifar, 2019), extreme learning machine 
(Taherei Ghazvinei et al., 2018) support vector regression (Gizaw and 
Gan, 2016), and deep learning (Puttinaovarat and Horkaew 2020) were 
identified as effective instruments for predicting short- and long-term 
floods. 

The innovation of this study unfolds in three distinct dimensions. 
Initially, it introduces a novel AI methodology, specifically the 
Generalized Structure of the Group Method of Data Handling 
(GSGMDH), tailored for early-warning flood forecasting within Quebec 
province, Canada. Secondly, an exhaustive literature review reveals 
the absence of prior flood forecasting research employing comparative 
analysis across various potential input combinations. This investigation 
rigorously evaluates an extensive array of input configurations, ranging 
from two to 48 variables, utilizing the GSGMDH model's automatic 
capabilities. Lastly, whereas conventional approaches predominantly 
rely on recorded discharge data at the target station for future flood 
predictions, this research diverges by leveraging discharge data from 
upstream locations to enhance the accuracy of downstream flood 
forecasts. The 15-minute flow rates at two hydrometric stations, 
including Hurons and Saint-Charles, are collected to develop it. Using 
the hourly averaging of this data, six different AI models with one to 
eighteen lead times are developed to forecast the flow rate at Saint-
Charles, located upstream of Quebec City, using the historical flow rate 
at Hurons station. Decision-makers need a relationship that can be 
used by an AI with the most minor parameters in practical tasks. This 
system can be an alarm system in which decision-makers are alerted 
to floods downstream when the upstream flow rate reaches a particular 
value. 
 
2. Materials and methods 
2.1. Importance of flood forecasting in Quebec province 
 
Flooding is Canada's most common natural calamity. According to the 
CDD (https://cdd.publicsafety.gc.ca), 35 flood disasters happened in 
Quebec, which is more than 10% of floods that occurred in Canada (i.e., 
309 floods in all provinces) from 1900 to 2013. The number of floods in 
Canada and Quebec is more than three times the of wildfires as the 
next most usual natural hazard.  

In the last century, Quebec has witnessed significant flooding 
events. The Saguenay flood on July 19, 1996, occurred due to 290 mm 
of rainfall in less than 36 hours. As a result of this flood, thousands of 
bridges, roads, and homes were washed out, and at least led to 10 
deaths. More than 15,000 people had to evacuate their houses. The 
projected overall expense of the Saguenay flood was 300 million CAD 
(CDD, https://cdd.publicsafety.gc.ca). In the 2019 Quebec flood, 51 
municipalities with 6681 residences were flooded in five zones due to 
the submerged roads and landslides, which led to over 13500 disaster 
victims ("Inondations: plus de 10 000 personnes évacuées". La Presse. 
April 30, 2019). The type of this flood was rain in the region and 
snowmelt that caused lakes and rivers to overflow 
(http://floodlist.com/america/canada-floods-quebec-april-2019). The 
approximated expenses for the flood disasters in the Quebec province 
of Canada from 1974 to 2014 were collected from the CDD. The 
summation of all Available estimated costs of flood disasters in Quebec 
is more than 840 million CAD. Fig. 1 provides the historical record of 
flood events in Canada from 1900-2017. Based on the figure, Ontario 
experienced the highest number of flood events, with 49 flood disasters, 
while the lowest one was related to Saskatchewan, with two flood 
disasters. With 27 floods through these years, Quebec has more than 
14% of all floods in Canada. Besides, the cumulative total damage 
related to Quebec is 3218 million CAD, more than 12% of all cumulative 
total damage in Canada. 

Fig. 2 indicates the dominant flood types for each Canadian 
province. Due to this Fig., none of them are the prevalent flood types in 
the country. Due to this Fig., heavy rainfall is the leading cause of 
flooding in most Canadian provinces, including Quebec. Besides, 
snowmelts, ice jams, and riverine flooding are also causes of floods in 
Quebec province. Due to CDD, the leading cause of flooding in Quebec 
is heavy rainfall, which is the cause of more than 52% of all floods in 
this province. The riverine flooding, ice jams, and snowmelts are ranked 
second to fourth with more than 19%, 16%, and 11%, respectively. 

According to the provided explanations, timely dissemination and 
precise flood forecasting in the Quebec province is essential to the 
decision-makers, policy, and the public. Precise flood prediction can 
diminish the social and economic impacts of floods on communities, 
minimize infrastructure damage, and lead to measures that can improve 
ecological conditions. 
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(a) 

 
(b) 

Fig. 1. History of the flood incidents in Canada from 1900-2017 (McGrath, Stefanakis, Nastev, 2014; 
http://www.museedufjord.com/inondations/manitoba_eng/tumultuous): (a) Number of flood disasters; (b) Cumulative total damage in millions 

CAD. 
 
2.2. Region of study 
 
The location of the study area is depicted in Fig. 3. According to this 
Fig., it is situated in Quebec province, Canada. Around Quebec City, 
four different sub-catchments can be envisaged within the Saint-
Lawrence watershed. The study area of the current study is located at 
sub-basin "a". As shown in Fig. 3, two hydrometric stations known as 
050916 and 050904 are employed, and they are placed upstream and 
downstream (respectively) of the Saint-Charles River. The 050916 and 
050904 are known as Hurons and Saint-Charles, respectively. The 
Saint-Charles station is located 0.8 km upstream from Lorette, while the 
Hurons are located at the Crawford Street Bridge in Stoneham. 

The Hydrographic region of both stations is Saint-Laurent 
northwest. All the flow rate data (m3/s) are collected from the Ministry 
of the Environment, the Fight against Climate Change, Wildlife and 
Parks (https://www.cehq.gouv.qc.ca). The data collected from both 
stations were recorded every 15 minutes, and their hourly average was 
established to produce an hourly river flow dataset. The collected data 
cover twelve years of observation from April 08, 2008, to December 09, 
2020. It should be noted that these data include missing ones from 
November to April. The desired delays were defined to deal with 
missing data, and the rows with missing data were eliminated from the 
dataset. The number of all samples was 74707, randomly categorized 
into two groups: train and test. A total of 52,295 samples were chosen 
for model calibration., and the rest were applied to validate it. The 
maximum flow rates (m3/s) for 050916 and 050904 stations are103.48 
and 97.48, while the mean value of the flow rates (m3/s) for 050916 and 
050904 stations are 3.25 and 10.98, respectively. The ratios of the 
maximum to the mean of flow at 050916 and 050904 stations are more 
than 30 and 9 times, respectively. The training and testing data 
distributions for both stations are provided in Fig. 3. 

2.3. Generalized structure of group method of data handling 
 
Theoretically, understanding the explicit mathematical connections 
between input variables and their corresponding outcomes is essential 
to model a system effectively. It is challenging to extract explicit 
modeling, and these connections remain elusive in many systems. 
Under these circumstances, approaches that utilize data to make 
calculations based on input and output records are taken into account. 
Such strategies are highly effective in discerning the complexities of 
nonlinear systems. This study presents the early flood warning system 
model using the generalized structure of the group method of data 
handling (GSGMDH). This model allows early flood forecasting without 
the need to estimate complex parameters and only uses the flow rate 
upstream in a short time so that it can be used effectively and efficiently 
by water managers and planners.  

The GMDH algorithm stands as a neural network framework 
featuring layers for input, intermediary processing, and output. Various 
studies on the application of GMDH show that the use of approximation 
and optimization combinations in the structure of this method produces 
more accurate results in predicting the physical behavior of phenomena 
(Azimi et al. 2018). The GMDH method is a self-organizing technique 
where models progressively develop a more complex architecture by 
assessing their effectiveness across a series with multiple inputs and 
corresponding output. This method gradually develops the model 
structure during its performance evaluation due to its internal self-
organizing approach; Hence, it is smarter than other algorithms. The 
core concept of this approach involves building an analytical function 
within a feedforward neural network, utilizing a quadratic transfer 
function. The coefficients for this function are determined through the 
least squares approach. 
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Fig. 2. Flood disasters in Canada by type in each province (Data from Zahmatkesh et al. 2019). 

. 
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(Train)               (Test)                   (Train)               (Test)

Archive of SID.ir

Archive of SID.ir



Ebtehaj et al./ Journal of Applied Research in Water and Wastewater 10 (2023) 119-132 

 

123 
 

 
Fig. 3. The geographical positioning of the area under study and data distribution. 

 
The architecture of this model includes multiple neurons in every 

layer, each formed by linking a quadratic polynomial to two distinct 
inputs. Similarly, neurons formed in preceding layers are introduced into 
subsequent layers as fresh inputs, facilitating the generation of 
additional neurons. Within this network, the number of neurons per 
layer matches the total of binary combinations derived from network 
input variables. Each neuron is characterized by two input variables and 
a single output variable. Essentially, the main objective of this technique 
is to amalgamate quadratic polynomials from every neuron to craft the 
approximate function ŷ, which forecasts the output for a given set of 
inputs with minimal deviation from the real output y. The quadratic forms 
of the Eqs. in the GMDH are as follows: 
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(1)              

where I = {I0, I1, I2, I3, I4, I5} is the set of unknown coefficients optimized 
through the training phase, and x1 and x2 are the input neurons of the 
desired Eq. 

An example of the GMDH with four input neurons is indicated in Fig. 
4. In this Fig., x1, x2, x3, and x4 are the input variables, while the xLN 
denotes the Nth generated neuron in the Lth layer. For example, the x21 
is the first neuron of the second layer. Due to this Fig., five different 
neurons (x11, x12, x13 in layer one and x21, x22 in layer 2) were generated 
to map the input variables (i.e., x1, x2, x3, x4) to output variable (y). All 
neurons were generated using the neurons in the adjacent previous 
layer. For example, x11 was produced using x1 and x4, and x21 was 
created using x12 and x13. The adjacent layer for the x11 is the input layer, 
while it is layer 1 for the x21. Another point that should be considered in 
this Fig. is that each new neuron could be generated from only two 
neurons. To connect the input variables to output variable, as indicated 
in Fig. 4, six different quadratic equations in the form of Eq. 1 were 
generated. The number of combinations evaluated by GMDH to 
achieve the best structure for every layer is determined as follows: 
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where NNEL is the number of neurons in each layer, and n is the 
maximum input in each layer. Considering the provided example in Fig. 
4, the NNEL in layers 1 and 2, as well as the output layer, is 6, 3, and 
2, respectively. 

According to the provided explanations, the GMDH has some 
advantages, including (i) Automatically determining influential input 
variables among other variables, (ii) Automatic identification of the 
model's architecture, including layers’ number and inputs of each layer, 
and (iii) Consider the accuracy and simplicity of the model 
simultaneously to prevent over-fitting using the Akaike Information 

Criterion (Zeynoddin et al. 2019). In addition to the advantages provided 
by this method, GMDH has some drawbacks that significantly impact 
the modeling accuracy. The mentioned limitations include quadratic 
polynomials with only two input neurons and choosing the input neurons 
solely from the neighboring layer. The first one may affect the failure to 
model complex nonlinear problems, while the second results in highly 
complicated models with many newly generated neurons. To overcome 
these drawbacks, an updated variant of the GMDH, referred to as the 
generalized structure of GMDH (GSGMDH), is developed in the current 
study. In this method, the inputs of each new neuron could be two 
and/or three chosen from either the neighboring or non-neighboring 
layer with second and/or third-order polynomials. 

The results of GSGMDH-based modeling of the provided problem 
in Fig. 4 are presented in Fig. 5. Due to this Fig., the x11 has three inputs, 
including x1, x3, and x4, while the x21 has only two inputs including x2 and 
x11. It should not be that the inputs of x21 are chosen from both 
neighboring (x11) and non- neighboring (x2) layers. Besides, the inputs 
of the output layer are also chosen from both adjacent (x1 and x11) and 
non-adjacent (x21) layers. Therefore, the generated new neurons were 
reduced from 6 in GMDH to 3 in the GSGMDH. 
2.4. Performance statistics for model evaluation 
 
Four different statistical metrics are utilized to evaluate the 
effectiveness of the GSGMDH in early-warning flood prediction. They 
are divided into three primary categories, including correlation-based 
metric as correlation coefficient (R), absolute metrics including 
normalized root mean square error (NRMSE) and mean absolute error 
(MAE), as well as relative one including root, mean square relative error 
(RMSRE). Based on the literature studies, the combination of indices is 
sufficient for assessing the model's performance (Ebtehaj et al. 2023b; 
Lotfi et al. 2019; 2020). The mathematical definition of the R, MAE, 
NRMSE, and RMSRE are as follows: 
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where N stands for the samples’ number, Ai signifies the ith sample,  

A  represents the mean of actual samples, while Mi and M  are the 
ith sample and mean of modeled samples, respectively. 
 

3. Results and discussion 
 
Fig. 6 demonstrates the peak flow distribution through different years 
and months. The defined classes in this Fig., including C1, C2, and C3, 
are related to flow rate (m3/s) in the range of [80, 100], [60, 80), and [30, 
60), respectively. The maximum percentage of the peak flow rate is 
related to 2019, 2018, and 2017 for C1, C2, and C3 (respectively), with 
46.61%, 21.51%, and 14.04%, respectively. Indeed, the strongest 
floods with a flow rate of more than 80 m3/s happened in 2019. As the 
peak flow decreases (i.e., less than 80 m3/s), the percentage is 
distributed among the different years so that the maximum percentage 
recorded for C2 and C3 is less than half the percentage obtained for 
C1.  

 

 

Fig. 4. An example of the GMDH with four input variables. 

 

Fig. 5. An example of the GSGMDH with four input variables. 
 

 
(a) 
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(b) 

Fig. 6. Peak flow distribution through different years and months. 
 

The distribution of the peak flow rates also shows that the maximum 
flow rate percentage at all classes is related to April, with 87.71%, 
51.6%, and 40.8% for C1, C2, and C3, respectively. May is also ranked 
second in all classes, with 8.9%, 40.22%, and 24.48% for C1, C2, and 
C3, respectively. For a flow rate of more than 60 m3/s (i.e., C3 and C2), 
more than 90% of all peak flow occurred in April and May. The main 
reason for the flood in these two months could be due to the decrease 
in temperature, which also led to the snow melting and heavy rainfall in 
these two months. Two floods in 2008 and 2019, along with 
temperature and precipitation values related to different stations, are 
evaluated to investigate the reason stated. Fig. 7 shows the value of 
the flow rate (m3/s), precipitation (mm), and temperature (oC) from 

04/08/2008 to 05/07/2008. The maximum value of the flow rate at 
station 50904 is 97.48 m3/s, recorded at 6 p.m. on 4/30/2008. 
According to Fig. 3, Station 509016 is upstream, while Station 50904 is 
downstream. To check the effect of flow rate on the upstream station 
(i.e., 509016) and meteorological parameters, including precipitation 
and temperature at both stations, on the flood that occurred at station 
50904, the maximum value of the mentioned parameters must be 
explored. The maximum flow rate value at station 50916 is 36.785 m3/s, 
recorded at 7 p.m. on 4/29/2008. Indeed, the difference between the 
maximum value of the flow rate of the upstream and downstream 
stations is 25 h. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7. The value of the flow rate (m3/s), precipitation (mm), and temperature (oC) from 04/08/2008 to 05/07/2008. 

Given that the difference in peak flow rates between the two 
stations is significant, other factors may influence the floods at the 

downstream station. The maximum precipitation at stations 50916 and 
50904 was 38 mm and 43mm (respectively) recorded on 24 and 23 of 

Archive of SID.ir

Archive of SID.ir



Ebtehaj et al./ Journal of Applied Research in Water and Wastewater 10 (2023) 119-132 

 

126 
 

4/29/2008, seven and six hours before the flood at the downstream 
station. Therefore, it can be said that in addition to the flood upstream, 
the precipitation six hours ago could also be one of the reasons for the 
flood in the downstream station. Besides, the increase in temperature 
in the days before 4/30/2008 at both upstream and downstream stations 
can be another factor for the occurrence of floods at the downstream 
station, so the maximum temperature recorded in the upstream and 
downstream stations are 19.056oC and 16.433oC (respectively), which 
were recorded seven days before the flood occurred at downstream 
station. Temperature increases lead to snowmelt. The results of Fig. 7 
confirmed that snowmelt and heavy rainfall are the most well-known 
reasons for floods in Canada, as indicated in Fig. 2 and also reported 
by Shrubsole et al. (2003) and Zahmatkesh et al. (2019). 

Fig. 8 illustrates the value of the flow rate (m3/s), precipitation (mm), 
and temperature (oC) from 04/18/2019 to 05/17/2019. The maximum 
flow rate value at station 50904 is 96.18 m3/s, recorded at 9 a.m. on 
4/28/2019, while it is 47.52 m3/s for station 50916, recorded at 11 a.m. 
on 4/27/2019. Indeed, it takes about 22 hours for the peak flow rate to 
reach the effect from the upstream station (i.e., 50916) to the 
downstream station (i.e., 50904), compared to 25 hours for the sample 
shown in Fig. 7. The difference between the peak flow rates of the two 
stations is significant, which can be due to the effects of other 
parameters, including precipitation and temperature, as well as 
geological characteristics. To explore the impact of the upstream station 
on the downstream station further, the precipitation and temperature at 
both stations through the mentioned dates are also checked. The 

maximum precipitation at stations 50916 and 50904 was 43 mm and 41 
mm (respectively) recorded on 22 of 4/27/2019, 15 hours less before 
the flood at the downstream station. Indeed, the maximum precipitation 
at the upstream station occurred within less than one day of the flooding 
time at the downstream station, while for the example shown in Fig. 7, 
this time was about 6 hours. Precipitation was reported to be zero at 
both stations six hours before the floods. The temperature at the 
upstream station had risen from 26.35oC to 47.5 oC (80% increase) six 
days before the floods began at the downstream station. While the 
highest value of this parameter was recorded in the downstream station 
on 4/21/2019 (T = 14.46 oC). It can be said that a significant increase in 
temperature at the upstream station has led to snow melting and has 
been one of the significant factors in the flood occurrence downstream. 

Fig. 9  shows the map of the precipitation and temperature from 
April through 1980-2019 and its value on April 28, 2019. Due to this 
Fig., the average precipitation (mm) of April through 1980-2019 is in the 
range of [90.75, 119.8] while it is [138, 171] for April 28, 2019. Indeed, 
the minimum and maximum values of precipitation were increased by 
more than 50% and 40%, respectively. It could be seen that for average 
precipitation of April through 1980-2019, the lowest precipitation was 
recorded around Quebec City, while for April 28, 2019, it was almost 
150 mm, which is 8% higher than the lowest one and 12% lower than 
the highest one in this date. It should be noted that the average volume 
of precipitation in April through 1980-2019 and April 28, 2019, are more 
than 75 and 100 million cubic meters, respectively. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 8. The value of the flow rate (m3/s), precipitation (mm), and temperature (oC) from 04/18/2019 to 05/17/2019. 
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(a) 

 
(b) 

Fig. 9. The map of (a) the precipitation and (b) temperature through 1980-2019 and its value on April 28, 2019. 
 

In addition to precipitation, the temperature distribution from April 
through 1980-2019 and its value on April 28, 2019, is also provided in 
Fig. 9. Due to this Fig., the average temperature (oC) of April through 
1980-2019 is in the range of [-1, 4] while it is [0, 4] for April 28, 2019. 
Indeed, the maximum value of the historical temperature at April and 
April 28, 2019, is almost equal. According to Fig., the temperature on 
April 28, 2019, is 1 oC greater than the historical value of this 
temperature in April. 

Fig. 10 shows the flow rate distribution for each day and month. It 
should be noted that days started from April 16 to November 14. The 
flow rate on other days is not available. Besides, the provided months 
are in the range of April and November, April starts on the 16th day. 
According to this Fig., the maximum flow rates were recorded on May 
2 and April 28 for stations 50916 and 50904, respectively. Meanwhile, 
the maximum average flow rate at both stations was recorded in April. 

 
(a) 
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(b) 

Fig. 10. The distribution of the flow rate at each (a) day and (b) month. 

Given the explanations provided in Figs. 7 and 8, it could be 
concluded that there is a very complex relationship between flow rates 
at upstream and downstream stations that is not easily predictable by 
using precipitation and temperature measurements at different stations. 
Besides, the results in Fig. 9 show that using long-term data, commonly 
used by decision-makers, may not be the right choice for infrastructure 
planning. Therefore, it is required to develop a supervised AI-based 
approach to map the flow rate downstream to the upstream one using 
daily recorded samples. 

Given the explanations provided in Figs. 7 and 8, it could be 
concluded that there is a very complex relationship between flow rates 
at upstream and downstream stations that is not easily predictable by 
using precipitation and temperature measurements at different stations. 
Therefore, it is required to develop a supervised machine learning-
based approach to map the flow rate downstream to the upstream one. 
For this purpose, the flow rate upstream is used as 48 different inputs, 
including one to 48 days before (i.e., 48 delays) to estimate the flow 
rate downstream, as follows: 
1HA:  

1 2 48d u u uFL f ( FL ( t ),FL ( t ),...,FL ( t ))   
 

(7) 

where FLd and FLu are the flow rates downstream and upstream, 
respectively, and IHA means one hour ahead. 

The use of 48 different inputs in a modeling process is too much. 
Fortunately, due to the ability of the GSGMDH method to find the 
number of effective inputs, only the parameters are considered as 
inputs that exert the greatest influence on the effectiveness of the 
model. The AIC index (Ebtehaj et al. 2020) is used to select the best 
model structure. This index considered the accuracy and simplicity of 
the model simultaneously to prevent a highly complex model that 
reduces its generalizability and leads to overfitting for unseen data. Eq. 
7 is presented for a situation where our goal is to predict one hour 
ahead. In early-warning flood prediction, the use of just one hour is not 
significant, and more time needs to be evaluated.  

Therefore, in this study, in addition to one-hour ahead prediction, 
two, three, six, twelve, and eighteen hours ahead are also examined: 
2HA   

2 3 48d u u uFL f ( FL ( t ),FL ( t ),...,FL ( t ))   
 

(8) 

     
3HA   

3 4 48d u u uFL f ( FL ( t ),FL ( t ),...,FL ( t ))   
 

(8) 

     
6HA   

6 7 48d u u uFL f ( FL ( t ),FL ( t ),...,FL ( t ))   
 

(8) 

  
12HA  

12 13 48d u u uFL f ( FL ( t ),FL ( t ),...,FL ( t ))   
 

(8) 

     
18HA   

18 19 48d u u uFL f ( FL ( t ),FL ( t ),...,FL ( t ))   
 

(8) 

     

Therefore, the number of inputs in 2HA, 3HA, 6HA, 12HA, and 18HA 
equals 47, 46, 43, 37, and 31, respectively. It should be noted that 
limiting xHA forecasting (x = 1, 2, 3, 6, 12, 18) to 18 is because 
increasing this amount reduces the model's reliability, and the model 
could not accurately predict test data. The structure of developed 
GSGMDH-based models for 1HA, 2HA, 3HA, 6HA, 12HA, and 18HA is 
provided in Fig. 11. Based on this Fig., the number of input variables in 
all structures except 2HA has only four inputs. The inputs of the 2HA 
are equal to five. The variation in the number of inputs across different 
models can be attributed to the GSGMDH method's inherent capability 
to autonomously identify the most crucial inputs for the problem, guided 
by the AIC index. This criterion adeptly balances model simplicity with 
precision, ensuring the selection of an optimal model configuration. 
Besides, there are two newly generated neurons in all structures. 
Therefore, the developed GSGMDH model is simple and can easily be 
applied to practical tasks.  

 

  
(a)  (b)  
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(c)  (d)  

  

(e) (f)  
Fig. 11. The configuration of the crafted GSGMDH-based models for predicting flow rates downstream with (a) one, (b) two, (c) three, (d) six, 

(e) twelve, and (f) eighteen hours ahead. 
 

Fig. 12 shows the statistical indices (i.e., R, MAE, RMSRE, 
NRMSE) for developed GSGMDH-based models with one, two, three, 
six, twelve, and eighteen hours ahead. The range of correlation 
coefficient index for the different models is [0.9, 0.92]. The lowest one 
is related to the 18HA, while for this index for 1HA, 2HA, 3HA, and 6HA, 
the R is almost equal to 0.92. Indeed, the change of hours ahead 

forecasting from one to 18 has not had a noteworthy effect on the 
outcomes, so the difference between the lowest and highest values of 
this index is about 0.02, and the the measure of this index across all 
models is more than 0.9, which is an acceptable value for the 
correlation coefficient.  

 

  
(a) (b) 

Fig. 12. Statistical indices for developed GSGMDH-based models. 

The range of MAE for different developed GSGMDH-based models 
is [3.78, 4.26]. The increase in hours ahead forecasting is directly 
related to the value of this index, so the smallest MAE is linked to 1HA, 
while the largest corresponds to 18HA. This trend is also repeated in 
the NRMSE and RMSRE. The ratio of the maximum of NRMSE, MAE, 
and RMSRE to the minimum recorded value of each equals .1.1, 1.13, 
and 1.16, respectively. Due to the low value of NRMSE and RMSRE, 

which are very close to zero, and the correlation coefficient that is more 
than 0.9, it could be concluded that the developed GSGMDH-based 
model performs well in early-warning flood forecasting.  

In addition to the provided indices in the previous Fig., the 
performance of those is compared with the actual values of the 
downstream station in terms of Boxplot, as represented in Fig. 13.  
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(a) (b) 

Fig. 13. Box plots for actual estimated flow rates using GSGMDH. 

Due to this Fig., the distribution of the actual flow rate and 
forecasted ones by GSGMDH-based models are very close together. 
For example, the third quartile (Q3) of the actual values is 12.89 while 
it is 13.16, 13.12, 13.13, 13.05, 12.88, and 12.8 for 1HA, 2HA, 3HA, 
6HA, 12Ha, and 18HA, respectively. The maximum difference between 
the Q3 of the actual values and GSGMDH-based ones is 0.27, almost 
2% of the Q3 of the actual values. Moreover, the maximum difference 
between the maximum of the actual values and GSGMDH-based ones 
is 1.44 (=28.11-26.67), which is 5% of the maximum of the actual 
values. Besides, this Fig. shows that the peak flow rates of the actual 
ones are well estimated by the developed GSGMDH-based models so 
that even when these models do not accurately predict the actual 
amount, they have an overestimated performance with little difference 
from the actual values. Consequently, it can be concluded that the 

results of this Fig. confirm the the effectiveness of the models 
formulated in this investigation. 

Fig. 14 compares the performance results for the reliability and 
uncertainty analysis. The reliability and uncertainty analysis details are 
provided in literature (Azimi, Bonakdari, Ebtehaj, 2017; Saberi-
Movahed, Najafzadeh, Mehrpooya, 2020;  and Azimi et al. (2017). The 
highest value of the reliability and lowest of the uncertainty analysis 
indicate the higher performance of a model. Due to this Fig., the 
reliability of the 1HA and 2HA is the highest, while the uncertainty of 
1HA, 2HA, 3HA, and 6HA is the lowest. The weakest performance in 
reliability and uncertainty analysis is related to the 18HA, while the best 
is related to the 1HA. According to the provided values of the reliability 
and uncertainty analysis (Azimi, Bonakdari, Ebtehaj, 2017; Saberi-
Movahed et al. 2020), the performance of the developed GSGMDH-
based models is acceptable.

 

 
Fig. 14. Comparisons of the performance results for the reliability and uncertainty analysis. 

 
3.2. Advantages, limitations, and future improvements 
 
The application of the AI model in the present study proved highly 
effective for early-warning flood forecasting, particularly when tested on 
the Saint-Charles River, a significant river system in Quebec, Canada. 
A primary benefit of the AI models that were introduced is that they 
automatically determine the number of problem inputs to form a 
connection between the selected most essential input variables and the 
target variable, resulting in a simple model with large input variables 
defined by a user. The benefits of the suggested AI approach in this 
study, when contrasted with established AI-based methods, are 
twofold: (1) training time and (2) input variables selection.  

In the current study, the developed AI model utilized least square 
algorithms to find the coefficients of the second and/or third-order 
polynomials. Nonetheless, integrating the suggested AI methodology 
could also be pursued in a subsequent investigation using the genetic 
algorithm, particle swarm optimization (PSO), gravitational search 
algorithm (GSA), and other evolutionary-based algorithms to optimize 
these coefficients. Hence, a separate investigation comparing the least 
square algorithm and various evolutionary algorithms in optimizing the 
coefficients of the polynomials is warranted. Another limitation of this 
study is that it uses only one upstream station as the model input for 
early-warning flood forecasting at the downstream station. Due to the 
significant difference in flood discharge in the two stations (Hurons and 
Saint-Charles), it seems that the input of the downstream station, in 
addition to the flow rate in the upstream station, is also dependent on 
other flows, including the flow of the other upstream stations or 
precipitations at these stations.  

It is vital to consider the issues and challenges that prevent making 
progress in applying AI in flood forecasting. Some of the challenges that 

AI scholars may face in undertaking problems relating to visualizing, 
analyzing, and predicting the flood are mentioned in the following: 
(1) Data challenges 
(i) Missing data: About 40,000 data (15-minute recorded flow rates) 
were missed in the current study. Most are related to January to March, 
and some are in December and April. In time series-based modeling, 
samples must be without any missing to consider the correlation of each 
sample with previous ones. The input variables from one to 48 delays 
were generated to overcome this challenge in the current study. After 
that, rows with a minimum of one missing were removed. It's important 
to acknowledge that a significant quantity of missing samples could be 
impacted by the modeling results, so the generalizability of this model 
in forecasting the flow rate at the future time in days with most of the 
missing samples may be reduced. 
(ii) Spatio-temporal data: Data for the current study was collected from 
2008 to 2020 at only two hydrometric stations. It is highly recommended 
to extend data from previous years of 2008 to train an AI-based model 
with more extreme values of the flow rates and make its generalizability 
stronger. Besides, employing only one upstream station to estimate the 
flow rate at the downstream station cannot be considered the effect of 
other upstream stations. It may affect the model's performance in future 
times.  
(iii) Data collection: The data collected in the current study were gained 
from hydrometric stations in Quebec, Canada, but there was missing 
data. To overcome the limitation of these data, it is recommended to 
employ satellite-based samples that are recorded in the desired time 
scale. 
(2) Artificial Intelligence challenges 
(i) Modeling in the existence of missing data: In the current, different 
lags of the flow rate as upstream stations were considered independent 

0.05

0.051

0.052

0.053

0.054

0.055

0.056

0.057

0.058

0.059

0.30

0.32

0.34

0.36

0.38

0.40

0.42

1HA 2HA 3HA 6HA 12HA 18HA

U
9

5

R
el

ia
b

il
it

y

Model 

Reliability U95

Archive of SID.ir

Archive of SID.ir



Ebtehaj et al./ Journal of Applied Research in Water and Wastewater 10 (2023) 119-132 

 

131 
 

inputs to estimate the flow rate at the downstream station. Due to that, 
the collected data may be missing, and the defined inputs and 
corresponding output may be missing data that needs to be removed 
from the corresponding row. Existing a large number of missing data 
may lead to lower generalizability of the developed model in the time 
scale with lower training samples. 
(ii) Identifying outliers: The outliers that have a remarkable deviation 
from the normal group or majority of samples can be attributed to 
extreme events and/or imperfect collection methods. The outliers of the 
collected data are related to the extreme events (i.e., flooding) 
 
4. Conclusions 
 
Undoubtedly, one of the most devastating natural disasters is floods, 
experienced by different parts of the world every year. Due to the 
significant increase in the frequency of heavy rains, continuously 
enhancing assets and population concentrations in flood-prone zones, 
and changes in upstream land use, flood damage has increased 
exponentially in recent decades. According to many floods in Quebec, 
such as the 2019 flooding that resulted in flooding of more than 6000 
residents and more than 13000 disaster victims, early-warning flood 
forecasting is a vital task in this area. Therefore, the flow rate 
relationship at these stations was checked using hourly data at two 
stations, Hurons and Saint-Charles, upstream of Quebec City. The 
primary discoveries of the present investigation include: 
- Heavy rain and snowmelt are the leading causes of flooding in the 
area, with no clear correlation between peak flow rates at the mentioned 
stations. 
- A novel AI-driven model was devised to forecast the flow rate at 
downstream stations (e.g., Saint-Charles) based on data from 
upstream stations (e.g., Hurons). 
- The model, designed for early-warning flood forecasting, considered 
48 different inputs, including lags of 1 to 48 hours of the upstream 
station's flow rate. 
- Various models were developed for forecasting 1, 2, 3, 6, 12, and 18 
hours ahead (1HA, 2HA, 3HA, 6HA, 12HA, and 18HA) at downstream 
stations. 
- The modeling results showed that all developed AI models had a 
correlation coefficient of over 0.9, suggesting the model's potential as a 
tool for early-warning flood forecasting in Quebec. 
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