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ABSTRACT. A ring R is called radically z-covered (resp. radically z°-covered) if every +/z-
ideal (resp. +/2°-ideal) in R is a higher order z-ideal (resp. z°-ideal). In this article we
show with a counter-example that a ring may not be radically z-covered (resp. radically
z°-covered). Also a ring R is called z°-terminating if there is a positive integer n such that
for every m > n, each z°™-ideal is a z°"-ideal. We show with a counter-example that a ring
may not be z°-terminating. It is well known that whenever a ring homomorphism ¢ : R — S
is strong (meaning that it is surjective and for every minimal prime ideal P of R, there is
a minimal prime ideal @ of S such that ¢ '[Q] = P), and if R is a 2°-terminating ring
or radically z°-covered ring then so is S. We prove that a surjective ring homomorphism

¢ : R — S is strong if and only if ker(y) C rad(R).
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1. INTRODUCTION

Throughout this paper R is a commutative ring with 1 £ 0. For any a € R, we denote by
M(a) (resp. P(a)) the set of all maximal (resp. minimal prime) ideals of R containing a. An
ideal I of a ring R is a z-ideal (resp. 2°-ideal) if M(b) = M(a) (resp. P(b) = P(a)) and b € I,
imply a € I, for any a,b € R. For each a € R, M(a) (resp. P(a)) is the intersection of all
maximal (resp. minimal prime) ideals containing a. We use Jac(R) (resp. rad(R)) instead of
M(0) (resp. P(0)). For aring R the set of all minimal prime ideals of R is denoted by Min(R).
It is well-known that every maximal (resp. minimal prime) ideal is a z-ideal (resp. z°-ideal).

We consider X to be a completely regular Hausdorff space and we denote by C'(X) the ring
of all real-valued continuous functions on the space X. Concerning topological spaces and
C(X) the reader is referred to [] and [B] respectively.

For more information about algebraic concepts see [E] and [lﬂ], z-ideals and z°-ideals in
commutative rings see [] and [@] and about z-ideals and z°-ideals in C'(X) see [] and [H]

Let n € N. An ideal I of a ring R is a z"-ideal (resp. z°"-ideal) if M(a) = M(b) (resp.
P(a) = P(b)) and a™ € I, imply b" € I, for any a,b € R. The set of all z"-ideals (resp.
2°"-ideals) of R denotes by Z"(R) (resp. Z2°"(R)). In particular Z(R) (resp. Z°(R) denotes
the set of all z-ideals (resp. z°-ideals) of R. For more information and details about z"-ideals
and z°"-ideals, see [H], [@], respectively.

In Lemma 1 of [H] the z"-ideals of a PID are characterized. In the next proposition we
identify the z™-ideals in Z by a preliminary method. Recall that maximal ideals of Z are
exactly the principal ideals (p), for p a prime number. Thus if a,b € N and M(a) = M(b),

then a and b are divisible by exactly the same prime numbers.

Proposition 1.1. Letn € N. The ideal I = (k) in Z is a z"-ideal if and only if k = pi*py*...p;"

where p;s are distinct prime numbers and 1 < r; <n for anyi=1,--- ,t.

Proof. (<) Suppose that M(a) = M(b) and a" € I. Hence there exists s € Z such that
a" = pitpy?..pyts. Since pila we infer that pi|b and so b = pys; for an s; € Z. Similarly,
p2|a and hence ps|b, therefore b = possy, for an sy € Z. Now pa|p1s1 and (p2,p1) = 1 implies
that pa|s; and hence s; = pot; for a t; € Z. This implies that b = pipst;. Also psla and
so ps|b, hence there exists s3 € 7Z such that b = p3s3. Now ps|pipat1 and (p3,pip2) = 1.
Therefore ps|t; and so t; = psty for a ty € Z. It implies that b = pypapste. By continuing

this process there exists so € Z such that b = pipa...ptsg. Therefore b = pi'py?...p;*u where
w=p] "tpy "2..p; "sg. This consequence that b € I and we are done.

(=) On the contrary and without loss of generality suppose that there exists 1 < i < ¢
such that 7, > n and 1 < r; < n for any j # i. We consider s < 7; such that sn > r;.
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We put a = p1..p;...pr and b = py...p5...p;. One can easily show that M(a) = M(b) and

b" = pt..pi¥*..pf € I while a™ ¢ I and it is a contradicts to assumption.

We deduce the following result immediately. See also Corollary 1 of [B]

Corollary 1.2. The ideal I = (k) is a z-ideal in Z if and only if k = pips...p; where p;s are

distinct prime numbers.

2. RADICALLY 2-COVERED AND RADICALLY 2°-COVERED

An ideal I of a ring R is said to be \/z-ideal (resp. v/z°-ideal) if /T is a z-ideal (resp.
z°-ideal), see [B] The set of all /z-ideals (resp. v/z°-ideals) of R is denoted by Z4(R) (resp.
zerad(R)). Also an ideal I of a ring R is called higher order z-ideal (resp. 2°-ideal) if there
exist n € N such that I € Z"(R) (resp. I € Z°"(R)). A ring R is called radically z-covered
(resp. radically z°-covered) if every /z-ideal (resp. v/2°-ideal) in R is a higher order z-ideal
(resp. z°-ideal), see [H] and [] for details.

It seems that an example of a non radically z-covered ring is essential which is not given in
[H] As a matter of fact we must show that there is an ideal I of a ring R such that v/T is a

z-ideal but I is not a z™-ideal for every n € N. See the following example for this purpose.

Example 2.1. Let F be a field and put R = F[xj,x9,x3,---]. Suppose that I =
(w1, 23, 23,25, ,:1;72111, --+). Tt is clear that /T = (1, x2, x3,---) is a maximal ideal of R and
hence it is a z-ideal of R, that is, I € Z™I(R). One can easily see that M(zp41) = M(22 ),
forn =1,2,--- and (22,,)" € I while (z,41)" ¢ I. This shows that I is not a z"-ideal for

any n € N and consequently R is not radically z-covered.

n+1

Every z™-ideal is a 2™ -ideal, for any n € N, but the converse is not true, see Example 5

of [f].

Proposition 2.2. rad(R) = Jac(R) if and only if every z°"-ideal is a z"-ideal, for an n € N.

Proof. (<) Similar to Proposition 1.3 in [@]

(=) Suppose that M(a) = M(b) and a" € I. We claim that P(a) = P(b). To see this,
let P € P(a). Hence a € P and there is ¢ ¢ P such that ac € rad(R) = Jac(R). Therefore
M(a) N M(c) = M(ac) C Jac(R) = rad(R) € P. This implies that M(a) C P. Since
M(a) = M(b) we infer that M (a) = M (b). Hence M(b) C P and so b € P. Thus P € P(b),
that is P(a) C P(b). Similarly, P(b) C P(a) and hence P(a) = P(b). Since I is a z°"-ideal we

conclude that b" € I and we are done.
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In C(X) if v/T is a 2°-ideal then so is I, see Proposition 3.4 in [E], therefore C'(X) is radically
z°-covered.
It seems that an example of a non radically z°-covered ring is essential which is not given

in [@] The following example shows that a ring may not be radically z°-covered.

Example 2.3. Let F' be a field and put S = Flzy,x2,23,---]. Suppose that [ =
(22, 23,25, ;22" ... )and J = (z1,23,23,--- 2", ). Now assume that R = % and K = %
It is clear that VK = M%’) is a minimal prime ideal of R and hence it is a z°-ideal of

R, that is, K € 2°"4(R). We claim that K is not a 2°"-ideal for any n € N. To see this
we observe that P(zp41 + 1) = P(z2,, + 1), for n = 1,2,--- and (22,, + )" € K while
(xn41 + I)™ ¢ K. This shows that K is not a z°"-ideal for any n € N and consequently R is

not radically z°-covered.

3. 2°-TERMINATING

ontlideal, for any n € N. Hence we have the ascending chain Z°(R) C

Every 2°"-ideal is a z
Z°2(R) C Z°3(R) C --- of collections of ideals of R. We call it 2°-tower of R. If there is a

positive integer k such that Z°*(R) = Z°*+1(R) = ... we say the z°-tower terminates.

Definition 3.1. ([@], Definition 4.2.8) A ring R is z°-terminating in case its z°-tower termi-

nates.

In C(X) we have Z°(C(X)) = 2°?(C(X)) = -+, hence C(X) is a z°-terminating ring. In
Z for any n € N we have Z°"(Z) = {(0)}, so Z is z°-terminating.

The ring of integers is not z-terminating, see Example 5 of [H] It seems that an example
of a non z°-terminating ring is essential which is not given in [@] The following example

on+1

shows that a z -ideal may not be a z°"-ideal and consequence that a ring may not be

z°-terminating.

Example 3.2. Let S be a reduced ring with subring Z and P # (0) be a minimal prime
ideal in S with PNZ = (0). By Lemma 3.6 in [H], Q = zP[z] C S[z] is a minimal prime
ideal in R = Z + xS[z] and hence it is a z°-ideal. Now we consider @), = z"P[z] with
1 # n € N. Clearly, v/Q, = Q. We claim that Q.1 € Z°""(R) but Q.1 ¢ Z°"(R). For
the former, suppose that P(f) = P(g) and f"*! € Q1. Hence f € /Qni1 = Q. Therefore
Q € P(f) = P(g) implies that g € Q). So there exists h(z) € P[z] such that g(x) = zh(z). It
implies that go = 0, where go is constant coefficient of g. Consequently, (g(z))" ™! = 2" 1(z)
for an I(z) € P[z], that is, ¢"*' € Q,;1. Next suppose that 0 # a € P. Put f(z) = ax?
and g(z) = ax. Clearly, P(f) = P(g). Now (f(z))" = 2" la"2" ! € 2" P[x] = Q.41 but
(g(z))" = z"a™ ¢ 2" 1 P[z] = Qpny1. This show that Q41 is not a z°"-ideal.

Proposition 3.3. ([@], Theorem 4.2.11) Noetherian rings are radically z°-covered.

Archive of SID.ir



Archive of SID.ir

Alg. Struc. Appl. Vol. 11 No. 1 (2024) 55-61. 59

If X is an infinite set then C(X) is radically z°-covered ring which is not Noetherian. In
Example @ if S is a finitely generated Z-module, then R is a Noetherian ring, see Propo-
sition 2.1 in [], so by the above proposition it is a radically z°-covered ring while is not
z°-terminating.

It is well known that if ¢ : R — S is a surjective ring homomorphism then ¢(rad(R)) C
rad(S). A ring homomorphism ¢ : R — S is strong if it is surjective and for every minimal

prime ideal P of R, there is a minimal prime ideal Q of S such that ¢ ~1[Q] = P, see Definition

4.4.1 of [14].

Proposition 3.4. Let ¢ : R — S is a strong homomorphism. Then
(1) p(rad(R)) = rad(95).
(2) if P € Min(R), then ¢[P] € Min(S).
(3) if Q € Min(S), then ¢~ 1[Q] € Min(R).

Proof. (1) It is clear.

(2) It is clear that ¢[P] is a proper prime ideal of S. We are to show that ¢[P] € Min(S).
Let y € ¢[P], hence there exists x € P such that y = ¢(x). Therefore there is b ¢ P such
that bz € rad(R). Now p(bx) = ¢(b)p(z) = ¢(b)y € p(rad(R)) = rad(S). On the other hand
©(b) ¢ p[P]. Otherwise p(b) = ¢(t) for a t € P. Hence b —t € ker(¢) C P implies that b € P
which is not true. It implies that ¢[P] is a minimal prime ideal of S.

(3) Let @ € Min(S) and a € ¢ 1[Q]. Hence p(a) € Q and so there exists y ¢ @ such
that yp(a) € rad(S). On the other hand, there is x € R such that ¢(x) = y. Therefore
p(az) € rad(S) = ¢(rad(R)). Thus p(az) = ¢(t) forat € rad(R). So ax—t € ker(¢) C rad(R)
implies that ax € rad(R). Furthermore since p(x) ¢ Q we infer that x ¢ ¢~![Q]. It implies
that ¢ ~1[Q] is a minimal prime ideal of R.

Proposition 3.5. Let ¢ : R — S is a surjective ring homomorphism. Then the following
statements are equivalent.

(1) ¢ is strong.

(2) ker(p) C rad(R).

(3) For any ai,a2 € R, P(p(a2)) € P(p(a1)) implies that P(az) C P(a1).

Proof. (1= 2) Let P € Min(R), by hypothesis, there exists Q € Min(S) such that p=1[Q] = P.
Then ker(¢) C ¢ 1[Q] = P, and hence ker(¢) C rad(R).

(2 = 1) Let P € Min(R). We will show that P = ¢~[¢[P]] and we conclude by Proposition
@. Let a € o~ [p[P]], then p(a) € p[P], and so ¢(a) = ¢(x) for some = € P. Tt follows that
x — a € ker(p) C P, by hypothesis. Thus a € P. The direct inclusion is clear.
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(2= 3) Let P € P(az), hence ag € P. Therefore p(az) € ¢[P]. By Proposition @ we have
©[P] € P(p(az2)) and by hypothesis ¢[P] € P(¢(a1)), that is ¢(a1) € ¢[P]. Hence p(a1) = ¢(t)
for a t € P. This consequence a; — t € ker(¢) C rad(R) C P and so a; € P, i.e., P € P(ay).

(3 = 2) Suppose that x € ker(p), hence ¢(x) = 0. Since P(p(0)) € P(p(z)) by hypothesis
P(0) C P(x). Therefore P(z) C P(0) =rad(R). It implies that = € rad(R).

Corollary 3.6. ([], Lemma 4.4.6) Let ¢ : R — S be a strong homomorphism. If J is a
2°"-ideal of S, then @ ~'[J] is a 2°"-ideal of R.

Proposition 3.7. ([@], Proposition 4.4.7) Let ¢ : R — S is a strong homomorphism. If R

is z°-terminating or radically z°-covered, then so is S.

Remark 3.8. a) Let ¢ : R — S be a surjective ring homomorphism. If Z/4(R) = Z(R) then
zrad(§) = Z(S). Hence % is a radically z-covered ring, for every ideal I of C(X).

b) Let ¢ : R — S is a strong homomorphism. If Z°"*4(R) = Z°(R) then Z°'%d(S) = Z°(9).
c) Let I be an ideal of R such that I C rad(R) and ¢ : R — % be a natural ring homomorphism.
If R is z°-terminating (resp. radically z°-covered), then % is z°-terminating (resp. radically
z°-covered).

d) If rad(R) is contained in every higher order z°-ideal of R, then R is z°-terminating (resp.

radically z°-covered) if and only if % has the same property.
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