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ON THE GENUS OF ANNIHILATOR INTERSECTION GRAPH OF
COMMUTATIVE RINGS

MOHD NAZIM∗, NADEEM UR REHMAN AND K. SELVAKUMAR

Abstract. Let R be a commutative ring with unity and A(R) be the set of annihilating-

ideals of R. The annihilator intersection graph of R, represented by AIG(R), is an undirected

graph with A(R)∗ as the vertex set and M ∼ N is an edge of AIG(R) if and only if

Ann(MN) ̸= Ann(M) ∩ Ann(N), for distinct vertices M and N of AIG(R). In this paper,

we first defined finite commutative rings whose annihilator intersection graph is isomorphic

to various well-known graphs, and then all finite commutative rings with a planar or toroidal

annihilator intersection graph were characterized.

1. Introduction

Throughout this paper all rings are commutative with unit element such that 1 ̸= 0. For
a commutative ring R, we use I(R) to denote the set of ideals of R and I(R)∗ = I(R) \ {0}.
An ideal M of R is said to be annihilator ideal if there is a nonzero ideal N of R such that
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MN = (0). For M ∈ I(R), we define annihilator of M as Ann(M) = {N ∈ I(R) : MN = (0)}.
We use A(R) to denote the set of annihilator ideals of R and A(R)∗ = A(R) \ {0}. We denote
the set of zero-divisors, nilpotent elements, minimal prime ideals and unit elements of R by
Z(R), Nil(R), Min(R) and U(R), respectively. For any undefined notation or terminology in
ring theory, we refer the reader to [3].

A connected graph G is said to be a tree if it does not contain any cycle. A graph G is
said to be unicycle if it contains unique cycle. A graph G is a split graph if the vertex set
can be partitioned into a clique and an independent set. A graph G is said to be planar if it
can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a
graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths.
A remarkably simple characterization of a planar graphs was given by Kuratowski in 1930.
Kuratowski’s Theorem says that a graph G is planar if and only if it contains no subdivision
of K5 or K3,3. An undirected graph G is said to be outerplanar if it can be embedded in the
plane in such a way that all the vertices lies on the unbounded face of the drawing. The genus
of a graph G, denoted by γ(G), is the minimum integer k such that the graph can be drawn
without crossing itself on a sphere with k handles (i.e., an oriented surface of genus k). Thus,
a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. For
more details on graph theory, we refer the reader to [11, 12].

Beck [4] established the concept of the zero-divisor graph of a commutative ring in 1988,
where he was primarily concerned in colorings. Beck proposed that χ(R) = ω(R) for any
commutative ring R in [4]. For some types of rings, such as reduced rings and principal ideal
rings, he established the supposition. However, this is not the case in general. This was
established in 1993, when Anderson and Naseer presented a convincing counter example (see
Theorem 2.1 in [2]) that proved Beck’s conjecture for general rings to be false. Anderson and
Naseer continued their research into the colorings of a commutative ring. They take the vertex
set as the ring elements and define an edge between the vertices a and b if and only if ab = 0.
In [1], Anderson and Livingston introduced the zero-divisor graph of R, denoted by Γ(R), with
vertex set Z(R)∗ and for distinct a, b ∈ Z(R)∗, the vertices a and b are adjacent if and only if
ab = 0.

In 2011, Behboodi and Rakeei [5, 6] described a new graph, called it annihilating-ideal graph
AG(R) on R, with the vertex set A(R)∗ and two distinct vertices M and N are adjacent if and
only if MN = 0 (see [7, 8, 9] for more details).

In [10], Vafaei et al. introduced and studied the annihilator intersection graph of R denoted
by AIG(R). It is an undirected graph with A(R)∗ as the vertex set and M ∼ N is an edge
of AIG(R) if and only if Ann(MN) ̸= Ann(M) ∩ Ann(N), for distinct vertices M and N of
AIG(R). In this paper, we first characterized the finite commutative rings whose annihilator
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intersection graph is a tree, a unicycle, a split graph or an outerplanar graph. Further, up to
isomorphism, we classify the rings R whose annihilator intersection graph is planar or toroidal
graph.

In the following examples, the annihilator intersection ideal graph of some commutative
rings are given.

Example 1.1.
If R = F1 × F2, where F1 and F2 are fields, then AG(R) = AIG(R) = K2.

Example 1.2.
If R = F1 × F2 × F3, where Fi is a field for each i = 1, 2, 3. Then AIG(R) and AG(R) are
given in Fig. 1.

AIG(F1 × F2 × F3) AG(F1 × F2 × F3)

Fig. 1.

The following observation proved by Vafaei et al. [10] is used frequently in this article.

Lemma 1.3. [10, Lemma 2.1] Let R be a commutative ring and M,N ∈ A(R)∗. Then the
following statements hold:

(1) If M ∼ N is not an edge of AIG(R), then Ann(M) = Ann(N).
(2) If M ∼ N is an edge of AG(R), then M ∼ N is an edge of AIG(R).
(3) If M ∼ N is not an edge of AIG(R), then there exists a vertex N1 ∈ A(R)∗ such that

M ∼ N1 ∼ N is a path in AIG(R).

Lemma 1.4. [10, Lemma 2.2] Let R be a non-reduced ring. Then every nonzero nilpotent
ideal of R is adjacent to all other vertices of AIG(R). In particular, the induced subgraph by
nilpotent ideals is a complete subgraph of AIG(R).

Theorem 1.5. Let R be a local commutative ring. Then AIG(R) is a complete graph.

2. Annihilator intersection graph as some special type of graph

In this section, we characterized the finite commutative rings for which the annihilator
intersection graph is isomorphic to some well-know graph such as a tree, a unicycle or a split
graph.
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Theorem 2.1. Let R be a finite commutative ring. Then AIG(R) is unicycle if and only if
R is local with |I(R)∗| = 3.

Proof. Suppose AIG(R) is a unicycle graph. Since R is finite, R ∼= R1 ×R2 × · · · ×Rn, where
Rj is local for each 1 ≤ j ≤ n.

Suppose that n ≥ 3. Then M1 ∼ M2 ∼ M3 ∼ M1 and N1 ∼ N2 ∼ N3 ∼ N1, where
M1 = R1 × (0) × (0) × · · · × (0), M2 = (0) × R2 × (0) × · · · × (0), M3 = (0) × (0) × R3 ×
(0) × · · · × (0), N1 = R1 × R2 × (0) × · · · × (0), N2 = R1 × (0) × R3 × (0) × · · · × (0),
N3 = (0)×R2×R3× (0)× · · ·× (0), are two distinct cycles in AIG(R), a contradiction to our
assumption that AIG(R) is unicycle. Hence n ≤ 2.

Suppose n = 2. If R1 and R2 both are fields, then AIG(R) ∼= K2, a contradiction. Thus, Rj

is not a field for at least one j = 1, 2. Without compromising generality, we can suppose that
R1 is not a field with a maximum ideal Im1 ̸= (0). Consider K1 = R1 × (0), K2 = (0) × R2,
K3 = Im1×(0) and K4 = Im1×R2. It is easy to see that K1 ∼ K2 ∼ K3 ∼ K1 as well as
K1 ∼ K3 ∼ K4 ∼ K1 are two distinct cycles in AIG(R), a contradiction to our assumption that
AIG(R) is unicycle. Hence n = 1, which implies that R is a local ring. Thus, AIG(R) is a
complete graph by Theorem 1.5. Since AIG(R) is unicycle, |I(R)∗| = 3.

Theorem 2.2. Let R be a finite commutative ring. Then AIG(R) is a tree if and only if
either R is local with |I(R)∗| ≤ 2 or R ∼= F1 × F2, where F1 and F2 are fields.

Proof. Suppose AIG(R) is a tree. Since R is finite, R ∼= R1 ×R2 × · · · ×Rn, where Rj is local
for each 1 ≤ j ≤ n.

Suppose n ≥ 3. Consider the nonzero proper ideals M1 = R1 × (0) × (0) × · · · × (0),
M2 = (0) × R2 × (0) × · · · × (0) and M3 = (0) × (0) × R3 × (0) × · · · × (0) in R. Since
Ann(MjMk) ̸= Ann(Mj) ∩ Ann(Mk) for each j, k. Then M1 ∼ M2 ∼ M3 ∼ M1 is a cycle in
AIG(R), which contradict the assumption that AIG(R) is tree. Hence n ≤ 2.

First, suppose that n = 2. Assume that R1 is not a field with maximal ideal Im1 ̸= (0).
Consider the nonzero proper ideals N1 = R1 × (0), N2 = Im1×(0) and N3 = (0) × R2 in R.
One can see that N1 ∼ N2 ∼ N3 ∼ N1 is a cycle in AIG(R), which contradict the assumption
that AIG(R) is tree. Hence R1 is a field. Similarly, one can prove that R2 is a field.

Now, suppose n = 1. Then R is local and thus, AIG(R) is a complete graph by Theorem
1.5. Since AIG(R) is tree, |I(R)∗| ≤ 2.

Theorem 2.3. [11] Let G be a connected graph. Then G is a split graph if and only if G

contains no induced subgraph isomorphic to 2K2, C4 or C5.
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Theorem 2.4. Let R be a finite commutative ring. Then AIG(R) is a split graph if and only
if either R is local with |I(R)∗| ≤ 3 or R ∼= F1 × F2, where F1 and F2 are fields.

Proof. Suppose that AIG(R) is a split graph. Since R is finite, R ∼= R1×R2×· · ·×Rn, where
Rj is local for each 1 ≤ j ≤ n.

Suppose n ≥ 3. Consider the nonzero proper ideals M1 = R1 × (0)× (0)× · · · × (0), M2 =

(0)×R2×(0)×· · ·×(0), M3 = (0)×(0)×R3×(0)×· · ·×(0) and M4 = R1×R2×(0)×· · ·×(0).
Since Ann(M1) ̸= Ann(M2), Ann(M2) ̸= Ann(M3), Ann(M3) ̸= Ann(M4) and Ann(M4) ̸=
Ann(M1), then M1 ∼ M2 ∼ M3 ∼ M4 ∼ M1 is C4 in AIG(R), which contradict the
assumption that AIG(R) is a split graph. Hence n ≤ 2.

First, suppose n = 2. Assume that R2 is not a field with maximal ideal Im2 ̸= (0). Then
N1 ∼ N2 ∼ N3 ∼ N4 ∼ N1, where N1 = (0) × R2, N2 = (0) × Im2, N3 = R1 × (0),
N4 = R1 × Im2, is C4 in AIG(R), which contradict the assumption that AIG(R) is a split
graph. Hence R2 is a field. Similarly, one can prove that R1 is a field.

Now, suppose n = 1. Then R is a local ring and thus AIG(R) is complete by Theorem 1.5.
Since AIG(R) is split graph, |I(R)∗| ≤ 3.

3. Planarity of annihilator intersection graph

In this section, we classify all the finite commutative rings for which the annihilator
intersection graph is a planar graph or an outerplanar graph.

Theorem 3.1. [12] (Kuratowski’s Theorem) A graph G is planar if and only if it does not
contain subdivision of K5 or K3,3.

Theorem 3.2. Let R be a finite local commutative ring. Then AIG(R) is a planar graph if
and only if |I(R)∗| ≤ 4.

Proof. Since R is local, AIG(R) is complete by Theorem 1.5. Hence the result follows from
Theorem 3.1.

We can now classify finite reduced non-local rings whose annihilator intersection graph is a
planar graph.

Theorem 3.3. Let R be a finite reduced ring. Then AIG(R) is a planar graph if and only if
R is the direct product of two fields.

Proof. Suppose AIG(R) is a planar graph. Since R is finite reduced ring, R = F1 × · · · × Fn,
where Fj is a field for each j and n ≥ 2.
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Assume that n ≥ 3. Consider the nonzero proper ideals M1 = F1×(0)×(0)×· · ·×(0), M2 =

(0) × F2 × (0) × · · · × (0), M3 = (0) × (0) × F3 × (0) × · · · × (0), N1 = F1 × F2 × (0) ×
· · · × (0), N2 = (0) × F2 × F3 × · · · × (0) and N3 = F1 × (0) × F3 × · · · × (0) in R. Since
Ann(MjNk) ̸= Ann(Mj)∩Ann(Nk) for each j, k, then AIG(R) contains a copy of K3,3, which
contradict our assumption. R ∼= F1 × F2, where F1 and F2 are fields.

Conversely, if R ∼= F1 × F2, where F1 and F2 are fields, then AIG(R) ∼= K2 is planar.

Theorem 3.4. Let R = R1 × R2 be a finite commutative ring, where (Rj , Imj) is local ring
with Imj ̸= (0) for each j = 1, 2. Then AIG(R) is not a planar graph.

Proof. Consider the nonzero proper ideals M1 = Im1×(0),M2 = (0) × Im2,M3 =

Im1× Im2,N1 = R1 × (0),N2 = (0) × R2 and N3 = R1 × Im2 in R. Since Ann(MjNk) ̸=
Ann(Mj)∩Ann(Nk), then AIG(R) contains a copy of K3,3. Hence by Theorem 3.1, AIG(R)

is not planar.

Finally, we classify finite non-reduced non-local rings with a planar annihilator intersection
graph.

Theorem 3.5. Let R ∼= F1×F2×· · ·×Fn×R1×R2×· · ·×Rm be a finite commutative ring,
where Fj is a field for each j, (Rk, Imk) is a local ring with Imk ̸= (0) for each k and n,m ≥ 1.
Then AIG(R) is a planar graph if and only if n = m = 1 and R1 has unique nonzero proper
ideal.

Proof. Suppose R ∼= F1 × R1, where F1 is a field and R1 is a local ring with unique nonzero
proper ideal Im1. Then the vertex set of AIG(R) is given by the set {F1 × (0), F1 × Im1, (0)×
R1, (0)× Im1} and graph AIG(R) is illustrated in Fig. 2.

Fig. 2. planar embadding of AIG(F1 ×R1),
where R1 has unique nonzero proper ideal.

Conversely, suppose that AIG(R) is a planar graph. If m ≥ 2, then by Theorem 3.4,
AIG(R) is non-planar, a contradiction. Hence m = 1.
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Suppose n ≥ 2. Consider M1 = F1×(0)×(0)×· · ·×(0),M2 = (0)×F2×(0)×· · ·×(0),M3 =

(0)× (0)× · · · × (0)×R1,N1 = F1 × (0)× · · · × (0)×R1,N2 = (0)× F2 × · · · × (0)×R1 and
N3 = F1 ×F2 × (0)× · · · × (0). Since Ann(MjNk) ̸= Ann(Mj)∩Ann(Nk) for each j, k. Then
the set {M1,M2,M3,N1,N2,N3} induces a subdivision of K3,3 in AIG(R), which contradict
our assumption. Hence n = 1 and so R ∼= F1 ×R1.

Suppose that m is a nonzero proper ideal of R1 with m ̸= Im1. One can see that the induced
subgraph by the set {M1,M2,M3,M3,M5}, where M1 = F1 × (0),M2 = (0) × R1,M3 =

(0) × Im1,M4 = (0) × m,M5 = F1 × Im1, contains K5 as a subgraph of AIG(R), which
contradict our assumption. Hence R1 has exactly one nonzero proper ideal.

Theorem 3.6. [12] A graph G is outerplanar if and only if it does not contains a subdivision
of K4 or K2,3.

Theorem 3.7. Let R be a finite commutative ring. Then AIG(R) is an outerplanar graph if
and only if either R is local with |I(R)∗| ≤ 3 or R ∼= F1 × F2, where F1 and F2 are fields.

Proof. Suppose AIG(R) is outerplanar. Since R is finite, R ∼= R1 × R2 × · · · × Rn, where
(Rj , Imj) is local for each 1 ≤ j ≤ n and n ≥ 1.

Suppose that n ≥ 3. Consider the nonzero proper ideals M1 = R1×(0)×(0)×· · ·×(0), M2 =

(0)×R2×(0)×· · ·×(0), M3 = (0)×(0)×R3×(0)×· · ·×(0) and M4 = R1×R2×(0)×· · ·×(0)

in R. Since Ann(MjMk) ̸= Ann(Mj) ∩ Ann(Mk) for each j, k. Then the subgraph induced
by the set {M1,M2,M3,M4} is K4, which is a contradiction by Theorem 3.6. Hence n ≤ 2.

First, suppose that n = 2. If Im1 ̸= (0), then the set {M1,M2,M3,M4}, where
M1 = R1 × (0),M2 = (0) × R2,M3 = Im1×(0),M4 = Im1×R2, induces a subdivision of
K4, which is a contradiction by Theorem 3.6. Hence Imj = (0) for all j = 1, 2 and so each Rj

is a field.
Now, suppose that n = 1. Then R is a local ring. Thus, AIG(R) is complete by Theorem

1.5. Since AIG(R) is outerplanar, |I(R)∗| ≤ 3.

4. Annihilator intersection graph with genus one

In this section, we classify all finite commutative rings for which annihilator intersection
graph is a toroidal graph.

The following results deal with genus features of complete graph and complete bipartite
graphs, which help us to characterize the rings with genus one annihilator intersection graph.

Theorem 4.1. [12] If m ≥ 3, then

γ(Km) =

⌈
(m− 3)(m− 4)

12

⌉
.
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Theorem 4.2. [12] If m,n ≥ 2, then

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
.

Let us begin by classifying the finite commutative local rings whose annihilator intersection
graph is a toroidal graph.

Theorem 4.3. Let R be a finite local commutative ring. Then γ(AIG(R)) = 1 if and only if
5 ≤ |I(R)∗| ≤ 7.

Proof. Since R is local, AIG(R) is complete by Theorem 1.5. Hence the result follows from
Theorem 4.1.

We can now characterize the finite commutative reduced non-local ring whose annihilator
intersection graph is toroidal graph.

Theorem 4.4. Let R be a finite commutative reduced non-local ring. Then γ(AIG(R)) = 1

if and only if R is the direct product of three fields.

Proof. Suppose γ(AIG(R)) = 1. Since R is a finite reduced ring, R = F1 × F2 × · · · × Fn,
where Fj is a field for each j and n ≥ 2. Assume that n ≥ 4. Consider the nonzero
proper ideals N1 = F1 × (0) × (0) × · · · × (0), N2 = (0) × F2 × (0) × · · · × (0), N3 =

(0)×(0)×F3×(0)×· · ·×(0), N4 = (0)×(0)×(0)×F4×· · ·×(0), K1 = F1×F2×(0)×· · ·×(0), K2 =

F1×(0)×F3×(0)×· · ·×(0), K3 = F1×(0)×(0)×F4×(0)×· · ·×(0), K4 = (0)×F2×F3×(0) · · ·×
(0), K5 = (0)× F2 × (0)× F4 × (0)× · · · × (0) in R. Since Ann(NjKl) ̸= Ann(Nj) ∩ Ann(Kl)

for each j, l, then AIG(R) contains K4,5 as a induced subgraph, a contradiction. Hence n = 2

or 3. If n = 2, then by Theorem 3.3, AIG(R) is planar and so γ(AIG(R)) = 0, again a
contradiction. Hence n = 3.

Conversely, suppose n = 3. The vertex set of AIG(R) is given by {M1 = F1×(0)×(0), M2 =

(0)×F2×(0), M3 = (0)×(0)×F3, M4 = F1×F2×(0), M5 = F1×(0)×F3, M6 = (0)×F2×F3}
and the graph AIG(R) is illustrated in the following Fig. 3.
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F1 × (0)× (0) F1 × (0)× (0)

F1 × (0)× (0)F1 × (0)× (0)

F1 × F2 × (0)

F1 × (0)× F3

(0)× F2 × (0) (0)× F2 × (0)

(0)× F2 × F3

(0)× (0)× F3

(0)× (0)× F3

Fig. 3. toroidal embadding of AIG(F1 × F2 × F3).

Now, we classify finite commutative non-reduced non-local rings for which annihilator
intersection graph is a toroidal graph.

Theorem 4.5. Let R ∼= R1 × R2 × · · · × Rn be a finite commutative ring, where (Ri, Imi) is
local ring with Imi ̸= (0) for each 1 ≤ i ≤ n and n ≥ 2. Then γ(AIG(R)) = 1 if and only if
n = 2 and Ri has unique nonzero proper ideal for each i = 1, 2.

Proof. Suppose that γ(AIG(R)) = 1. Suppose n ≥ 3. Consider the nonzero proper ideals
M1 = Im1×(0) × (0) × (0) × · · · × (0), M2 = (0) × Im2×(0) × · · · × (0), M3 = (0) × (0) ×
Im3×(0)× · · · × (0), M4 = Im1× Im2×(0)× · · · × (0), N1 = R1 × (0)× (0)× · · · × (0), N2 =

(0)×R2×(0)×· · ·×(0), N3 = (0)×(0)×R3×(0)×· · ·×(0), N4 = R1×R2×(0)×· · ·×(0), N5 =

R1 × (0) × R3 × (0) · · · × (0) in R. Since Ann(MjNk) ̸= Ann(Mj) ∩ Ann(Nk) for each j, k,
then AIG(R) contains K4,5 as a induced subgraph, a contradiction. Hence n = 2.

Let nj be the nipotency index of Rj for j = 1, 2. Suppose that n1 ≥ 3 and n2 ≥ 3. Consider
the nonzero proper ideals K1 = Im1×(0), K2 = (0) × Im2, K3 = Im1× Im2, K4 = Imn1−1

1 ,
L1 = R1 × (0), L2 = (0) × R2, L3 = Im1×R2, L4 = R1 × Im2, L5 = Imn1−1

1 ×R2 in R. Since
Ann(KjLk) ̸= Ann(Kj) ∩ Ann(Lk) for each j, k, then K4,5 is a induced subgraph of AIG(R),
a contradiction. Hence n1 = 2 or n2 = 2. Assume, without sacrificing generality, that n2 = 2.

Suppose n1 ≥ 3. Consider the nonzero proper ideals P1 = Im1×(0), P2 = (0) × Im1,
P3 = Im1× Im2, P4 = Imn1−1

1 ×(0), S1 = R1 × (0), S2 = (0) × R2, S3 = Im1×R2,
S4 = R1 × Im2, S5 = Imn1−1

1 ×R2 in R. Since Ann(PjSk) ̸= Ann(Pj) ∩ Ann(Sk) for
each j, k, K4,5 is a induced subgraph of AIG(R), a contradiction. Hence n1 = 2.

Let m be a nonzero proper ideal of R1 such that m ̸= Im1. Consider the nonzero proper ideals
B1 = Im1×(0), B2 = (0)×Im2, B3 = m×(0), B4 = Im1× Im2, D1 = R1×(0), D2 = (0)×R2,
D3 = Im1×R2, D4 = R1× Im2, D5 = m×R2 in R. Since Ann(BjDk) ̸= Ann(Bj)∩Ann(Bk)
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for each j, k, then K4,5 is a induced subgraph of AIG(R), a contradiction. Hence R1 has
unique nonzero proper ideals which is Im1.
Similarly, we can show that R2 has unique nonzero proper ideals which is Im2.

Conversely, suppose R ∼= R1×R2, where Im1 and Im2 are the only nonzero proper ideals of
R1 and R2 respectively. Then the vertex set of AIG(R) is {R1 × (0), (0)×R2, Im1×(0), (0)×
Im2, Im1× Im2, R1 × Im2, Im1×R2} and the graph AIG(R) is illustrated in the following Fig.
4.

R1 × (0) R1 × (0)

R1 × (0)R1 × (0)

Im1×(0) Im1×(0)

(0)× Im2 (0)× Im2

Im1 × Im2

Im1 × Im2

(0)×R2

(0)×R2

Im1 ×R2

R1 × Im2

Fig. 4. toroidal embadding of AIG(R1 ×R2).

Theorem 4.6. Let R ∼= F1×F2×· · ·×Fn×R1×R2×· · ·×Rm be a finite commutative ring,
where each Fi is a field, (Rj , Imj) is a local ring with Imj ̸= 0 for each j and n,m ≥ 1. Then
γ(AIG(R)) = 1 if and only if n = m = 1 and Im1, Im2

1 are only ideals of R1 and nilpotency
index of Im1 is 3.

Proof. Assume that γ(AIG(R)) = 1. Suppose n ≥ 2. Consider the nonzero proper ideals
M1 = F1× (0)× (0)×· · ·× (0), M2 = (0)×F2× (0)×· · ·× (0), M3 = F1×F2× (0)×· · ·× (0),
M4 = (0)× (0)×· · ·× (0)× Im1×(0)×· · ·× (0), N1 = (0)× (0)×· · ·× (0)×R1× (0)×· · ·× (0),
N2 = F1×(0)×· · ·×(0)×Im1×(0)×· · ·×(0), N3 = (0)×F2×(0)×· · ·×(0)×Im1×(0)×· · ·×(0),
N4 = F1×(0)×· · ·×(0)×R1×(0)×· · ·×(0), N5 = (0)×F2×(0)×· · ·×(0)×R1×(0)×· · ·×(0)

in R. Since Ann(MjNk) ̸= Ann(Mj) ∩Ann(Nk) for each j, k, then AIG(R) contains K4,5 as
a induced subgraph, a contradiction. Hence n = 1.

Suppose m ≥ 3. Consider the nonzero proper ideals K1 = (0) × Im1×(0) × · · · × (0),
K2 = (0)×(0)×Im2×(0)×· · ·×(0), K3 = (0)×Im1× Im2×(0)×· · ·×(0), K4 = F1×(0)×· · ·×(0),
L1 = (0)×R1×(0)×· · ·×(0), L2 = (0)×(0)×R2×(0)×· · ·×(0), L3 = (0)×R1×R2×(0) · · ·×(0),
L4 = (0) × Im1×R2 × (0) × · · · × (0), L5 = (0) × R1 × Im2×(0) × · · · × (0) in R. Since
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Ann(KjLk) ̸= Ann(Kj) ∩ Ann(Lk) for each j, k, then AIG(R) contains K4,5 as a induced
subgraph, a contradiction. Hence m = 1.

Let n1 be the nilpotency index of m1. Suppose n1 ≥ 4. Consider the nonzero proper ideals
P1 = F1 × (0), P2 = (0)× Im1, P3 = (0)× Imn1−1

1 , P4 = (0)× Imn1−2
1 , P5 = (0)×R1, P6 =

F1×Im1, P7 = F1×Imn1−1
1 , P8 = F1×Imn1−2

1 in R. Since Ann(PjPk) ̸= Ann(Pj)∩Ann(Pk)

for each j, k, then K4,5 is a induced subgraph of AIG(R), a contradiction. Hence n1 = 3.
Let m be a nonzero proper ideal of R1 such that m ̸= Im1, Im

2
1. Consider the nonzero

proper ideals S1 = F1 × (0), S2 = (0)× R2, S3 = (0)× Im1, S4 = (0)× Im2
1, S5 = (0)×m,

S6 = F1 × Im1, S7 = F1 × Im2
1, S8 = F1 ×m in R. Since Ann(SjSk) ̸= Ann(Sj)∩Ann(Sk)

for each j, k, then K4,5 is a induced subgraph of AIG(R), a contradiction. Hence Im1 and Im2
1

are the only nonzero proper ideals of R1.
Conversely, suppose R ∼= F1 × R1 and the only nonzero proper ideals of R1 are Im1 and

Im2
1. Then the vertex set of AIG(R) is given by the set {F1 × (0), (0) × Im1, (0) × R1, (0) ×

Im2
1, F1 × Im1, F1 × Im2

1} and the graph AIG(R) is illustrated in the following Fig. 5.

F1 × (0) F1 × (0)

(0)× Im1 (0)× Im1

F1 × Im1

F1 × Im1

(0)×R1

(0)×R1

F1 × Im2
1

(0)× Im2
1

Fig. 5. toroidal embadding of AIG(F1 ×R1).
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