Algebraic

ication

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 11 No. 1 (2024) pp 55-61.

Research Paper

ON HIGHER ORDER z-IDEALS AND z°-IDEALS IN COMMUTATIVE RINGS

ROSTAM MOHAMADIAN*

ABSTRACT. A ring R is called radically z-covered (resp. radically z° -covered) if every \sqrt{z} ideal (resp. $\sqrt{z^{\circ}}$ -ideal) in R is a higher order z-ideal (resp. z° -ideal). In this article we show with a counter-example that a ring may not be radically z-covered (resp. radically z° -covered). Also a ring R is called z° -terminating if there is a positive integer n such that for every $m \ge n$, each $z^{\circ m}$ -ideal is a $z^{\circ n}$ -ideal. We show with a counter-example that a ring may not be z° -terminating. It is well known that whenever a ring homomorphism $\varphi : R \to S$ is strong (meaning that it is surjective and for every minimal prime ideal P of R, there is a minimal prime ideal Q of S such that $\varphi^{-1}[Q] = P$), and if R is a z° -terminating ring or radically z° -covered ring then so is S. We prove that a surjective ring homomorphism $\varphi : R \to S$ is strong if and only if $\ker(\varphi) \subseteq \operatorname{rad}(R)$.

DOI: 10.22034/as.2023.18637.1553

MSC(2010): Primary: 13A15, 13B30; Secondary: 13F10.

Keywords: Radically z-covered, Radically z° -covered, z^{n} -ideal, $z^{\circ n}$ -ideal, z° -terminating.

Received: 22 June 2022, Accepted: 22 May 2023

*Corresponding author

© 2024 Yazd University.

56

R. Mohamadian

1. INTRODUCTION

Throughout this paper R is a commutative ring with $1 \neq 0$. For any $a \in R$, we denote by $\mathcal{M}(a)$ (resp. $\mathcal{P}(a)$) the set of all maximal (resp. minimal prime) ideals of R containing a. An ideal I of a ring R is a z-ideal (resp. z° -ideal) if $\mathcal{M}(b) = \mathcal{M}(a)$ (resp. $\mathcal{P}(b) = \mathcal{P}(a)$) and $b \in I$, imply $a \in I$, for any $a, b \in R$. For each $a \in R$, M(a) (resp. P(a)) is the intersection of all maximal (resp. minimal prime) ideals containing a. We use $\operatorname{Jac}(R)$ (resp. $\operatorname{rad}(R)$) instead of M(0) (resp. P(0)). For a ring R the set of all minimal prime ideals of R is denoted by $\operatorname{Min}(R)$. It is well-known that every maximal (resp. minimal prime) ideal is a z-ideal (resp. z° -ideal).

We consider X to be a completely regular Hausdorff space and we denote by C(X) the ring of all real-valued continuous functions on the space X. Concerning topological spaces and C(X) the reader is referred to [8] and [9] respectively.

For more information about algebraic concepts see [2] and [11], z-ideals and z° -ideals in commutative rings see [12] and [4] and about z-ideals and z° -ideals in C(X) see [3] and [5].

Let $n \in \mathbb{N}$. An ideal I of a ring R is a z^n -ideal (resp. $z^{\circ n}$ -ideal) if $\mathcal{M}(a) = \mathcal{M}(b)$ (resp. $\mathcal{P}(a) = \mathcal{P}(b)$) and $a^n \in I$, imply $b^n \in I$, for any $a, b \in R$. The set of all z^n -ideals (resp. $z^{\circ n}$ -ideals) of R denotes by $\mathcal{Z}^n(R)$ (resp. $\mathcal{Z}^{\circ n}(R)$). In particular $\mathcal{Z}(R)$ (resp. $\mathcal{Z}^{\circ}(R)$ denotes the set of all z-ideals (resp. z° -ideals) of R. For more information and details about z^n -ideals and $z^{\circ n}$ -ideals, see [7], [14], respectively.

In Lemma 1 of [6] the z^n -ideals of a PID are characterized. In the next proposition we identify the z^n -ideals in \mathbb{Z} by a preliminary method. Recall that maximal ideals of \mathbb{Z} are exactly the principal ideals (p), for p a prime number. Thus if $a, b \in \mathbb{N}$ and $\mathcal{M}(a) = \mathcal{M}(b)$, then a and b are divisible by exactly the same prime numbers.

Proposition 1.1. Let $n \in \mathbb{N}$. The ideal I = (k) in \mathbb{Z} is a z^n -ideal if and only if $k = p_1^{r_1} p_2^{r_2} \dots p_t^{r_t}$ where p_i 's are distinct prime numbers and $1 \leq r_i \leq n$ for any $i = 1, \dots, t$.

Proof. (\Leftarrow) Suppose that $\mathcal{M}(a) = \mathcal{M}(b)$ and $a^n \in I$. Hence there exists $s \in \mathbb{Z}$ such that $a^n = p_1^{r_1} p_2^{r_2} \dots p_t^{r_t} s$. Since $p_1 | a$ we infer that $p_1 | b$ and so $b = p_1 s_1$ for an $s_1 \in \mathbb{Z}$. Similarly, $p_2 | a$ and hence $p_2 | b$, therefore $b = p_2 s_2$, for an $s_2 \in \mathbb{Z}$. Now $p_2 | p_1 s_1$ and $(p_2, p_1) = 1$ implies that $p_2 | s_1$ and hence $s_1 = p_2 t_1$ for a $t_1 \in \mathbb{Z}$. This implies that $b = p_1 p_2 t_1$. Also $p_3 | a$ and so $p_3 | b$, hence there exists $s_3 \in \mathbb{Z}$ such that $b = p_3 s_3$. Now $p_3 | p_1 p_2 t_1$ and $(p_3, p_1 p_2) = 1$. Therefore $p_3 | t_1$ and so $t_1 = p_3 t_2$ for a $t_2 \in \mathbb{Z}$. It implies that $b = p_1 p_2 p_3 t_2$. By continuing this process there exists $s_0 \in \mathbb{Z}$ such that $b = p_1 p_2 \dots p_t s_0$. Therefore $b^n = p_1^{r_1} p_2^{r_2} \dots p_t^{r_t} u$ where $u = p_1^{n-r_1} p_2^{n-r_2} \dots p_t^{n-r_t} s_0^n$. This consequence that $b^n \in I$ and we are done.

 (\Rightarrow) On the contrary and without loss of generality suppose that there exists $1 \leq i \leq t$ such that $r_i > n$ and $1 \leq r_j \leq n$ for any $j \neq i$. We consider $s \leq r_i$ such that $sn \geq r_i$.

Alg. Struc. Appl. Vol. 11 No. 1 (2024) 55-61.

We put $a = p_1...p_i...p_t$ and $b = p_1...p_i^s...p_t$. One can easily show that $\mathcal{M}(a) = \mathcal{M}(b)$ and $b^n = p_1^n...p_i^{ns}...p_t^n \in I$ while $a^n \notin I$ and it is a contradicts to assumption. \Box

We deduce the following result immediately. See also Corollary 1 of [6].

Corollary 1.2. The ideal I = (k) is a z-ideal in \mathbb{Z} if and only if $k = p_1 p_2 \dots p_t$ where p_i 's are distinct prime numbers.

2. Radically z-covered and radically z° -covered

An ideal I of a ring R is said to be \sqrt{z} -ideal (resp. $\sqrt{z^{\circ}}$ -ideal) if \sqrt{I} is a z-ideal (resp. z° -ideal), see [5]. The set of all \sqrt{z} -ideals (resp. $\sqrt{z^{\circ}}$ -ideals) of R is denoted by $\mathcal{Z}^{rad}(R)$ (resp. $\mathcal{Z}^{\circ rad}(R)$). Also an ideal I of a ring R is called higher order z-ideal (resp. z° -ideal) if there exist $n \in \mathbb{N}$ such that $I \in \mathcal{Z}^n(R)$ (resp. $I \in \mathcal{Z}^{\circ n}(R)$). A ring R is called radically z-covered (resp. radically z° -covered) if every \sqrt{z} -ideal (resp. $\sqrt{z^{\circ}}$ -ideal) in R is a higher order z-ideal (resp. z° -ideal), see [7] and [14] for details.

It seems that an example of a non radically z-covered ring is essential which is not given in [7]. As a matter of fact we must show that there is an ideal I of a ring R such that \sqrt{I} is a z-ideal but I is not a z^n -ideal for every $n \in \mathbb{N}$. See the following example for this purpose.

Example 2.1. Let F be a field and put $R = F[x_1, x_2, x_3, \cdots]$. Suppose that $I = (x_1, x_2^2, x_3^4, x_4^6, \cdots, x_{n+1}^{2n}, \cdots)$. It is clear that $\sqrt{I} = (x_1, x_2, x_3, \cdots)$ is a maximal ideal of R and hence it is a z-ideal of R, that is, $I \in \mathbb{Z}^{\mathrm{rad}}(R)$. One can easily see that $\mathcal{M}(x_{n+1}) = \mathcal{M}(x_{n+1}^2)$, for $n = 1, 2, \cdots$ and $(x_{n+1}^2)^n \in I$ while $(x_{n+1})^n \notin I$. This shows that I is not a z^n -ideal for any $n \in \mathbb{N}$ and consequently R is not radically z-covered.

Every z^n -ideal is a z^{n+1} -ideal, for any $n \in \mathbb{N}$, but the converse is not true, see Example 5 of [7].

Proposition 2.2. rad(R) = Jac(R) if and only if every $z^{\circ n}$ -ideal is a z^{n} -ideal, for an $n \in \mathbb{N}$.

Proof. (\Leftarrow) Similar to Proposition 1.3 in [13].

(⇒) Suppose that $\mathcal{M}(a) = \mathcal{M}(b)$ and $a^n \in I$. We claim that $\mathcal{P}(a) = \mathcal{P}(b)$. To see this, let $P \in \mathcal{P}(a)$. Hence $a \in P$ and there is $c \notin P$ such that $ac \in \operatorname{rad}(R) = \operatorname{Jac}(R)$. Therefore $M(a) \cap M(c) = M(ac) \subseteq \operatorname{Jac}(R) = \operatorname{rad}(R) \subseteq P$. This implies that $M(a) \subseteq P$. Since $\mathcal{M}(a) = \mathcal{M}(b)$ we infer that M(a) = M(b). Hence $M(b) \subseteq P$ and so $b \in P$. Thus $P \in \mathcal{P}(b)$, that is $\mathcal{P}(a) \subseteq \mathcal{P}(b)$. Similarly, $\mathcal{P}(b) \subseteq \mathcal{P}(a)$ and hence $\mathcal{P}(a) = \mathcal{P}(b)$. Since I is a $z^{\circ n}$ -ideal we conclude that $b^n \in I$ and we are done. \Box

R. Mohamadian

In C(X) if \sqrt{I} is a z° -ideal then so is I, see Proposition 3.4 in [5], therefore C(X) is radically z° -covered.

It seems that an example of a non radically z° -covered ring is essential which is not given in [14]. The following example shows that a ring may not be radically z° -covered.

Example 2.3. Let F be a field and put $S = F[x_1, x_2, x_3, \cdots]$. Suppose that $I = (x_1^2, x_2^4, x_3^6, \cdots, x_n^{2n}, \cdots)$ and $J = (x_1, x_2^2, x_3^3, \cdots, x_n^n, \cdots)$. Now assume that $R = \frac{S}{I}$ and $K = \frac{J}{I}$. It is clear that $\sqrt{K} = \frac{(x_1, x_2, x_3, \cdots)}{I}$ is a minimal prime ideal of R and hence it is a z° -ideal of R, that is, $K \in \mathcal{Z}^{\text{orad}}(R)$. We claim that K is not a $z^{\circ n}$ -ideal for any $n \in \mathbb{N}$. To see this we observe that $\mathcal{P}(x_{n+1}+I) = \mathcal{P}(x_{n+1}^2+I)$, for $n = 1, 2, \cdots$ and $(x_{n+1}^2+I)^n \in K$ while $(x_{n+1}+I)^n \notin K$. This shows that K is not a $z^{\circ n}$ -ideal for any $n \in \mathbb{N}$ and consequently R is not radically z° -covered.

3. z° -terminating

Every $z^{\circ n}$ -ideal is a $z^{\circ n+1}$ -ideal, for any $n \in \mathbb{N}$. Hence we have the ascending chain $\mathcal{Z}^{\circ}(R) \subseteq \mathcal{Z}^{\circ 2}(R) \subseteq \mathcal{Z}^{\circ 3}(R) \subseteq \cdots$ of collections of ideals of R. We call it z° -tower of R. If there is a positive integer k such that $\mathcal{Z}^{\circ k}(R) = \mathcal{Z}^{\circ k+1}(R) = \cdots$ we say the z° -tower terminates.

Definition 3.1. ([14], Definition 4.2.8) A ring R is z° -terminating in case its z° -tower terminates.

In C(X) we have $\mathcal{Z}^{\circ}(C(X)) = \mathcal{Z}^{\circ 2}(C(X)) = \cdots$, hence C(X) is a z° -terminating ring. In \mathbb{Z} for any $n \in \mathbb{N}$ we have $\mathcal{Z}^{\circ n}(\mathbb{Z}) = \{(0)\}$, so \mathbb{Z} is z° -terminating.

The ring of integers is not z-terminating, see Example 5 of [7]. It seems that an example of a non z° -terminating ring is essential which is not given in [14]. The following example shows that a $z^{\circ n+1}$ -ideal may not be a $z^{\circ n}$ -ideal and consequence that a ring may not be z° -terminating.

Example 3.2. Let S be a reduced ring with subring Z and $P \neq (0)$ be a minimal prime ideal in S with $P \cap \mathbb{Z} = (0)$. By Lemma 3.6 in [5], $Q = xP[x] \subseteq S[x]$ is a minimal prime ideal in $R = \mathbb{Z} + xS[x]$ and hence it is a z° -ideal. Now we consider $Q_n = x^n P[x]$ with $1 \neq n \in \mathbb{N}$. Clearly, $\sqrt{Q_n} = Q$. We claim that $Q_{n+1} \in \mathbb{Z}^{\circ n+1}(R)$ but $Q_{n+1} \notin \mathbb{Z}^{\circ n}(R)$. For the former, suppose that $\mathcal{P}(f) = \mathcal{P}(g)$ and $f^{n+1} \in Q_{n+1}$. Hence $f \in \sqrt{Q_{n+1}} = Q$. Therefore $Q \in \mathcal{P}(f) = \mathcal{P}(g)$ implies that $g \in Q$. So there exists $h(x) \in P[x]$ such that g(x) = xh(x). It implies that $g_0 = 0$, where g_0 is constant coefficient of g. Consequently, $(g(x))^{n+1} = x^{n+1}l(x)$ for an $l(x) \in P[x]$, that is, $g^{n+1} \in Q_{n+1}$. Next suppose that $0 \neq a \in P$. Put $f(x) = ax^2$ and g(x) = ax. Clearly, $\mathcal{P}(f) = \mathcal{P}(g)$. Now $(f(x))^n = x^{n+1}a^nx^{n-1} \in x^{n+1}P[x] = Q_{n+1}$ but $(g(x))^n = x^na^n \notin x^{n+1}P[x] = Q_{n+1}$. This show that Q_{n+1} is not a $z^{\circ n}$ -ideal.

Proposition 3.3. ([14], Theorem 4.2.11) Noetherian rings are radically z° -covered.

Archive of SID.ir

58

Alg. Struc. Appl. Vol. 11 No. 1 (2024) 55-61.

If X is an infinite set then C(X) is radically z° -covered ring which is not Noetherian. In Example 3.2 if S is a finitely generated Z-module, then R is a Noetherian ring, see Proposition 2.1 in [10], so by the above proposition it is a radically z° -covered ring while is not z° -terminating.

It is well known that if $\varphi : R \to S$ is a surjective ring homomorphism then $\varphi(\operatorname{rad}(R)) \subseteq \operatorname{rad}(S)$. A ring homomorphism $\varphi : R \to S$ is strong if it is surjective and for every minimal prime ideal P of R, there is a minimal prime ideal Q of S such that $\varphi^{-1}[Q] = P$, see Definition 4.4.1 of [14].

Proposition 3.4. Let $\varphi : R \to S$ is a strong homomorphism. Then

- (1) $\varphi(\operatorname{rad}(R)) = \operatorname{rad}(S).$
- (2) if $P \in Min(R)$, then $\varphi[P] \in Min(S)$.
- (3) if $Q \in Min(S)$, then $\varphi^{-1}[Q] \in Min(R)$.

Proof. (1) It is clear.

(2) It is clear that $\varphi[P]$ is a proper prime ideal of S. We are to show that $\varphi[P] \in Min(S)$. Let $y \in \varphi[P]$, hence there exists $x \in P$ such that $y = \varphi(x)$. Therefore there is $b \notin P$ such that $bx \in rad(R)$. Now $\varphi(bx) = \varphi(b)\varphi(x) = \varphi(b)y \in \varphi(rad(R)) = rad(S)$. On the other hand $\varphi(b) \notin \varphi[P]$. Otherwise $\varphi(b) = \varphi(t)$ for a $t \in P$. Hence $b - t \in ker(\varphi) \subseteq P$ implies that $b \in P$ which is not true. It implies that $\varphi[P]$ is a minimal prime ideal of S.

(3) Let $Q \in Min(S)$ and $a \in \varphi^{-1}[Q]$. Hence $\varphi(a) \in Q$ and so there exists $y \notin Q$ such that $y\varphi(a) \in rad(S)$. On the other hand, there is $x \in R$ such that $\varphi(x) = y$. Therefore $\varphi(ax) \in rad(S) = \varphi(rad(R))$. Thus $\varphi(ax) = \varphi(t)$ for a $t \in rad(R)$. So $ax - t \in ker(\varphi) \subseteq rad(R)$ implies that $ax \in rad(R)$. Furthermore since $\varphi(x) \notin Q$ we infer that $x \notin \varphi^{-1}[Q]$. It implies that $\varphi^{-1}[Q]$ is a minimal prime ideal of R. \Box

Proposition 3.5. Let $\varphi : R \to S$ is a surjective ring homomorphism. Then the following statements are equivalent.

- (1) φ is strong.
- (2) $\ker(\varphi) \subseteq \operatorname{rad}(R)$.
- (3) For any $a_1, a_2 \in R$, $\mathcal{P}(\varphi(a_2)) \subseteq \mathcal{P}(\varphi(a_1))$ implies that $\mathcal{P}(a_2) \subseteq \mathcal{P}(a_1)$.

Proof. $(1 \Rightarrow 2)$ Let $P \in Min(R)$, by hypothesis, there exists $Q \in Min(S)$ such that $\varphi^{-1}[Q] = P$. Then $ker(\varphi) \subseteq \varphi^{-1}[Q] = P$, and hence $ker(\varphi) \subseteq rad(R)$.

 $(2 \Rightarrow 1)$ Let $P \in Min(R)$. We will show that $P = \varphi^{-1}[\varphi[P]]$ and we conclude by Proposition 3.4. Let $a \in \varphi^{-1}[\varphi[P]]$, then $\varphi(a) \in \varphi[P]$, and so $\varphi(a) = \varphi(x)$ for some $x \in P$. It follows that $x - a \in ker(\varphi) \subseteq P$, by hypothesis. Thus $a \in P$. The direct inclusion is clear.

59

60

R. Mohamadian

 $(2 \Rightarrow 3)$ Let $P \in \mathcal{P}(a_2)$, hence $a_2 \in P$. Therefore $\varphi(a_2) \in \varphi[P]$. By Proposition 3.4 we have $\varphi[P] \in \mathcal{P}(\varphi(a_2))$ and by hypothesis $\varphi[P] \in \mathcal{P}(\varphi(a_1))$, that is $\varphi(a_1) \in \varphi[P]$. Hence $\varphi(a_1) = \varphi(t)$ for a $t \in P$. This consequence $a_1 - t \in \ker(\varphi) \subseteq \operatorname{rad}(R) \subseteq P$ and so $a_1 \in P$, i.e., $P \in \mathcal{P}(a_1)$.

 $(3 \Rightarrow 2)$ Suppose that $x \in \ker(\varphi)$, hence $\varphi(x) = 0$. Since $\mathcal{P}(\varphi(0)) \subseteq \mathcal{P}(\varphi(x))$ by hypothesis $\mathcal{P}(0) \subseteq \mathcal{P}(x)$. Therefore $P(x) \subseteq P(0) = \operatorname{rad}(R)$. It implies that $x \in \operatorname{rad}(R)$. \Box

Corollary 3.6. ([14], Lemma 4.4.6) Let $\varphi : R \to S$ be a strong homomorphism. If J is a $z^{\circ n}$ -ideal of S, then $\varphi^{-1}[J]$ is a $z^{\circ n}$ -ideal of R.

Proposition 3.7. ([14], Proposition 4.4.7) Let $\varphi : R \to S$ is a strong homomorphism. If R is z° -terminating or radically z° -covered, then so is S.

Remark 3.8. a) Let $\varphi : R \to S$ be a surjective ring homomorphism. If $\mathcal{Z}^{rad}(R) = \mathcal{Z}(R)$ then $\mathcal{Z}^{rad}(S) = \mathcal{Z}(S)$. Hence $\frac{C(X)}{I}$ is a radically *z*-covered ring, for every ideal *I* of C(X).

b) Let $\varphi: R \to S$ is a strong homomorphism. If $\mathcal{Z}^{\operatorname{orad}}(R) = \mathcal{Z}^{\circ}(R)$ then $\mathcal{Z}^{\operatorname{orad}}(S) = \mathcal{Z}^{\circ}(S)$.

c) Let I be an ideal of R such that $I \subseteq \operatorname{rad}(R)$ and $\varphi : R \to \frac{R}{I}$ be a natural ring homomorphism. If R is z° -terminating (resp. radically z° -covered), then $\frac{R}{I}$ is z° -terminating (resp. radically z° -covered).

d) If rad(R) is contained in every higher order z° -ideal of R, then R is z° -terminating (resp. radically z° -covered) if and only if $\frac{R}{rad(R)}$ has the same property.

4. Acknowledgments

The author would like to thank the referee for reading the article carefully and giving useful comments. Also I am grateful to the Research Council of Shahid Chamran University of Ahvaz financial support (GN:SCU.MM401.648).

References

- D. D. Anderson and J. Kintzinger, Ideals in direct products of commutative rings, Bull. Austr. Math. Soc., 77 (2008) 477-483.
- [2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesely, Reading Mass, 1969.
- [3] F. Azarpanah, O. A. S. Karamzadeh and A. Rezaei Aliabad, On z°-ideal in C(X), Fund. Math., 160 (1999) 15-25.
- [4] F. Azarpanah, O. A. S. Karamzadeh and A. Rezaei Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra, 28 (2000) 1061-1073.
- [5] F. Azarpanah and R. Mohamadian, \sqrt{z} -ideals and $\sqrt{z^{\circ}}$ -ideals in C(X), Acta. Math. Sinica. English Series, 23 (2007) 989-996.
- [6] A. Benhissi and A. Maatallah, A question about Higher order z-ideals in commutative rings, Quaest. Math.,
 43 (2020) 1155-1157.

Alg. Struc. Appl. Vol. 11 No. 1 (2024) 55-61.

- [7] T. Dube and O. Ighedo, *Higher order z-ideals in commutative rings*, Miskolc Math. Notes, **17** No. 1 (2016) 171-185.
- [8] R. Engelking, General Topology, PWN-polish Science Publication, Warsaw, Poland, 1977.
- [9] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, Berlin, Germany, 1976.
- [10] S. Hizem, Chain conditions in rings of the form A + xB[x] and A + xI[x], J. Commut. Algebra, (2009) 259-274.
- [11] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, MA, USA, 1970.
- [12] G. Mason, z-ideals and prime ideals, J. Algebra, 26 (1973) 280-297.
- [13] A. Rezaei Aliabad and R. Mohamadian, On z-Ideals and z°-Ideals of Power Series Rings, J. Math. Ext., 7 (2013) 93-108.
- [14] Tharesakgosi, B. Topics on z-ideals of Commutative Rings, University of South Africa, Pretoria, 2017.

Rostam Mohamadian

Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran. mohamadian_r@scu.ac.ir