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A STUDY ON CONSTACYCLIC CODES OVER THE RING Z4 + uZ4 + u2Z4

ST TIMOTHY KOM∗, O. RATNABALA DEVI AND TH. ROJITA CHANU

Abstract. This paper studies λ-constacyclic codes and skew λ-constacyclic codes over the

finite commutative non-chain ring R = Z4 + uZ4 + u2Z4 with u3 = 0 for λ = (1 + 2u+ 2u2)

and (3 + 2u + 2u2). We introduce distinct Gray maps and show that the Gray images of

λ-constacyclic codes are cyclic, quasi-cyclic, and permutation equivalent to quasi-cyclic codes

over Z4. It is also shown that the Gray images of skew λ-constacyclic codes are quasi-cyclic

codes of length 2n and index 2 over Z4. Moreover, the structure of λ-constacyclic codes of

odd length n over the ring R is determined and give some suitable examples.

1. Introduction

In the beginning of coding theory, the study of linear codes was within the confines of vector
spaces over finite fields. After the landmark paper of Hammon et al. [9], in which certain good
non-linear binary codes are constructed from cyclic codes over Z4 via the Gray map, there has
been a paradigm shift in the studies of codes towards finite rings. Since then, many researchers
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are interested in codes over finite rings because of their new role in algebraic coding theory and
a wide range of applications in various fields. Cyclic codes are a significant class of linear codes
over finite rings and have been studied by many authors in various rings [1, 2, 8, 13, 15, 19].
For instance, Özen et al. [13] studied cyclic codes over the ring Z4 + uZ4 + u2Z4 with u3 = 0

and obtained their generators and minimal spanning sets. By considering the Gray map, they
obtained many new linear codes over Z4.

Constacyclic codes are a well-known generalization of cyclic codes. Much research on con-
stacyclic codes over various rings has been done as it can be effectively implemented by shift
constant. In [16], Qian et al. studied the constacyclic codes over the ring F2 + uF2 where
u2 = 0 and showed that the Gray image of (1+u)-constacyclic code of length n is distance in-
variant cyclic codes of length 2n. Later on, many researchers have been studying constacyclic
codes over other finite rings like Z4 and its extensions to get optimal codes. In [21], Yildiz
and Aydin discussed linear codes and cyclic codes over Z4+uZ4, u

2 = 0 and many new linear
codes over Z4 were obtained. Later, Yu et al. [22] studied codes on the same ring and proved
that Z4-image of a (1 + u)-constacyclic code of length n is a cyclic code over Z4 of length 4n.
In fact, there is a vast literature on constacyclic codes over various finite rings, we refer to
[3, 4, 5, 6, 10, 12, 14, 17], along with their references.

Recently, Islam and Prakash [11] considered the ring Z4 + uZ4 + vZ4, where u2 = v2 =

uv = vu = 0 of order 64 and determined the generator polynomials and minimal spanning set
for cyclic codes over the ring. Further, the authors proved that the Gray images of (1 + 2u)-
constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to a quasi-cyclic code
over Z4. In [7], Dertli and Cengellenmis introduced the ring Z4 + uZ4 + vZ4, u2 = u, v2 =

v, uv = vu = 0 and studied the Gray images of cyclic, constacyclic, quasi-cyclic and their skew
codes over the ring. Moreover, they determined the cyclic DNA and skew cyclic DNA codes
over the ring.

Indeed, Islam et al. [10] discussed the λ-constacyclic and skew λ-constacyclic codes over the
ring Z4[u]/⟨uk⟩, where uk = 0 with λ = (1+2uk−1) and (3+ 2uk−1). The authors have shown
that the Gray images of λ-constacyclic and skew λ-constacyclic codes over the ring are cyclic,
quasi-cyclic, permutation equivalent to a quasi-cyclic code over Z4. Further, they obtained
the generators of the λ-constacyclic codes over the ring.

Being motivated by the above-mentioned works, we consider the commutative ring R = Z4+

uZ4+u
2Z4, where u3 = 0, as a particular case of [10], by taking different units λ = (1+2u+2u2)

and (3 + 2u+2u2) and study the algebraic properties of the ring. In this paper, we introduce
new Gray maps and study their images of λ-constacyclic codes over Z4 with λ = (1+2u+2u2)

and (3 + 2u + 2u2). The intention of this article is to establish relations among the known
linear codes like cyclic, quasi-cyclic or permutation equivalent to quasi-cyclic code over Z4
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via the newly introduced Gray maps obtained as Z4 -images of λ-constacyclic codes over the
ring R. The presentation of this paper is organized as follows. In Section 2, we discuss some
preliminary concepts of the ring R. Some new Gray maps are introduced in Section 3, and we
investigate the properties of the Gray images of λ-constacyclic codes with λ = (1 + 2u+ 2u2)

and (3 + 2u + 2u2), respectively. In Section 4, we discuss skew constacyclic codes over R
and obtain that some particulars Z4-images are quasi-cyclic codes. Furthermore, in Section 5,
we determine the algebraic structures of the λ-constacyclic codes over the ring R with some
suitable examples and study some results on λ-constacyclic codes with Nechaev permutation
and other permutations. Section 6 concludes the paper.

2. Preliminaries

In [13], Özen et al. considered the commutative ring R = Z4 + uZ4 + u2Z4 with u3 = 0 and
studied the cyclic codes over R. Clearly, R is isomorphic to Z4[u]/⟨u3⟩ and it has characteristic
4 and order 64. Any element x of R can be written as x = a + ub + u2c, where a, b, c ∈ Z4

and x is a unit in R if only if a is a unit in Z4. There are 32 units and 32 non-units in R.
The set of units U = {1, 3, 1 + 2u, 1 + 2u2, 1 + 2u+ 2u2, 3 + 2u, 3 + 2u2, 3 + 2u+ 2u2} satisfies
λ2 = 1 for all λ ∈ U . The units (1+2u+2u2) and (3+2u+2u2) are used in the studies of this
paper. The ring R has 13 ideals given by {⟨0⟩, ⟨2⟩, ⟨u⟩, ⟨2u⟩, ⟨u2⟩, ⟨2u2⟩, ⟨2+u2⟩, ⟨2u+u2⟩, ⟨2+
u⟩, ⟨2, u⟩, ⟨2, u2⟩, ⟨2, 2u2⟩, R}. It is a local ring with unique maximal ideal ring ⟨2, u⟩. Also, R
is not a chain ring as the ideals ⟨u2⟩ and ⟨2u⟩ are not comparable under the set inclusion.

We recall that a linear code C of length n over R is an R-submodule of Rn and elements of
the code are called codewords. A linear code C of length n over R is said to be a cyclic code
if it is invariant under the cyclic shift operator σ, i.e., σ(C) = C, where σ(c0, c1, . . . , cn−1) =

(cn−1, c0, . . . , cn−2) for all (c0, c1, . . . , cn−1) ∈ C. Let λ be a unit in R. A linear code C of
length n over R is said to be a λ-constacyclic code if it is invariant under the constacyclic
shift operator τλ, i.e., τλ(C) = C, where τλ(c0, c1, . . . , cn−1) = (λcn−1, c0, . . . , cn−2) for all
(c0, c1, . . . , cn−1) ∈ C. Moreover, a λ-constacyclic code of length n over R can be identified as
an ideal of the quotient ring Rn,λ = R[x]/⟨xn − λ⟩ by the correspondence

c = (c0, c1, . . . , cn−1) → c(x) = c0 + c1x+ · · ·+ cn−1x
n−1(mod⟨xn − λ⟩).

Definition 2.1. [11] Let σ be the cyclic shift operator and n = ml. Then, the quasi-cyclic
shift operator ρl is defined by

ρl(c
1|c2| · · · |cl) = (σ(c1)|σ(c2)| · · · |σ(cl)|),

where ci ∈ Zm
4 for i = 1, 2, . . . , l. A linear code C of length n over Z4 is said to be a quasi-cyclic

code of index l if and only if ρl(C) = C.
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3. Gray maps and Z4-images of λ-constacyclic codes

In the present section, we introduce new Gray maps and discuss some relations between the
Gray images of λ-constacyclic codes with λ = (1 + 2u + 2u2) and (3 + 2u + 2u2) and some
well-known linear codes over Z4. It is divided into two subsections and discussed below.

3.1. (1 + 2u + 2u2)-constacyclic codes over R and their Z4-images. In this section,
we consider three different Gray maps on the ring R and show that the Gray images of
(1+ 2u+2u2)-constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to quasi-
cyclic codes over Z4.

We first take a Gray map ψ1 from R to Z2
4 as

ψ1 : R→ Z2
4,

defined by

ψ1(a+ ub+ u2c) = (b+ 2c, 2a+ b+ 2c) ∀ a, b, c ∈ Z4.

Clearly, ψ1 is a Z4-linear map but not bijective. This map can be extended to Rn component-
wise as follows:

ψ1 : R
n → Z2n

4 ,

ψ1(r0, r1, . . . , rn−1) = (b0 + 2c0, b1 + 2c1, . . . , bn−1 + 2cn−1, 2a0 + b0 + 2c0,

2a1 + b1 + 2c1, . . . , 2an−1 + bn−1 + 2cn−1),(1)

where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n− 1.
Keeping in view of the Section 3. of [12], we recall that the Lee weight wL(x) of any

x ∈ Z4 is min{|x|, |4 − x|}. Thus, the Lee weights of 0, 1, 2, 3 are, respectively, 0, 1, 2,
1. The Lee weight of a vector v ∈ Zn

4 is defined as the rational sum of the Lee weight of
its coordinates. The Lee weight for any r ∈ R is defined as wL(r) = wL(ψ1(r)) and for

r = (r0, r1, . . . , rn−1) ∈ Rn is given by wL(r) =
n−1∑
i=0

wL(ri). And, the Lee distance for the code

C is defined by d(C) = min{dL(r, r′) | r ̸= r′, r, r′ ∈ C}, where dL(r, r′) = wL(r − r′). Now,
dL(r, r

′) = wL(r − r′) = wL(ψ1(r − r′)) = wL(ψ1(r)− ψ1(r
′)) = dL(ψ1(r), ψ1(r

′)), ∀ r, r′ ∈ Rn.
Hence, ψ1 is a distance preserving map from Rn(Lee distance) to Z2n

4 (Lee distance).

Proposition 3.1. For any r ∈ Rn, we have ψ1τ(1+2u+2u2)(r) = σψ1(r), where ψ1, τ(1+2u+2u2)

and σ are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n− 1. Clearly, (1+2u+2u2)(an−1+ubn−1+u2cn−1) = an−1+u(2an−1+ bn−1)+
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u2(2an−1 + 2bn−1 + cn−1). Therefore,

ψ1τ(1+2u+2u2)(r) = ψ1

(
(1 + 2u+ 2u2)rn−1, r0, . . . , rn−2

)
= (2an−1 + bn−1 + 2cn−1, b0 + 2c0, . . . , bn−2 + 2cn−2, bn−1 + 2cn−1,

2a0 + b0 + 2c0, . . . , 2an−2 + bn−2 + 2cn−2).

On the other hand, we have

σψ1(r) = σ(b0 + 2c0, b1 + 2c1, . . . , bn−1 + 2cn−1, 2a0 + b0 + 2c0, 2a1 + b1 + 2c1, . . . ,

2an−1 + bn−1 + 2cn−1)

= (2an−1 + bn−1 + 2cn−1, b0 + 2c0, . . . , bn−2 + 2cn−2, bn−1 + 2cn−1, 2a0 + b0 + 2c0, . . . ,

2an−2 + bn−2 + 2cn−2).

Hence, ψ1τ(1+2u+2u2)(r) = σψ1(r).

Theorem 3.2. The Gray image, ψ1(C) of a (1 + 2u + 2u2)-constacyclic code C of length n

over R is a cyclic code of length 2n over Z4.

Proof. Since C is a (1 + 2u + 2u2)-constacyclic code of length n over R, τ(1+2u+2u2)(C) = C.
Applying ψ1 on both sides and using Proposition 3.1, we have σψ1(C) = ψ1(C). This shows
that ψ1(C) is a cyclic code of length 2n over Z4.

Again, we define another Gray map ψ2 from Rn to Z2n
4 as

ψ2 : R
n → Z2n

4 ,

given by

ψ2(r0, r1, . . . , rn−1) = (a0, a1, . . . , an−1, a0 + 2b0 + 2c0, a1 + 2b1 + 2c1, . . . ,

an−1 + 2bn−1 + 2cn−1),(2)

where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n− 1.

Proposition 3.3. For any r ∈ Rn, we have ψ2τ(1+2u+2u2)(r) = ρ2ψ2(r), where ψ2, τ(1+2u+2u2)

and ρ2 are introduced in above.
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Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n− 1. Then

ψ2τ(1+2u+2u2)(r) = ψ2((1 + 2u+ 2u2)rn−1, r0, . . . , rn−2)

= (an−1, a0, . . . , an−2, an−1 + 2bn−1 + 2cn−1, a0 + 2b0 + 2c0, . . . ,

an−2 + 2bn−2 + 2cn−2).

And, we have

ρ2ψ2(r) = ρ2(a0, a1, . . . , an−1, a0 + 2b0 + 2c0, a1 + 2b1 + 2c1, . . . , an−1 + 2bn−1 + 2cn−1)

= (an−1, a0, . . . , an−2, an−1 + 2bn−1 + 2cn−1, a0 + 2b0 + 2c0, . . . , an−2 + 2bn−2 + 2cn−2).

Hence, ψ2τ(1+2u+2u2)(r) = ρ2ψ2(r).

Theorem 3.4. The Gray image, ψ2(C) of a (1 + 2u + 2u2)-constacyclic code C of length n

over R is a quasi-cyclic code of length 2n and index 2 over Z4.

Proof. Since C is a (1 + 2u + 2u2)-constacyclic code of length n over R, τ(1+2u+2u2)(C) = C.
Applying ψ2 on both sides and by Proposition 3.3, we have ρ2ψ2(C) = ψ2(C). This shows
that ψ2(C) is a quasi-cyclic code of length 2n and index 2 over Z4.

Further, we define another Gray map

ψ3 : R
n → Z3n

4 ,

by

ψ3(r0, r1, . . . , rn−1) = (2a0 + c0, 2a1 + c1, . . . , 2an−1 + cn−1, 2b0 + c0, 2b1 + c1, . . . ,

2bn−1 + cn−1, 2c0, 2c1, . . . , 2cn−1),(3)

where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n− 1.

Proposition 3.5. For any r ∈ Rn, we have ψ3τ(1+2u+2u2)(r) = δρ3ψ2(r), where ψ3, τ(1+2u+2u2)

and ρ3 are introduced in above and δ is the permutation on Z3n
4 defined by δ(p1, p2, . . . , p3n) =

(pε(1), pε(2), . . . , pε(3n)) with permutation ε = (1, n+ 1) of {1, 2, . . . , 3n}.
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Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n− 1. Then

ψ3τ(1+2u+2u2)(r) = ψ3((1 + 2u+ 2u2)rn−1, r0, . . . , rn−2)

= (2bn−1 + cn−1, 2a0 + c0, . . . , 2an−2 + cn−2, 2an−1 + cn−1, 2b0 + c0, . . . ,

2bn−2 + cn−2, 2cn−1, 2c0, . . . , 2cn−2),

and, we have

ρ3ψ3(r) = ρ3(2a0 + c0, 2a1 + c1, . . . , 2an−1 + cn−1, 2b0 + c0, 2b1 + c1, . . . , 2bn−1 + cn−1,

2c0, 2c1, . . . , 2cn−1)

= (2an−1 + cn−1, 2a0 + c0, . . . , 2an−2 + cn−2, 2bn−1 + cn−1, 2b0 + c0, . . . ,

2bn−2 + cn−2, 2cn−1, 2c0, . . . , 2cn−2).

On applying the permutation δ, we get

δρ3ψ3(r) = (2bn−1 + cn−1, 2a0 + c0, . . . , 2an−2 + cn−2, 2an−1 + cn−1, 2b0 + c0, . . . ,

2bn−2 + cn−2, 2cn−1, 2c0, . . . , 2cn−2).

Hence, ψ3τ(1+2u+2u2)(r) = δρ3ψ3(r).

Theorem 3.6. The Gray image, ψ3(C) of a (1 + 2u + 2u2)-constacyclic code C of length n

over R is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over Z4.

Proof. Since C is a (1 + 2u + 2u2)-constacyclic code of length n over R, τ(1+2u+2u2)(C) = C.
Applying ψ3 on both sides and using Proposition 3.5, we have δρ3ψ3(C) = ψ3(C). This shows
that ψ3(C) is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over
Z4.

The permutation version of the above Gray map ψ1, denoting by, ψ1,π is defined as follows

ψ1,π(r0, r1, . . . , rn−1) = (b0 + 2c0, 2a0 + b0 + 2c0, b1 + 2c1, 2a1 + b1 + 2c1, . . . ,

bn−1 + 2cn−1, 2an−1 + bn−1 + 2cn−1),(4)

where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n− 1.

Proposition 3.7. For any r ∈ Rn, we have ψ1,πσ(r) = σ2ψ1,π(r), where ψ1,π and σ are
introduced in above.
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Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n− 1. Then

ψ1,πσ(r) = ψ1,π(rn−1, r0, . . . , rn−2)

= (bn−1 + 2cn−1, 2an−1 + bn−1 + 2cn−1, b0 + 2c0, 2a0 + b0 + 2c0, . . . , bn−2 + 2cn−2,

2an−2 + bn−2 + 2cn−2),

and, we have

σ2ψ1,π(r) = σ2(b0 + 2c0, 2a0 + b0 + 2c0, b1 + 2c1, 2a1 + b1 + 2c1, . . . , bn−1 + 2cn−1,

2an−1 + bn−1 + 2cn−1)

= (bn−1 + 2cn−1, 2an−1 + bn−1 + 2cn−1, b0 + 2c0, 2a0 + b0 + 2c0, . . . , bn−2 + 2cn−2,

2an−2 + bn−2 + 2cn−2).

Hence, ψ1,πσ(r) = σ2ψ1,π(r).

Theorem 3.8. The Gray image, ψ1,π(C) of a cyclic code C of length n over R is equivalent
to a 2-quasi-cyclic code of length 2n over Z4.

Proof. Since C is a cyclic code of length n over R, σ(C) = C. Applying ψ1,π on both sides and
using Proposition 3.7, we have σ2ψ1,π(C) = ψ1,π(C). This shows that ψ1,π(C) is equivalent to
a 2-quasi-cyclic code of length 2n over Z4.

Remark 3.9. Note that the other Gray maps ψ2 and ψ3 permutation versions can be defined
analogously to obtain the similar results.

3.2. (3+2u+2u2)-constacyclic codes over R and their Z4-images. In this part, we study
the (3 + 2u + 2u2)-constacyclic codes of length n over R by defining another three distinct
Gray maps and show that Gray images of such constacyclic codes are cyclic, quasi-cyclic or
permutation equivalent to quasi-cyclic codes.

Firstly, we define a Gray map φ1 from R to Z2
4 as

φ1 : R→ Z2
4,

by

φ1(a+ ub+ u2c) = (a+ b+ c, 3a+ b+ 3c) ∀ a, b, c ∈ Z4.

Clearly, φ1 is a Z4-linear map but not bijective. This map can be extended to Rn component-
wise as follows:
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φ1 : R
n → Z2n

4 ,

φ1(r0, r1, . . . , rn−1) = (a0 + b0 + c0, a1 + b1 + c1, . . . , an−1 + bn−1 + cn−1, 3a0 + b0 + 3c0,

3a1 + b1 + 3c1, . . . , 3an−1 + bn−1 + 3cn−1),(5)

where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n− 1.
Similarly, we consider another two Gray maps as given below:

φ2 : R
n → Z2n

4 ,

defined by

φ2(r0, r1, . . . , rn−1) = (2a0, 2a1, . . . , 2an−1, 2b0 + 2c0, 2b1 + 2c1, . . . , 2bn−1 + 2cn−1),(6)

and

φ3 : R
n → Z3n

4 ,

defined by

φ3(r0, r1, . . . , rn−1) = (2a0 + 2b0 + 3c0, 2a1 + 2b1 + 3c1, . . . , 2an−1 + 2bn−1 + 3cn−1,

c0, c1, . . . , cn−1, 2a0 + 2b0 + 2c0, 2a1 + 2b1 + 2c1, . . . ,

2an−1 + 2bn−1 + 2cn−1),(7)

where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n− 1.

Proposition 3.10. For any r ∈ Rn, we have φ1τ(3+2u+2u2)(r) = σφ1(r), where φ1, τ(3+2u+2u2)

and σ are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai+ubi+u
2ci ∈ R and ai, bi, ci ∈ Z4 for i =

0, 1, . . . , n−1. Clearly, (3+2u+2u2)rn−1 = 3an−1+u(2an−1+3bn−1)+u
2(2an−1+2bn−1+3cn−1).

Then

φ1τ(3+2u+2u2)(r) = φ1((3 + 2u+ 2u2)rn−1, r0, . . . , rn−2)

= (3an−1 + bn−1 + 3cn−1, a0 + b0 + c0, . . . , an−2 + bn−2 + cn−2, an−1 + bn−1+

cn−1, 3a0 + b0 + 3c0, . . . , 3an−2 + bn−2 + 3cn−2),
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and, we have

σφ1(r) = σ(a0 + b0 + c0, a1 + b1 + c1, . . . , an−1 + bn−1 + cn−1, 3a0 + b0 + 3c0, 3a1 + b1 + 3c1,

. . . , 3an−1 + bn−1 + 3cn−1)

= (3an−1 + bn−1 + 3cn−1, a0 + b0 + c0, . . . , an−2 + bn−2 + cn−2, an−1 + bn−1 + cn−1,

3a0 + b0 + 3c0, . . . , 3an−2 + bn−2 + 3cn−2).

Hence, φ1τ(3+2u+2u2)(r) = σφ1(r).

Theorem 3.11. The Gray image, φ1(C) of a (3 + 2u+ 2u2)-constacyclic code C of length n
over R is a cyclic code of length 2n over Z4.

Proof. Since C is a (3 + 2u + 2u2)-constacyclic code of length n over R, τ(3+2u+2u2)(C) = C.
Applying φ1 on both sides and using Proposition 3.9, we have σφ1(C) = φ1(C). This shows
that φ1(C) is a cyclic code of length 2n over Z4.

Proposition 3.12. For any r ∈ Rn, we have φ2τ(3+2u+2u2)(r) = ρ2φ2(r), where φ2,
τ(3+2u+2u2) and ρ2 are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n− 1. Then

φ2τ(3+2u+2u2)(r) = φ2((3 + 2u+ 2u2)rn−1, r0, . . . , rn−2)

= (2an−1, 2a0, . . . , 2an−2, 2bn−1 + 2cn−1, 2b0 + 2c0, . . . , 2bn−2 + 2cn−2),

and, we have

ρ2φ2(r) = ρ2(2a0, 2a1, . . . , 2an−1, 2b0 + 2c0, 2b1 + 2c1, . . . , 2bn−1 + 2cn−1)

= (2an−1, 2a0, . . . , 2an−2, 2bn−1 + 2cn−1, 2b0 + 2c0, . . . , 2bn−2 + 2cn−2).

Hence, φ2τ(3+2u+2u2)(r) = ρ2φ2(r).

Theorem 3.13. The Gray image, φ2(C) of a (3 + 2u+ 2u2)-constacyclic code C of length n
over R is a quasi-cyclic code of length 2n and index 2 over Z4.

Proof. Since C is a (3 + 2u + 2u2)-constacyclic code of length n over R, τ(3+2u+2u2)(C) = C.
Applying φ2 on both sides and using Proposition 3.12, we have ρ2φ2(C) = φ2(C). This shows
that φ2(C) is a quasi-cyclic code of length 2n and index 2 over Z4.
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Proposition 3.14. For any r ∈ Rn, we have φ3τ(3+2u+2u2)(r) = δρ3φ3(r), where φ3,
τ(3+2u+2u2), ρ3 and δ are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n− 1. Then

φ3τ(3+2u+2u2)(r) = φ3((3 + 2u+ 2u2)rn−1, r0, . . . , rn−2)

= (cn−1, 2a0 + 2b0 + 3c0, . . . , 2an−2 + 2bn−2 + 3cn−2,

2an−1 + 2bn−1 + 3cn−1, c0, . . . , cn−2, 2an−1 + 2bn−1

+ 2cn−1, 2a0 + 2b0 + 2c0, . . . , 2an−2 + 2bn−2 + 2cn−2),

and, we have

ρ3φ3(r) = ρ3(2a0 + 2b0 + 3c0, 2a1 + 2b1 + 3c1, . . . , 2an−1 + 2bn−1 + 3cn−1, c0, c1, . . . , cn−1,

2a0 + 2b0 + 2c0, 2a1 + 2b1 + 2c1, . . . , 2an−1 + 2bn−1 + 2cn−1)

= (2an−1 + 2bn−1 + 3cn−1, 2a0 + 2b0 + 3c0, . . . , 2an−2 + 2bn−2 + 3cn−2, cn−1, c0,

. . . , cn−2, 2an−1 + 2bn−1 + 2cn−1, 2a0 + 2b0 + 2c0, . . . , 2an−2 + 2bn−2 + 2cn−2).

On applying the permutation δ on both sides, we get

δρ3φ3(r) = (cn−1, 2a0 + 2b0 + 3c0, . . . , 2an−2 + 2bn−2 + 3cn−2, 2an−1 + 2bn−1 + 3cn−1, c0,

. . . , cn−2, 2an−1 + 2bn−1 + 2cn−1, 2a0 + 2b0 + 2c0, . . . , 2an−2 + 2bn−2 + 2cn−2).

Hence, φ3τ(3+2u+2u2)(r) = δρ3φ3(r).

Theorem 3.15. The Gray image, φ3(C) of a (3 + 2u+ 2u2)-constacyclic code C of length n
over R is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over Z4.

Proof. Since C is a (3 + 2u + 2u2)-constacyclic code of length n over R, τ(3+2u+2u2)(C) = C.
Applying φ3 on both sides and using Proposition 3.14, we have δρ3φ3(C) = φ3(C). This shows
that φ3(C) is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over
Z4.

Let φ1,π be the permutation version of the above Gray map φ1, which is defined as follows

φ1,π(r0, r1, . . . , rn−1) = (a0 + b0 + c0, 3a0 + b0 + 3c0, a1 + b1 + c1, 3a1 + b1 + 3c1,

. . . , an−1 + bn−1 + cn−1, 3an−1 + bn−1 + 3cn−1),(8)

where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n− 1.
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Proposition 3.16. For any r ∈ Rn, we have φ1,πσ(r) = σ2φ1,π(r), where φ1,π and σ are
introduced in above.

Proof. With a minor change in the permutation version of the Gray map, the proof is the
same as given in Proposition 3.7.

Theorem 3.17. The Gray image, φ1,π(C) of a cyclic code C of length n over R is equivalent
to a 2-quasi-cyclic code of length 2n over Z4.

Proof. Similar to the proof of Theorem 3.8.

4. Skew constacyclic codes and their Z4-images

We define an automorphism on the ring R by θ(a+ ub+ u2c) = a+ uc+ u2b ∀ a, b, c ∈ Z4,
where θ(a) = a, θ(u) = u2 and θ(u2) = u. Clearly, the order of the automorphism is 2 as
θ2(r) = r ∀ r ∈ R. The set R[x; θ] = {a0 + a1x+ · · ·+ an−1x

n−1 | ai ∈ R, i = 0, 1, . . . , n− 1}
is a non-commutative skew polynomial ring under the usual addition of polynomials and
multiplication of polynomials, which is defined as (axs)(bxt) = aθs(b)xs+t. By taking λ =

(1 + 2u+ 2u2) and (3 + 2u+ 2u2), we can identify each vector r = (r0, r1, r2, . . . , rn−1) ∈ Rn

with a polynomial r(x) ∈ R[x; θ]/⟨xn − λ⟩ by the following correspondence

r = (r0, r1, . . . , rn−1) → r(x) = r0 + r1x+ · · ·+ rn−1x
n−1(mod⟨xn − λ⟩).

Definition 4.1. [10] A non-empty subset C of Rn is called a skew λ-constacyclic code of
length n over R if it satisfies the following conditions:

(i) C is an R-submodule of Rn, and
(ii) if (c0, c1, . . . , cn−1) ∈ C, then

τθ,λ(c0, c1, . . . , cn−1) = (θ(λcn−1), θ(c0), . . . , θ(cn−2)) ∈ C.

Theorem 4.2. [10] Let C be a linear code of length n over R. Then C is a skew λ-constacyclic
code over R if and only if C is a left R[x; θ]-submodule of R[x; θ]/⟨xn − λ⟩.

Proposition 4.3. For any r ∈ Rn, we have ψ2τθ,λ = ρ2ψ2, where ψ2, ρ2 and τθ,λ with
λ = (1 + 2u+ 2u2) are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and
ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n − 1. Now, θ(ai + ubi + u2ci) = ai + uci + u2bi and
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θ
(
(1 + 2u+ 2u2)(an−1 + ubn−1 + u2cn−1)

)
= an−1+u(2an−1+2bn−1+cn−1)+u

2(2an−1+bn−1).
Therefore,

ψ2τθ,λ(r) = ψ2 (θ(λrn−1), θ(r0), . . . , θ(rn−2))

= (an−1, a0, . . . , an−2, an−1 + 2bn−1 + 2cn−1, a0 + 2b0 + 2c0, . . . ,

an−2 + 2bn−2 + 2cn−2).

From Proposition 3.3, we have

ρ2ψ2(r) = (an−1, a0, . . . , an−2, an−1 + 2bn−1 + 2cn−1, a0 + 2b0 + 2c0, . . . ,

an−2 + 2bn−2 + 2cn−2).

Hence, ψ2τθ,λ(r) = ρ2ψ2(r).

Theorem 4.4. The Gray image, ψ2(C) of a skew λ-constacyclic code C of length n over R
with λ = (1 + 2u+ 2u2) is a quasi-cyclic code of length 2n and index 2 over Z4.

Proof. Since C is a skew λ-constacyclic code of length n over R with λ = (1 + 2u + 2u2),
τθ,λ(C) = C. Applying ψ2 on both sides and by Proposition 4.3, we have ρ2ψ2(C) = ψ2(C).
This shows that ψ2(C) is a quasi-cyclic code of length 2n and index 2 over Z4.

Proposition 4.5. For any r ∈ Rn, we have φ2τθ,λ(r) = ρ2φ2(r), where φ2, ρ2 and τθ,λ with
λ = (3 + 2u+ 2u2) are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and
ai, bi, ci ∈ Z4 for i = 0, 1, . . . , n − 1. Now, θ(ai + ubi + u2ci) = ai + uci + u2bi and
θ
(
(3 + 2u+ 2u2)(an−1 + ubn−1 + u2cn−1)

)
= 3an−1 + u(2an−1 + 2bn−1 + 3cn−1) + u2(2an−1 +

3bn−1). Then

φ2τθ,λ(r) = φ2(θ(λrn−1), θ(r0), . . . , θ(rn−2))

= (2an−1, 2a0, . . . , 2an−2, 2bn−1 + 2cn−1, 2b0 + 2c0, . . . , 2bn−2 + 2cn−2).

From Proposition 3.12, we have

ρ3φ2(r) = (2an−1, 2a0, . . . , 2an−2, 2bn−1 + 2cn−1, 2b0 + 2c0, . . . , 2bn−2 + 2cn−2).

Hence, φ2τθ,λ(r) = ρ2φ2(r).

Theorem 4.6. The Gray image, φ2(C) of a skew λ-constacyclic code C of length n over R
with λ = (3 + 2u+ 2u2) is a quasi-cyclic code of length 2n and index 2 over Z4.
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Proof. Since C is a skew λ-constacyclic code of length n over R with λ = (3 + 2u + 2u2),
τθ,λ(C) = C. Applying φ2 on both sides and using Proposition 4.5, we have ρ2φ2(C) = φ2(C).
This shows that φ2(C) is a quasi-cyclic code of length 2n and index 2 over Z4.

5. Constacyclic codes of odd length n over R and their generators

In this section, we discuss λ-constacyclic codes of odd length n over R with λ = (1+2u+2u2)

and (3+ 2u+2u2). Note that λn = 1 if n is an even integer and λn = λ if n is an odd integer.
Based on the results established in [3, 5, 10, 11, 12, 14, 18], analogous results are given below
without proofs.

Theorem 5.1. A mapping β : R[x]/⟨xn − 1⟩ −→ R[x]/⟨xn − λ⟩ defined by β(a(x)) = a(λx) is
a ring isomorphism, if n is an odd integer.

Corollary 5.2. For any odd integer n, I is an ideal of R[x]/⟨xn − 1⟩ if and only if β(I) is an
ideal of R[x]/⟨xn − λ⟩.

Corollary 5.3. Let β be a permutation of Rn, defined by β(c0, c1, . . . , cn−1) =

(c0, λc1, . . . , λ
n−1cn−1). Then a subset C of Rn is a cyclic code of odd length n over R if

and only if β(C) is a λ-constacyclic code over R.

Theorem 5.4. [13] Let C be a cyclic code of odd length n over R. Then C = ⟨g1(x)+2a1(x)+

ug(x) + u2h(x), u(g2(x) + 2a2(x)) + u2b(x), u2(g3(x) + 2a3(x))⟩, where ai(x)|gi(x)|(xn − 1)

mod 2, and gi(x) + 2ai(x) is a generator of a cyclic code over Z4 for i = 1, 2, 3.

Using Theorem 5.4, we can construct the generators for λ - constacyclic codes of odd length
n over R as follows.

Theorem 5.5. Let C be a cyclic code of odd length n over R. Then C is an ideal of Rn,λ

given by C = ⟨g1(x̂)+2a1(x̂)+ug(x̂)+u
2h(x̂), u(g2(x̂)+2a2(x̂))+u

2b(x̂), u2(g3(x̂)+2a3(x̂))⟩,
where ai(x)|gi(x)|(xn − 1) mod 2, and gi(x) + 2ai(x) is a generator of a cyclic code over Z4

for i = 1, 2, 3 and x̂ = λx.

Proof. The result follows from Corollary 5.3 and Theorem 5.4.

Theorem 5.6. Let C be a λ-constacyclic code of length n over R and C = ⟨a(x) + ub(x) +

u2c(x)⟩, where a(x), b(x), c(x) ∈ Z4[x] with degree less than n.Then ψ1(C) is a cyclic code of
length 2n over Z4 generated by the polynomials [b(x)+2c(x)]+xn[2a(x)+b(x)+2c(x)], [a(x)+

2b(x)] + xn[a(x) + 2b(x)] and [2a(x)] + xn[2a(x)].
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Proof. The polynomial that corresponds to the Gray map ψ1 of (1) can be defined as

ψ1 :
R[x]

⟨xn − 1⟩
→ Z4[x]

⟨xn − 1⟩
× Z4[x]

⟨xn − 1⟩
,

ψ1(a(x) + ub(x) + u2c(x)) = (b(x) + 2c(x), 2a(x) + b(x) + 2c(x)),

where a(x), b(x), c(x) ∈ Z4[x].
For any r1(x), r2(x), r3(x) ∈ Z4[x], it can be shown that

ψ1[(r1(x) + ur2(x) + u2r3(x))(a(x) + ub(x) + u2c(x))]

= r1(x)[b(x) + 2c(x), 2a(x) + b(x) + 2c(x)] + r2(x)[a(x) + 2b(x),

a(x) + 2b(x)] + r3(x)[2a(x), 2a(x)],

and the vector (a, b) ∈ Z4[x]
⟨xn−1⟩ ×

Z4[x]
⟨xn−1⟩ corresponds to the same vector (a+ xnb) ∈ Z4[x]

⟨x2n−1⟩ .
Hence, the polynomials [b(x)+2c(x)]+xn[2a(x)+b(x)+2c(x)], [a(x)+2b(x)]+xn[a(x)+2b(x)]

and [2a(x)] + xn[2a(x)] generate ψ1(C).

Theorem 5.7. Let C be a λ-constacyclic code of length n over R and C = ⟨a(x) + ub(x) +

u2c(x)⟩, where a(x), b(x), c(x) ∈ Z4[x] with degree less than n.Then φ1(C) is a cyclic code
of length 2n over Z4 generated by the polynomials [a(x) + b(x) + c(x)] + xn[3a(x) + b(x) +

3c(x)], [a(x) + b(x)] + xn[a(x) + 3b(x)] and [a(x)] + xn[3a(x)].

Proof. Similar to the proof of Theorem 5.6.

Example 5.8. If C = ⟨x4+(u+u2)x3+3ux+1+u+u2⟩ is a (1+2u+2u2)-constacyclic code of
length 5 over R. In view of Theorem 5.6, ψ1(C) is a cyclic code of length 10 over Z4 generated
by the polynomials 2x9+3x8+3x6+x5+3x3+3x+3, x9+2x8+2x6+3x5+x4+2x3+2x+3

and 2x9 + 2x5 + 2x4 + 2 with minimum Lee distance 8.

Example 5.9. If C = ⟨x3+(1+u+u2)x2+(2+u)x+u+u2⟩ is a (3+2u+2u2)-constacyclic
code of length 4 over R. By Theorem 5.7, φ1(C) is a cyclic code of length 8 over Z4 generated
by the polynomials 3x7 +3x6 +3x5 + x3 +3x2 +3x+2, x7 + x5 +3x4 + x3 +2x2 +3x+1 and
3x7 + 3x6 + 2x5 + x3 + x2 + 2x with minimum Lee distance 8.

Definition 5.10. [16] Let n be an odd integer and Υ = (1, n + 1)(3, n + 3)...(2i + 1, n +

2i + 1)...(n − 2, 2n − 2) be a permutation of the set {0, 1, 2, . . . , 2n − 1}. Then the Nechaev
permutation Π is the permutation of Z2n

4 defined by

Π(r0, r1, . . . , r2n−1) = (rΥ(0), rΥ(1), . . . , rΥ(2n−1)).
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Theorem 5.11. For any r ∈ Rn, we have ψ1 β(r) = Πψ1(r), where ψ1, β with λ = (1+ 2u+

2u2) and Π are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n− 1. Now, (1 + 2u+ 2u2)(ai + ubi + u2ci) = ai + u(2ai + bi) + u2(2ai + 2bi + ci)

and ψ1(ai + u(2ai + bi) + u2(2ai + 2bi + ci)) = (2ai + bi + 2ci, bi + 2ci). Then

ψ1β(r) = ψ1(r0, λr1, λ
2r2, . . . , λ

n−2rn−2, λ
n−1rn−1)

= (b0 + 2c0, 2a1 + b1 + 2c1, b2 + 2c2, . . . , 2an−2 + bn−2 + 2cn−2, bn−1 + 2cn−1,

2a0 + b0 + 2c0, b1 + 2c1, 2a2 + b2 + 2c2, . . . , bn−2 + 2cn−2, 2an−1 + bn−1 + 2cn−1),

and, we have

Πψ1(r) = Π(b0 + 2c0, b1 + 2c1, b2 + 2c2, . . . , bn−2 + 2cn−2, bn−1 + 2cn−1, 2a0 + b0 + 2c0,

2a1 + b1 + 2c1, 2a2 + b2 + 2c2, .., 2an−2 + bn−2 + 2cn−2, 2an−1 + bn−1 + 2cn−1)

= (b0 + 2c0, 2a1 + b1 + 2c1, b2 + 2c2, . . . , 2an−2 + bn−2 + 2cn−2, bn−1 + 2cn−1,

2a0 + b0 + 2c0, b1 + 2c1, 2a2 + b2 + 2c2, . . . , bn−2 + 2cn−2, 2an−1 + bn−1 + 2cn−1).

Hence, ψ1β(r) = Πψ1(r).

Corollary 5.12. If C̃ is the Gray image of a cyclic code C of odd length n over R (i.e., ψ1(C) =

C̃), then Π(C̃) is a cyclic code of length 2n over Z4.

Proof. Since C is a cyclic code over R, β(C) is a (1 + 2u + 2u2)-constacyclic code over R by
Corollary 5.3. From Theorem 3.2, we see that ψ1 β(C) is a cyclic code of length 2n over Z4.
Also, from Theorem 5.11, we have Πψ1(C) = Π(C̃) = ψ1 β(C). This implies that Π(C̃) is a
cyclic code of length 2n over Z4.

Theorem 5.13. For any r ∈ Rn, we have φ1β(r) = Πφ1(r), where φ1, β with λ = (3+2u+2u2)

and Π are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n−1. Now, (3+2u+2u2)(ai+ubi+u

2ci) = 3ai+u(2ai+3bi)+u
2(2ai+2bi+3ci)

and φ1(3ai + u(2ai + 3bi) + u2(2ai + 2bi + 3ci)) = (3ai + bi + 3ci, ai + bi + ci). Then

φ1β(r) = φ1(r0, λr1, λ
2r2, . . . , λ

n−2rn−2, λ
n−1rn−1)

= (a0 + b0 + c0, 3a1 + b1 + 3c1, . . . , 3an−2 + bn−2 + 3cn−2, an−1 + bn−1 + cn−1,

3a0 + b0 + 3c0, a1 + b1 + c1, . . . , an−2 + bn−2 + cn−2, 3an−1 + bn−1 + 3cn−1),
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and, we have

Πφ1(r) = Π(a0 + b0 + c0, a1 + b1 + c1, . . . , an−2 + bn−2 + cn−2, an−1 + bn−1 + cn−1,

3a0 + b0 + 3c0, 3a1 + b1 + 3c1, . . . , 3an−2 + bn−2 + 3cn−2, 3an−1 + bn−1 + 3cn−1)

= (a0 + b0 + c0, 3a1 + b1 + 3c1, . . . , 3an−2 + bn−2 + 3cn−2, an−1 + bn−1 + cn−1,

3a0 + b0 + 3c0, a1 + b1 + c1, . . . , an−2 + bn−2 + cn−2, 3an−1 + bn−1 + 3cn−1).

Hence, φ1β(r) = Πφ1(r).

Corollary 5.14. If C̃ is the Gray image of a cyclic code C of odd length n over R (i.e., φ1(C) =

C̃), then Π(C̃) is a cyclic code of length 2n over Z4.

Proof. Since C is a cyclic code over R, β(C) is a (3 + 2u + 2u2)-constacyclic code over R by
Corollary 5.3. From Theorem 3.11, we see that φ1 β(C) is a cyclic code of length 2n over Z4.
Also, from Theorem 5.13, we have Πφ1(C) = Π(C̃) = φ1 β(C). This implies that Π(C̃) is a
cyclic code of length 2n over Z4.

Theorem 5.15. For any r ∈ Rn, we have ψ3β(r) = ηψ3(r), where ψ3 and β with
λ = (1 + 2u + 2u2) are introduced in above and η is a permutation of Z3n

4 defined by
η(c1, c2, . . . , c3n) = (cζ(1), cζ(2), . . . , cζ(3n)) with the permutation ζ = (2, n + 2)(4, n + 4)...(n −
1, 2n− 1) of {1, 2, 3, . . . , 3n}.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n− 1. Now, (1 + 2u+ 2u2)(ai + ubi + u2ci) = ai + u(2ai + bi) + u2(2ai + 2bi + ci)

and ψ3(ai + u(2ai + bi) + u2(2ai + 2bi + ci)) = (2bi + ci, 2ai + ci, 2ci). Then

ψ3β(r) = ψ3(r0, λr1, r2, . . . , λrn−2, rn−1)

= (2a0 + c0, 2b1 + c1, 2a2 + c2, . . . , 2bn−2 + cn−2, 2an−1 + cn−1, 2b0 + c0, 2a1 + c1,

2b2 + c2, . . . , 2an−2 + cn−2, 2bn−1 + cn−1, 2c0, 2c1, 2c2, . . . , 2cn−2, 2cn−1),

and, we have

ηψ3(r) = η(2a0 + c0, 2a1 + c1, 2a2 + c2, . . . , 2an−2 + cn−2, 2an−1 + cn−1, 2b0 + c0, 2b1 + c1,

2b2 + c2, . . . , 2bn−2 + cn−2, 2bn−1 + cn−1, 2c0, 2c1, . . . , 2cn−2, 2cn−1)

= (2a0 + c0, 2b1 + c1, 2a2 + c2, . . . , 2bn−2 + cn−2, 2an−1 + cn−1, 2b0 + c0, 2a1 + c1,

2b2 + c2, . . . , 2an−2 + cn−2, 2bn−1 + cn−1, 2c0, 2c1, 2c2, . . . , 2cn−2, 2cn−1).

Hence, ψ3β(r) = ηψ3(r).
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Corollary 5.16. If C̃ is the Gray image of a cyclic code C of odd length n over R (i.e., ψ3(C) =

C̃), then η(C̃) is the permutation equivalent to a quasi-cyclic code of index 3 and length 3n

over Z4.

Proof. Since C is a cyclic code over R, β(C) is a (1 + 2u + 2u2)-constacyclic code over R by
Corollary 5.3. From Theorem 3.6, we see that ψ3 β(C) is permutation equivalent to a quasi-
cyclic code of index 3 and length 3n over Z4. By Theorem 5.15, we have η ψ3(C) = η(C̃) =

ψ3 β(C). This implies that η(C̃) is permutation equivalent to a quasi-cyclic code of index 3
and length 3n over Z4.

Theorem 5.17. For any r ∈ Rn, we have φ3 β(r) = η φ3(r), where φ3, β with λ = (3 + 2u+

2u2) and η are introduced in above.

Proof. Let r = (r0, r1, . . . , rn−1) ∈ Rn, where ri = ai + ubi + u2ci ∈ R and ai, bi, ci ∈ Z4 for
i = 0, 1, . . . , n−1. Now, (3+2u+2u2)(ai+ubi+u

2ci) = 3ai+u(2ai+3bi)+u
2(2ai+2bi+3ci)

and φ3(3ai + u(2ai + 3bi) + u2(2ai + 2bi + 3ci)) = (ci, 2ai + 2bi + 3ci, 2ai + 2bi + 2ci). Then

φ3 β(r) = φ3(r0, λr1, r2, . . . , λrn−2, rn−1)

= (2a0 + 2b0 + 3c0, c1, 2a2 + 2b2 + 3c2, . . . , cn−2, 2an−1 + 2bn−1 + 3cn−1, c0,

2a1 + 2b1 + 3c1, c2, . . . , 2an−2 + 2bn−2 + 3cn−2, cn−1, 2a0 + 2b0 + 2c0, 2a1 + 2b1

+ 2c1, 2a2 + 2b2 + 2c2, . . . , 2an−2 + 2bn−2 + 2cn−2, 2an−1 + 2bn−1 + 2cn−1),

and, we have

ηφ3(r) = η(2a0 + 2b0 + 3c0, 2a1 + 2b1 + 3c1, . . . , 2an−1 + 2bn−1 + 3cn−1, c0, c1, . . . , cn−1,

2a0 + 2b0 + 2c0, 2a1 + 2b1 + 2c1, . . . , 2an−1 + 2bn−1 + 2cn−1)

= (2a0 + 2b0 + 3c0, c1, 2a2 + 2b2 + 3c2, . . . , cn−2, 2an−1 + 2bn−1 + 3cn−1, c0, 2a1 + 2b1

+ 3c1, c2, . . . , 2an−2 + 2bn−2 + 3cn−2, cn−1, 2a0 + 2b0 + 2c0, 2a1 + 2b1 + 2c1, 2a2+

2b2 + 2c2, . . . , 2an−2 + 2bn−2 + 2cn−2, 2an−1 + 2bn−1 + 2cn−1).

Hence, φ3 β(r) = η φ3(r).

Corollary 5.18. If C̃ is the Gray image of a cyclic code C of odd length n over R (i.e., φ3(C) =

C̃), then η(C̃) is permutation equivalent to a quasi-cyclic code of index 3 and length 3n over
Z4.
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Proof. Since C is a cyclic code over R, β(C) is a (3 + 2u + 2u2)-constacyclic code over R by
Corollary 5.3. From Theorem 3.15, we see that φ3 β(C) is permutation equivalent to a quasi-
cyclic code of index 3 and length 3n over Z4. By Theorem 5.17, we have η(C̃) = φ3 β(C).
This implies that η(C̃) is permutation equivalent to a quasi-cyclic code of index 3 and length
3n over Z4.

6. Conclusion

In this article, we discussed the λ-constacyclic codes over the ring R = Z4 + uZ4 + u2Z4,
u3 = 0 with λ = (1 + 2u+ 2u2) and (3 + 2u+ 2u2). We have shown that the Gray images of
λ-constacyclic codes over R are cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic
codes over Z4 similar to the results obtained in [10, 11, 13]. It is also proved that Gray images
of skew λ-constacyclic codes are quasi-cyclic codes over Z4. Furthermore, the structure of
λ-constacyclic codes of odd length n over R are determined with some suitable examples.
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