Algebraic

ication

Algebraic Structures Their Applications

Algebraic Structures and Their Applications Vol. 11 No. 1 (2024) pp 55-61.

Research Paper

ON HIGHER ORDER *z***-IDEALS AND** *z ◦* **-IDEALS IN COMMUTATIVE RINGS**

ROSTAM MOHAMADIAN*[∗]*

ABSTRACT. A ring *R* is called radically *z*-covered (resp. radically *z*[°]-covered) if every \sqrt{z} ideal (resp. $\sqrt{z^{\circ}}$ -ideal) in *R* is a higher order *z*-ideal (resp. *z*°-ideal). In this article we show with a counter-example that a ring may not be radically *z*-covered (resp. radically *z ◦* -covered). Also a ring *R* is called *z ◦* -terminating if there is a positive integer *n* such that for every $m \geq n$, each $z^{\circ m}$ -ideal is a $z^{\circ n}$ -ideal. We show with a counter-example that a ring may not be z° -terminating. It is well known that whenever a ring homomorphism $\varphi : R \to S$ is strong (meaning that it is surjective and for every minimal prime ideal *P* of *R*, there is a minimal prime ideal *Q* of *S* such that $\varphi^{-1}[Q] = P$, and if *R* is a *z*[°]-terminating ring or radically z° -covered ring then so is *S*. We prove that a surjective ring homomorphism $\varphi: R \to S$ is strong if and only if $\ker(\varphi) \subseteq \text{rad}(R)$.

DOI: 10.22034/as.2023.18637.1553

MSC(2010): Primary: 13A15, 13B30; Secondary: 13F10.

Keywords: Radically *z*-covered, Radically *z ◦*-covered, *z ⁿ*-ideal, *z ◦n*-ideal, *z ◦*-terminating.

Received: 22 June 2022, Accepted: 22 May 2023

*∗*Corresponding author

© 2024 Yazd University.

56 R. Mohamadian

1. INTRODUCTION

Throughout this paper *R* is a commutative ring with $1 \neq 0$. For any $a \in R$, we denote by $\mathcal{M}(a)$ (resp. $\mathcal{P}(a)$) the set of all maximal (resp. minimal prime) ideals of *R* containing *a*. An ideal *I* of a ring *R* is a *z*-ideal (resp. *z*[°]-ideal) if $\mathcal{M}(b) = \mathcal{M}(a)$ (resp. $\mathcal{P}(b) = \mathcal{P}(a)$) and $b \in I$, imply $a \in I$, for any $a, b \in R$. For each $a \in R$, $M(a)$ (resp. $P(a)$) is the intersection of all maximal (resp. minimal prime) ideals containing a. We use $Jac(R)$ (resp. rad(*R*)) instead of $M(0)$ (resp. $P(0)$). For a ring *R* the set of all minimal prime ideals of *R* is denoted by Min(*R*). It is well-known that every maximal (resp. minimal prime) ideal is a *z*-ideal (resp. *z*°-ideal).

We consider X to be a completely regular Hausdorff space and we denote by $C(X)$ the ring of all real-valued continuous functions on the space *X*. Concerning topological spaces and $C(X)$ the reader is referred to [8] and [9] respectively.

For more information about algebraic concepts see [2] and [11], *z*-ideals and *z*[°]-ideals in commutative rings see [12] and [4] and about *z*-ideals and z° -ideals in $C(X)$ see [3] and [5].

Let $n \in \mathbb{N}$. An ideal *I* of a ring *R* is a z^n -ideal (resp. $z^{\circ n}$ -ideal) if $\mathcal{M}(a) = \mathcal{M}(b)$ (resp. $P(a) = P(b)$ and $a^n \in I$, imply $b^n \in I$, for any $a, b \in R$. The set of all z^n -ideals (resp. $z^{\circ n}$ -ideals) of *R* denotes by $\mathcal{Z}^n(R)$ (resp. $\mathcal{Z}^{\circ n}(R)$). In particular $\mathcal{Z}(R)$ (resp. $\mathcal{Z}^{\circ}(R)$ denotes the set of all *z*-ideals (resp. z° -ideals) of *R*. For more information and details about z^{n} -ideals and $z^{\circ n}$ -ideals, see [7], [14], respectively.

In Lemma 1 of $[6]$ the z^n -ideals of a PID are characterized. In the next proposition we identify the z^n -ideals in $\mathbb Z$ by a preliminary method. Recall that maximal ideals of $\mathbb Z$ are exactly the principal ideals (p) , for *p* a prime number. Thus if $a, b \in \mathbb{N}$ and $\mathcal{M}(a) = \mathcal{M}(b)$, then *a* and *b* are divisible by exactly the same prime numbers.

Proposition 1.1. Let $n \in \mathbb{N}$. The ideal $I = (k)$ in \mathbb{Z} is a z^n -ideal if and only if $k = p_1^{r_1} p_2^{r_2} ... p_t^{r_t}$ *where p , i*_s are distinct prime numbers and $1 \leq r_i \leq n$ for any $i = 1, \dots, t$.

Proof. (\Leftarrow) Suppose that $\mathcal{M}(a) = \mathcal{M}(b)$ and $a^n \in I$. Hence there exists $s \in \mathbb{Z}$ such that $a^n = p_1^{r_1} p_2^{r_2} \dots p_t^{r_t} s$. Since $p_1 | a$ we infer that $p_1 | b$ and so $b = p_1 s_1$ for an $s_1 \in \mathbb{Z}$. Similarly, $p_2|a$ and hence $p_2|b$, therefore $b = p_2s_2$, for an $s_2 \in \mathbb{Z}$. Now $p_2|p_1s_1$ and $(p_2, p_1) = 1$ implies that $p_2|s_1$ and hence $s_1 = p_2t_1$ for a $t_1 \in \mathbb{Z}$. This implies that $b = p_1p_2t_1$. Also $p_3|a$ and so $p_3|b$, hence there exists $s_3 \in \mathbb{Z}$ such that $b = p_3s_3$. Now $p_3|p_1p_2t_1$ and $(p_3, p_1p_2) = 1$. Therefore $p_3|t_1$ and so $t_1 = p_3t_2$ for a $t_2 \in \mathbb{Z}$. It implies that $b = p_1p_2p_3t_2$. By continuing this process there exists $s_0 \in \mathbb{Z}$ such that $b = p_1 p_2 ... p_t s_0$. Therefore $b^n = p_1^{r_1} p_2^{r_2} ... p_t^{r_t} u$ where $u = p_1^{n-r_1} p_2^{n-r_2} ... p_t^{n-r_t} s_0^n$. This consequence that $b^n \in I$ and we are done.

(\Rightarrow) On the contrary and without loss of generality suppose that there exists 1 ≤ *i* ≤ *t* such that $r_i > n$ and $1 \leq r_j \leq n$ for any $j \neq i$. We consider $s \leq r_i$ such that $sn \geq r_i$.

Alg. Struc. Appl. Vol. 11 No. 1 (2024) 55-61. 57

We put $a = p_1...p_i...p_t$ and $b = p_1...p_i^s...p_t$. One can easily show that $\mathcal{M}(a) = \mathcal{M}(b)$ and $b^n = p_1^n...p_i^n...p_t^n \in I$ while $a^n \notin I$ and it is a contradicts to assumption.

We deduce the following result immediately. See also Corollary 1 of [6].

Corollary 1.2. *The ideal* $I = (k)$ *is a z-ideal in* \mathbb{Z} *if and only if* $k = p_1p_2...p_t$ *where* p_i^* *i s are distinct prime numbers.*

2. radically *z*-covered and radically *z ◦* -covered

An ideal *I* of a ring *R* is said to be \sqrt{z} -ideal (resp. $\sqrt{z^{\circ}}$ -ideal) if \sqrt{I} is a *z*-ideal (resp. *z*°-ideal), see [5]. The set of all \sqrt{z} -ideals (resp. \sqrt{z} °-ideals) of *R* is denoted by $\mathcal{Z}^{\text{rad}}(R)$ (resp. $\mathcal{Z}^{\text{orad}}(R)$). Also an ideal *I* of a ring *R* is called higher order *z*-ideal (resp. *z*[°]-ideal) if there exist $n \in \mathbb{N}$ such that $I \in \mathcal{Z}^n(R)$ (resp. $I \in \mathcal{Z}^{\circ n}(R)$). A ring R is called radically *z*-covered (resp. radically *z*°-covered) if every \sqrt{z} -ideal (resp. \sqrt{z} ^o-ideal) in *R* is a higher order *z*-ideal (resp. z° -ideal), see [7] and [14] for details.

It seems that an example of a non radically *z*-covered ring is essential which is not given in [7]. As a matter of fact we must show that there is an ideal *I* of a ring *R* such that \sqrt{I} is a *z*-ideal but *I* is not a z^n -ideal for every $n \in \mathbb{N}$. See the following example for this purpose.

Example 2.1. Let *F* be a field and put $R = F[x_1, x_2, x_3, \cdots]$. Suppose that $I =$ $(x_1, x_2^2, x_3^4, x_4^6, \cdots, x_{n+1}^{2n}, \cdots)$. It is clear that $\sqrt{I} = (x_1, x_2, x_3, \cdots)$ is a maximal ideal of R and hence it is a *z*-ideal of *R*, that is, $I \in \mathcal{Z}^{\text{rad}}(R)$. One can easily see that $\mathcal{M}(x_{n+1}) = \mathcal{M}(x_{n+1}^2)$, for $n = 1, 2, \dots$ and $(x_{n+1}^2)^n \in I$ while $(x_{n+1})^n \notin I$. This shows that I is not a z^n -ideal for any $n \in \mathbb{N}$ and consequently R is not radically *z*-covered.

Every z^n -ideal is a z^{n+1} -ideal, for any $n \in \mathbb{N}$, but the converse is not true, see Example 5 of [7].

Proposition 2.2. $\text{rad}(R) = \text{Jac}(R)$ *if and only if every* $z^{\circ n}$ -ideal *is a* z^n -ideal, for an $n \in \mathbb{N}$.

Proof. (\Leftarrow) Similar to Proposition 1.3 in [13].

(⇒) Suppose that $\mathcal{M}(a) = \mathcal{M}(b)$ and $a^n \in I$. We claim that $\mathcal{P}(a) = \mathcal{P}(b)$. To see this, let $P \in \mathcal{P}(a)$. Hence $a \in P$ and there is $c \notin P$ such that $ac \in \text{rad}(R) = \text{Jac}(R)$. Therefore *M*(*a*) ∩ *M*(*c*) = *M*(*ac*) \subseteq Jac(*R*) = rad(*R*) \subseteq *P*. This implies that *M*(*a*) \subseteq *P*. Since $M(a) = M(b)$ we infer that $M(a) = M(b)$. Hence $M(b) \subseteq P$ and so $b \in P$. Thus $P \in \mathcal{P}(b)$, that is $P(a) \subseteq P(b)$. Similarly, $P(b) \subseteq P(a)$ and hence $P(a) = P(b)$. Since *I* is a $z^{\circ n}$ -ideal we conclude that $b^n \in I$ and we are done.

58 R. Mohamadian

In $C(X)$ if \sqrt{I} is a z° -ideal then so is *I*, see Proposition 3.4 in [5], therefore $C(X)$ is radically *z ◦* -covered.

It seems that an example of a non radically z° -covered ring is essential which is not given in [14]. The following example shows that a ring may not be radically *z ◦* -covered.

Example 2.3. Let *F* be a field and put $S = F[x_1, x_2, x_3, \cdots]$. Suppose that $I =$ $(x_1^2, x_2^4, x_3^6, \cdots, x_n^{2n}, \cdots)$ and $J = (x_1, x_2^2, x_3^3, \cdots, x_n^n, \cdots)$. Now assume that $R = \frac{S}{I}$ $\frac{S}{I}$ and $K = \frac{J}{I}$ $\frac{J}{I}$. It is clear that $\sqrt{K} = \frac{(x_1, x_2, x_3, \cdots)}{I}$ is a minimal prime ideal of *R* and hence it is a *z*[°]-ideal of *R*, that is, $K \in \mathcal{Z}^{\text{orad}}(R)$. We claim that *K* is not a $z^{\circ n}$ -ideal for any $n \in \mathbb{N}$. To see this we observe that $\mathcal{P}(x_{n+1} + I) = \mathcal{P}(x_{n+1}^2 + I)$, for $n = 1, 2, \cdots$ and $(x_{n+1}^2 + I)^n \in K$ while $(x_{n+1} + I)^n \notin K$. This shows that *K* is not a $z^{\circ n}$ -ideal for any $n \in \mathbb{N}$ and consequently *R* is not radically z° -covered.

3. *z*[°]-TERMINATING

Every $z^{\circ n}$ -ideal is a $z^{\circ n+1}$ -ideal, for any $n \in \mathbb{N}$. Hence we have the ascending chain $\mathcal{Z}^{\circ}(R) \subseteq$ $\mathcal{Z}^{\circ2}(R) \subseteq \mathcal{Z}^{\circ3}(R) \subseteq \cdots$ of collections of ideals of *R*. We call it z° -tower of *R*. If there is a positive integer *k* such that $\mathcal{Z}^{\circ k}(R) = \mathcal{Z}^{\circ k+1}(R) = \cdots$ we say the *z*[°]-tower terminates.

Definition 3.1. ([14], Definition 4.2.8) A ring R is z° -terminating in case its z° -tower terminates.

In $C(X)$ we have $\mathcal{Z}^{\circ}(C(X)) = \mathcal{Z}^{\circ 2}(C(X)) = \cdots$, hence $C(X)$ is a z° -terminating ring. In Z for any $n \in \mathbb{N}$ we have $\mathcal{Z}^{\circ n}(\mathbb{Z}) = \{(0)\}\)$, so Z is z° -terminating.

The ring of integers is not *z*-terminating, see Example 5 of [7]. It seems that an example of a non z° -terminating ring is essential which is not given in [14]. The following example shows that a $z^{\circ n+1}$ -ideal may not be a $z^{\circ n}$ -ideal and consequence that a ring may not be *z ◦* -terminating.

Example 3.2. Let *S* be a reduced ring with subring Z and $P \neq (0)$ be a minimal prime ideal in *S* with $P \cap \mathbb{Z} = (0)$. By Lemma 3.6 in [5], $Q = xP[x] \subseteq S[x]$ is a minimal prime ideal in $R = \mathbb{Z} + xS[x]$ and hence it is a z° -ideal. Now we consider $Q_n = x^n P[x]$ with $1 \neq n \in \mathbb{N}$. Clearly, $\sqrt{Q_n} = Q$. We claim that $Q_{n+1} \in \mathcal{Z}^{\circ n+1}(R)$ but $Q_{n+1} \notin \mathcal{Z}^{\circ n}(R)$. For the former, suppose that $P(f) = P(g)$ and $f^{n+1} \in Q_{n+1}$. Hence $f \in \sqrt{Q_{n+1}} = Q$. Therefore $Q \in \mathcal{P}(f) = \mathcal{P}(g)$ implies that $g \in Q$. So there exists $h(x) \in P[x]$ such that $g(x) = xh(x)$. It implies that $g_0 = 0$, where g_0 is constant coefficient of *g*. Consequently, $(g(x))^{n+1} = x^{n+1}l(x)$ for an $l(x) \in P[x]$, that is, $g^{n+1} \in Q_{n+1}$. Next suppose that $0 \neq a \in P$. Put $f(x) = ax^2$ and $g(x) = ax$. Clearly, $P(f) = P(g)$. Now $(f(x))^n = x^{n+1}a^n x^{n-1} \in x^{n+1}P[x] = Q_{n+1}$ but $(g(x))^n = x^n a^n \notin x^{n+1} P[x] = Q_{n+1}$. This show that Q_{n+1} is not a $z^{\circ n}$ -ideal.

Proposition 3.3. *(*[14]*, Theorem 4.2.11) Noetherian rings are radically z ◦ -covered.*

Alg. Struc. Appl. Vol. 11 No. 1 (2024) 55-61. 59

If *X* is an infinite set then $C(X)$ is radically *z*[°]-covered ring which is not Noetherian. In Example 3.2 if *S* is a finitely generated Z-module, then *R* is a Noetherian ring, see Proposition 2.1 in [10], so by the above proposition it is a radically z° -covered ring while is not *z ◦* -terminating.

It is well known that if $\varphi : R \to S$ is a surjective ring homomorphism then $\varphi(\text{rad}(R)) \subseteq$ rad(*S*). A ring homomorphism $\varphi : R \to S$ is strong if it is surjective and for every minimal prime ideal *P* of *R*, there is a minimal prime ideal *Q* of *S* such that $\varphi^{-1}[Q] = P$, see Definition 4.4.1 of [14].

Proposition 3.4. *Let* $\varphi : R \to S$ *is a strong homomorphism. Then*

- (1) $\varphi(\text{rad}(R)) = \text{rad}(S)$.
- (2) *if* $P \in \text{Min}(R)$, then $\varphi[P] \in \text{Min}(S)$.
- (3) *if* $Q \in \text{Min}(S)$ *, then* $\varphi^{-1}[Q] \in \text{Min}(R)$ *.*

Proof. (1) It is clear.

(2) It is clear that $\varphi[P]$ is a proper prime ideal of *S*. We are to show that $\varphi[P] \in \text{Min}(S)$. Let $y \in \varphi[P]$, hence there exists $x \in P$ such that $y = \varphi(x)$. Therefore there is $b \notin P$ such that $bx \in \text{rad}(R)$. Now $\varphi(bx) = \varphi(b)\varphi(x) = \varphi(b)y \in \varphi(\text{rad}(R)) = \text{rad}(S)$. On the other hand $\varphi(b) \notin \varphi[P]$. Otherwise $\varphi(b) = \varphi(t)$ for a $t \in P$. Hence $b - t \in \text{ker}(\varphi) \subseteq P$ implies that $b \in P$ which is not true. It implies that $\varphi[P]$ is a minimal prime ideal of *S*.

(3) Let $Q \in \text{Min}(S)$ and $a \in \varphi^{-1}[Q]$. Hence $\varphi(a) \in Q$ and so there exists $y \notin Q$ such that $y\varphi(a) \in \text{rad}(S)$. On the other hand, there is $x \in R$ such that $\varphi(x) = y$. Therefore $\varphi(ax) \in rad(S) = \varphi(rad(R))$. Thus $\varphi(ax) = \varphi(t)$ for a $t \in rad(R)$. So $ax-t \in ker(\varphi) \subseteq rad(R)$ implies that $ax \in rad(R)$. Furthermore since $\varphi(x) \notin Q$ we infer that $x \notin \varphi^{-1}[Q]$. It implies that $\varphi^{-1}[Q]$ is a minimal prime ideal of *R*.

Proposition 3.5. Let $\varphi : R \to S$ is a surjective ring homomorphism. Then the following *statements are equivalent.*

- (1) φ *is strong.*
- (2) ker $(\varphi) \subseteq rad(R)$.
- (3) *For any* $a_1, a_2 \in R$, $\mathcal{P}(\varphi(a_2)) \subseteq \mathcal{P}(\varphi(a_1))$ *implies that* $\mathcal{P}(a_2) \subseteq \mathcal{P}(a_1)$ *.*

Proof. $(1 \Rightarrow 2)$ Let $P \in \text{Min}(R)$, by hypothesis, there exists $Q \in \text{Min}(S)$ such that $\varphi^{-1}[Q] = P$. Then ker(φ) $\subseteq \varphi^{-1}[Q] = P$, and hence ker(φ) \subseteq rad(*R*).

 $(2 \Rightarrow 1)$ Let $P \in \text{Min}(R)$. We will show that $P = \varphi^{-1}[\varphi[P]]$ and we conclude by Proposition 3.4. Let $a \in \varphi^{-1}[\varphi[P]]$, then $\varphi(a) \in \varphi[P]$, and so $\varphi(a) = \varphi(x)$ for some $x \in P$. It follows that *x* − *a* \in ker(φ) \subseteq *P*, by hypothesis. Thus *a* \in *P*. The direct inclusion is clear.

60 R. Mohamadian

 $(2 \Rightarrow 3)$ Let $P \in \mathcal{P}(a_2)$, hence $a_2 \in P$. Therefore $\varphi(a_2) \in \varphi[P]$. By Proposition 3.4 we have $\varphi[P] \in \mathcal{P}(\varphi(a_2))$ and by hypothesis $\varphi[P] \in \mathcal{P}(\varphi(a_1))$, that is $\varphi(a_1) \in \varphi[P]$. Hence $\varphi(a_1) = \varphi(t)$ for a $t \in P$. This consequence $a_1 - t \in \text{ker}(\varphi) \subseteq \text{rad}(R) \subseteq P$ and so $a_1 \in P$, i.e., $P \in \mathcal{P}(a_1)$.

 $(3 \Rightarrow 2)$ Suppose that $x \in \text{ker}(\varphi)$, hence $\varphi(x) = 0$. Since $\mathcal{P}(\varphi(0)) \subseteq \mathcal{P}(\varphi(x))$ by hypothesis $P(0) \subseteq P(x)$. Therefore $P(x) \subseteq P(0) = \text{rad}(R)$. It implies that $x \in \text{rad}(R)$.

Corollary 3.6. ([14]*, Lemma 4.4.6)* Let φ : $R \to S$ be a strong homomorphism. If *J* is a $z^{\circ n}$ -ideal of *S*, then $\varphi^{-1}[J]$ is a $z^{\circ n}$ -ideal of *R*.

Proposition 3.7. ([14]*, Proposition 4.4.7) Let* φ : $R \to S$ *is a strong homomorphism. If* R *is* z° -terminating or radically z° -covered, then so is S .

Remark 3.8. a) Let $\varphi: R \to S$ be a surjective ring homomorphism. If $\mathcal{Z}^{\text{rad}}(R) = \mathcal{Z}(R)$ then $\mathcal{Z}^{\text{rad}}(S) = \mathcal{Z}(S)$. Hence $\frac{C(X)}{I}$ is a radically *z*-covered ring, for every ideal *I* of $C(X)$.

b) Let $\varphi: R \to S$ is a strong homomorphism. If $\mathcal{Z}^{\text{ord}}(R) = \mathcal{Z}^{\circ}(R)$ then $\mathcal{Z}^{\text{ord}}(S) = \mathcal{Z}^{\circ}(S)$.

c) Let *I* be an ideal of *R* such that $I \subseteq rad(R)$ and $\varphi : R \to \frac{R}{I}$ be a natural ring homomorphism. If *R* is z° -terminating (resp. radically z° -covered), then $\frac{R}{I}$ is z° -terminating (resp. radically *z ◦* -covered).

d) If $rad(R)$ is contained in every higher order z° -ideal of R, then R is z° -terminating (resp. radically z° -covered) if and only if $\frac{R}{\text{rad}(R)}$ has the same property.

4. Acknowledgments

The author would like to thank the referee for reading the article carefully and giving useful comments. Also I am grateful to the Research Council of Shahid Chamran University of Ahvaz financial support (GN:SCU.MM401.648).

REFERENCES

- [1] D. D. Anderson and J. Kintzinger, *Ideals in direct products of commutative rings*, Bull. Austr. Math. Soc., **77** (2008) 477-483.
- [2] M. F. Atiyah and I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesely, Reading Mass, 1969.
- [3] F. Azarpanah, O. A. S. Karamzadeh and A. Rezaei Aliabad, $On \ z^{\circ}\text{-ideal in } C(X)$, Fund. Math., 160 (1999) 15-25.
- [4] F. Azarpanah, O. A. S. Karamzadeh and A. Rezaei Aliabad, *On ideals consisting entirely of zero divisors*, Comm. Algebra, **28** (2000) 1061-1073.
- [5] F. Azarpanah and R. Mohamadian, *√ ^z-ideals and [√] z ◦-ideals in C*(*X*), Acta. Math. Sinica. English Series, **23** (2007) 989-996.
- [6] A. Benhissi and A. Maatallah, *A question about Higher order z-ideals in commutative rings*, Quaest. Math., **43** (2020) 1155-1157.

Alg. Struc. Appl. Vol. 11 No. 1 (2024) 55-61. 61

- [8] R. Engelking, *General Topology*, PWN-polish Science Publication, Warsaw, Poland, 1977.
- [9] L. Gillman and M. Jerison, *Rings of Continuous Functions*, Springer-Verlag, Berlin, Germany, 1976.
- [10] S. Hizem, *Chain conditions in rings of the form* $A + xB[x]$ and $A + xI[x]$, J. Commut. Algebra, (2009) 259-274.
- [11] I. Kaplansky, *Commutative Rings*, Allyn and Bacon, Boston, MA, USA, 1970.
- [12] G. Mason, *z-ideals and prime ideals*, J. Algebra, **26** (1973) 280-297.
- [13] A. Rezaei Aliabad and R. Mohamadian, *On z-Ideals and z ◦ -Ideals of Power Series Rings*, J. Math. Ext., **7** (2013) 93-108.
- [14] Tlharesakgosi, B. *Topics on z-ideals of Commutative Rings*, University of South Africa, Pretoria, 2017.

Rostam Mohamadian

Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran. mohamadian_r@scu.ac.ir