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ON HIGHER ORDER z-IDEALS AND z◦-IDEALS IN COMMUTATIVE
RINGS
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Abstract. A ring R is called radically z-covered (resp. radically z◦-covered) if every
√
z-

ideal (resp.
√
z◦-ideal) in R is a higher order z-ideal (resp. z◦-ideal). In this article we

show with a counter-example that a ring may not be radically z-covered (resp. radically

z◦-covered). Also a ring R is called z◦-terminating if there is a positive integer n such that

for every m ≥ n, each z◦m-ideal is a z◦n-ideal. We show with a counter-example that a ring

may not be z◦-terminating. It is well known that whenever a ring homomorphism φ : R → S

is strong (meaning that it is surjective and for every minimal prime ideal P of R, there is

a minimal prime ideal Q of S such that φ−1[Q] = P ), and if R is a z◦-terminating ring

or radically z◦-covered ring then so is S. We prove that a surjective ring homomorphism

φ : R → S is strong if and only if ker(φ) ⊆ rad(R).
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1. Introduction

Throughout this paper R is a commutative ring with 1 ̸= 0. For any a ∈ R, we denote by
M(a) (resp. P(a)) the set of all maximal (resp. minimal prime) ideals of R containing a. An
ideal I of a ring R is a z-ideal (resp. z◦-ideal) if M(b) = M(a) (resp. P(b) = P(a)) and b ∈ I,
imply a ∈ I, for any a, b ∈ R. For each a ∈ R, M(a) (resp. P (a)) is the intersection of all
maximal (resp. minimal prime) ideals containing a. We use Jac(R) (resp. rad(R)) instead of
M(0) (resp. P (0)). For a ring R the set of all minimal prime ideals of R is denoted by Min(R).
It is well-known that every maximal (resp. minimal prime) ideal is a z-ideal (resp. z◦-ideal).

We consider X to be a completely regular Hausdorff space and we denote by C(X) the ring
of all real-valued continuous functions on the space X. Concerning topological spaces and
C(X) the reader is referred to [8] and [9] respectively.

For more information about algebraic concepts see [2] and [11], z-ideals and z◦-ideals in
commutative rings see [12] and [4] and about z-ideals and z◦-ideals in C(X) see [3] and [5].

Let n ∈ N. An ideal I of a ring R is a zn-ideal (resp. z◦n-ideal) if M(a) = M(b) (resp.
P(a) = P(b)) and an ∈ I, imply bn ∈ I, for any a, b ∈ R. The set of all zn-ideals (resp.
z◦n-ideals) of R denotes by Zn(R) (resp. Z◦n(R)). In particular Z(R) (resp. Z◦(R) denotes
the set of all z-ideals (resp. z◦-ideals) of R. For more information and details about zn-ideals
and z◦n-ideals, see [7], [14], respectively.

In Lemma 1 of [6] the zn-ideals of a PID are characterized. In the next proposition we
identify the zn-ideals in Z by a preliminary method. Recall that maximal ideals of Z are
exactly the principal ideals (p), for p a prime number. Thus if a, b ∈ N and M(a) = M(b),
then a and b are divisible by exactly the same prime numbers.

Proposition 1.1. Let n ∈ N. The ideal I = (k) in Z is a zn-ideal if and only if k = pr11 pr22 ...prtt

where p,is are distinct prime numbers and 1 ≤ ri ≤ n for any i = 1, · · · , t.

Proof. (⇐) Suppose that M(a) = M(b) and an ∈ I. Hence there exists s ∈ Z such that
an = pr11 pr22 ...prtt s. Since p1|a we infer that p1|b and so b = p1s1 for an s1 ∈ Z. Similarly,
p2|a and hence p2|b, therefore b = p2s2, for an s2 ∈ Z. Now p2|p1s1 and (p2, p1) = 1 implies
that p2|s1 and hence s1 = p2t1 for a t1 ∈ Z. This implies that b = p1p2t1. Also p3|a and
so p3|b, hence there exists s3 ∈ Z such that b = p3s3. Now p3|p1p2t1 and (p3, p1p2) = 1.
Therefore p3|t1 and so t1 = p3t2 for a t2 ∈ Z. It implies that b = p1p2p3t2. By continuing
this process there exists s0 ∈ Z such that b = p1p2...pts0. Therefore bn = pr11 pr22 ...prtt u where
u = pn−r1

1 pn−r2
2 ...pn−rt

t sn0 . This consequence that bn ∈ I and we are done.
(⇒) On the contrary and without loss of generality suppose that there exists 1 ≤ i ≤ t

such that ri > n and 1 ≤ rj ≤ n for any j ̸= i. We consider s ≤ ri such that sn ≥ ri.
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We put a = p1...pi...pt and b = p1...p
s
i ...pt. One can easily show that M(a) = M(b) and

bn = pn1 ...p
ns
i ...pnt ∈ I while an /∈ I and it is a contradicts to assumption.

We deduce the following result immediately. See also Corollary 1 of [6].

Corollary 1.2. The ideal I = (k) is a z-ideal in Z if and only if k = p1p2...pt where p,is are
distinct prime numbers.

2. radically z-covered and radically z◦-covered

An ideal I of a ring R is said to be
√
z-ideal (resp.

√
z◦-ideal) if

√
I is a z-ideal (resp.

z◦-ideal), see [5]. The set of all
√
z-ideals (resp.

√
z◦-ideals) of R is denoted by Zrad(R) (resp.

Z◦rad(R)). Also an ideal I of a ring R is called higher order z-ideal (resp. z◦-ideal) if there
exist n ∈ N such that I ∈ Zn(R) (resp. I ∈ Z◦n(R)). A ring R is called radically z-covered
(resp. radically z◦-covered) if every

√
z-ideal (resp.

√
z◦-ideal) in R is a higher order z-ideal

(resp. z◦-ideal), see [7] and [14] for details.
It seems that an example of a non radically z-covered ring is essential which is not given in

[7]. As a matter of fact we must show that there is an ideal I of a ring R such that
√
I is a

z-ideal but I is not a zn-ideal for every n ∈ N. See the following example for this purpose.

Example 2.1. Let F be a field and put R = F [x1, x2, x3, · · · ]. Suppose that I =

(x1, x
2
2, x

4
3, x

6
4, · · · , x2nn+1, · · · ). It is clear that

√
I = (x1, x2, x3, · · · ) is a maximal ideal of R and

hence it is a z-ideal of R, that is, I ∈ Zrad(R). One can easily see that M(xn+1) = M(x2n+1),
for n = 1, 2, · · · and (x2n+1)

n ∈ I while (xn+1)
n /∈ I. This shows that I is not a zn-ideal for

any n ∈ N and consequently R is not radically z-covered.

Every zn-ideal is a zn+1-ideal, for any n ∈ N, but the converse is not true, see Example 5
of [7].

Proposition 2.2. rad(R) = Jac(R) if and only if every z◦n-ideal is a zn-ideal, for an n ∈ N.

Proof. (⇐) Similar to Proposition 1.3 in [13].
(⇒) Suppose that M(a) = M(b) and an ∈ I. We claim that P(a) = P(b). To see this,

let P ∈ P(a). Hence a ∈ P and there is c /∈ P such that ac ∈ rad(R) = Jac(R). Therefore
M(a) ∩ M(c) = M(ac) ⊆ Jac(R) = rad(R) ⊆ P . This implies that M(a) ⊆ P . Since
M(a) = M(b) we infer that M(a) = M(b). Hence M(b) ⊆ P and so b ∈ P . Thus P ∈ P(b),
that is P(a) ⊆ P(b). Similarly, P(b) ⊆ P(a) and hence P(a) = P(b). Since I is a z◦n-ideal we
conclude that bn ∈ I and we are done.
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In C(X) if
√
I is a z◦-ideal then so is I, see Proposition 3.4 in [5], therefore C(X) is radically

z◦-covered.
It seems that an example of a non radically z◦-covered ring is essential which is not given

in [14]. The following example shows that a ring may not be radically z◦-covered.

Example 2.3. Let F be a field and put S = F [x1, x2, x3, · · · ]. Suppose that I =

(x21, x
4
2, x

6
3, · · · , x2nn , · · · ) and J = (x1, x

2
2, x

3
3, · · · , xnn, · · · ). Now assume that R = S

I and K = J
I .

It is clear that
√
K = (x1,x2,x3,··· )

I is a minimal prime ideal of R and hence it is a z◦-ideal of
R, that is, K ∈ Z◦rad(R). We claim that K is not a z◦n-ideal for any n ∈ N. To see this
we observe that P(xn+1 + I) = P(x2n+1 + I), for n = 1, 2, · · · and (x2n+1 + I)n ∈ K while
(xn+1 + I)n /∈ K. This shows that K is not a z◦n-ideal for any n ∈ N and consequently R is
not radically z◦-covered.

3. z◦-terminating

Every z◦n-ideal is a z◦n+1-ideal, for any n ∈ N. Hence we have the ascending chain Z◦(R) ⊆
Z◦2(R) ⊆ Z◦3(R) ⊆ · · · of collections of ideals of R. We call it z◦-tower of R. If there is a
positive integer k such that Z◦k(R) = Z◦k+1(R) = · · · we say the z◦-tower terminates.

Definition 3.1. ([14], Definition 4.2.8) A ring R is z◦-terminating in case its z◦-tower termi-
nates.

In C(X) we have Z◦(C(X)) = Z◦2(C(X)) = · · · , hence C(X) is a z◦-terminating ring. In
Z for any n ∈ N we have Z◦n(Z) = {(0)}, so Z is z◦-terminating.

The ring of integers is not z-terminating, see Example 5 of [7]. It seems that an example
of a non z◦-terminating ring is essential which is not given in [14]. The following example
shows that a z◦n+1-ideal may not be a z◦n-ideal and consequence that a ring may not be
z◦-terminating.

Example 3.2. Let S be a reduced ring with subring Z and P ̸= (0) be a minimal prime
ideal in S with P ∩ Z = (0). By Lemma 3.6 in [5], Q = xP [x] ⊆ S[x] is a minimal prime
ideal in R = Z + xS[x] and hence it is a z◦-ideal. Now we consider Qn = xnP [x] with
1 ̸= n ∈ N. Clearly,

√
Qn = Q. We claim that Qn+1 ∈ Z◦n+1(R) but Qn+1 /∈ Z◦n(R). For

the former, suppose that P(f) = P(g) and fn+1 ∈ Qn+1. Hence f ∈
√
Qn+1 = Q. Therefore

Q ∈ P(f) = P(g) implies that g ∈ Q. So there exists h(x) ∈ P [x] such that g(x) = xh(x). It
implies that g0 = 0, where g0 is constant coefficient of g. Consequently, (g(x))n+1 = xn+1l(x)

for an l(x) ∈ P [x], that is, gn+1 ∈ Qn+1. Next suppose that 0 ̸= a ∈ P . Put f(x) = ax2

and g(x) = ax. Clearly, P(f) = P(g). Now (f(x))n = xn+1anxn−1 ∈ xn+1P [x] = Qn+1 but
(g(x))n = xnan /∈ xn+1P [x] = Qn+1. This show that Qn+1 is not a z◦n-ideal.

Proposition 3.3. ([14], Theorem 4.2.11) Noetherian rings are radically z◦-covered.
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If X is an infinite set then C(X) is radically z◦-covered ring which is not Noetherian. In
Example 3.2 if S is a finitely generated Z-module, then R is a Noetherian ring, see Propo-
sition 2.1 in [10], so by the above proposition it is a radically z◦-covered ring while is not
z◦-terminating.

It is well known that if φ : R → S is a surjective ring homomorphism then φ(rad(R)) ⊆
rad(S). A ring homomorphism φ : R → S is strong if it is surjective and for every minimal
prime ideal P of R, there is a minimal prime ideal Q of S such that φ−1[Q] = P , see Definition
4.4.1 of [14].

Proposition 3.4. Let φ : R → S is a strong homomorphism. Then

(1) φ(rad(R)) = rad(S).
(2) if P ∈ Min(R), then φ[P ] ∈ Min(S).
(3) if Q ∈ Min(S), then φ−1[Q] ∈ Min(R).

Proof. (1) It is clear.
(2) It is clear that φ[P ] is a proper prime ideal of S. We are to show that φ[P ] ∈ Min(S).

Let y ∈ φ[P ], hence there exists x ∈ P such that y = φ(x). Therefore there is b /∈ P such
that bx ∈ rad(R). Now φ(bx) = φ(b)φ(x) = φ(b)y ∈ φ(rad(R)) = rad(S). On the other hand
φ(b) /∈ φ[P ]. Otherwise φ(b) = φ(t) for a t ∈ P . Hence b− t ∈ ker(φ) ⊆ P implies that b ∈ P

which is not true. It implies that φ[P ] is a minimal prime ideal of S.
(3) Let Q ∈ Min(S) and a ∈ φ−1[Q]. Hence φ(a) ∈ Q and so there exists y /∈ Q such

that yφ(a) ∈ rad(S). On the other hand, there is x ∈ R such that φ(x) = y. Therefore
φ(ax) ∈ rad(S) = φ(rad(R)). Thus φ(ax) = φ(t) for a t ∈ rad(R). So ax−t ∈ ker(φ) ⊆ rad(R)

implies that ax ∈ rad(R). Furthermore since φ(x) /∈ Q we infer that x /∈ φ−1[Q]. It implies
that φ−1[Q] is a minimal prime ideal of R.

Proposition 3.5. Let φ : R → S is a surjective ring homomorphism. Then the following
statements are equivalent.

(1) φ is strong.
(2) ker(φ) ⊆ rad(R).
(3) For any a1, a2 ∈ R, P(φ(a2)) ⊆ P(φ(a1)) implies that P(a2) ⊆ P(a1).

Proof. (1 ⇒ 2) Let P ∈ Min(R), by hypothesis, there exists Q ∈ Min(S) such that φ−1[Q] = P .
Then ker(φ) ⊆ φ−1[Q] = P , and hence ker(φ) ⊆ rad(R).

(2 ⇒ 1) Let P ∈ Min(R). We will show that P = φ−1[φ[P ]] and we conclude by Proposition
3.4. Let a ∈ φ−1[φ[P ]], then φ(a) ∈ φ[P ], and so φ(a) = φ(x) for some x ∈ P . It follows that
x− a ∈ ker(φ) ⊆ P , by hypothesis. Thus a ∈ P . The direct inclusion is clear.
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(2 ⇒ 3) Let P ∈ P(a2), hence a2 ∈ P . Therefore φ(a2) ∈ φ[P ]. By Proposition 3.4 we have
φ[P ] ∈ P(φ(a2)) and by hypothesis φ[P ] ∈ P(φ(a1)), that is φ(a1) ∈ φ[P ]. Hence φ(a1) = φ(t)

for a t ∈ P . This consequence a1 − t ∈ ker(φ) ⊆ rad(R) ⊆ P and so a1 ∈ P , i.e., P ∈ P(a1).
(3 ⇒ 2) Suppose that x ∈ ker(φ), hence φ(x) = 0. Since P(φ(0)) ⊆ P(φ(x)) by hypothesis

P(0) ⊆ P(x). Therefore P (x) ⊆ P (0) = rad(R). It implies that x ∈ rad(R).

Corollary 3.6. ([14], Lemma 4.4.6) Let φ : R → S be a strong homomorphism. If J is a
z◦n-ideal of S, then φ−1[J ] is a z◦n-ideal of R.

Proposition 3.7. ([14], Proposition 4.4.7) Let φ : R → S is a strong homomorphism. If R

is z◦-terminating or radically z◦-covered, then so is S.

Remark 3.8. a) Let φ : R → S be a surjective ring homomorphism. If Zrad(R) = Z(R) then
Zrad(S) = Z(S). Hence C(X)

I is a radically z-covered ring, for every ideal I of C(X).
b) Let φ : R → S is a strong homomorphism. If Z◦rad(R) = Z◦(R) then Z◦rad(S) = Z◦(S).
c) Let I be an ideal of R such that I ⊆ rad(R) and φ : R → R

I be a natural ring homomorphism.
If R is z◦-terminating (resp. radically z◦-covered), then R

I is z◦-terminating (resp. radically
z◦-covered).
d) If rad(R) is contained in every higher order z◦-ideal of R, then R is z◦-terminating (resp.
radically z◦-covered) if and only if R

rad(R) has the same property.
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