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A STUDY ON CONSTACYCLIC CODES OVER THE RING Zj + uZy + u®Zy

ST TIMOTHY KOM*, O. RATNABALA DEVI AND TH. ROJITA CHANU

ABSTRACT. This paper studies A-constacyclic codes and skew A-constacyclic codes over the
finite commutative non-chain ring R = Z4 + uZ4 + u?Z4 with «® =0 for A = (I4+2u+ 2u2)
and (3 + 2u + 2u?). We introduce distinct Gray maps and show that the Gray images of
A-constacyclic codes are cyclic, quasi-cyclic, and permutation equivalent to quasi-cyclic codes
over Zs. It is also shown that the Gray images of skew A-constacyclic codes are quasi-cyclic
codes of length 2n and index 2 over Z4. Moreover, the structure of A-constacyclic codes of

odd length n over the ring R is determined and give some suitable examples.

1. INTRODUCTION

In the beginning of coding theory, the study of linear codes was within the confines of vector
spaces over finite fields. After the landmark paper of Hammon et al. [B], in which certain good
non-linear binary codes are constructed from cyclic codes over Zy4 via the Gray map, there has
been a paradigm shift in the studies of codes towards finite rings. Since then, many researchers
DOI: 10.22034/as.2023.3145
MSC(2010): Primary: 94B05, 94B15, 94B60.

Keywords: Constacyclic code, Cyclic code, Gray map, Quasi-cyclic code, Skew constacyclic code.

Received: 17 April 2021, Accepted: 22 July 2023.

*Corresponding author

© 2024 Yazd University.
131

Archive of SID.ir



Archive of SID.ir

132 St T. Kom, O. R. Devi and Th. R. Chanu

are interested in codes over finite rings because of their new role in algebraic coding theory and
a wide range of applications in various fields. Cyclic codes are a significant class of linear codes
over finite rings and have been studied by many authors in various rings [Iil, E, , , @, @]
For instance, Ozen et al. [] studied cyclic codes over the ring Zy + uZy4 + u?Z4 with w3 =0
and obtained their generators and minimal spanning sets. By considering the Gray map, they
obtained many new linear codes over Z,.

Constacyclic codes are a well-known generalization of cyclic codes. Much research on con-
stacyclic codes over various rings has been done as it can be effectively implemented by shift
constant. In [], Qian et al. studied the constacyclic codes over the ring Fy 4+ uFy where
u? = 0 and showed that the Gray image of (1 + u)-constacyclic code of length n is distance in-
variant cyclic codes of length 2n. Later on, many researchers have been studying constacyclic
codes over other finite rings like Z4 and its extensions to get optimal codes. In [], Yildiz
and Aydin discussed linear codes and cyclic codes over Zy 4+ uZ4, u? = 0 and many new linear
codes over Z4 were obtained. Later, Yu et al. [@] studied codes on the same ring and proved
that Z4-image of a (1 + u)-constacyclic code of length n is a cyclic code over Zy of length 4n.
In fact, there is a vast literature on constacyclic codes over various finite rings, we refer to
[E, H, H, B, @, @, , ], along with their references.

Recently, Islam and Prakash [@] considered the ring Zy + uZ4 + vZy, where u? = v? =
uv = vu = 0 of order 64 and determined the generator polynomials and minimal spanning set
for cyclic codes over the ring. Further, the authors proved that the Gray images of (1 + 2u)-
constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to a quasi-cyclic code
over Z4. In [H], Dertli and Cengellenmis introduced the ring Zy + uZy + vZs, u? = u,v?> =
v,uv = vu = 0 and studied the Gray images of cyclic, constacyclic, quasi-cyclic and their skew
codes over the ring. Moreover, they determined the cyclic DNA and skew cyclic DNA codes
over the ring.

Indeed, Islam et al. [@] discussed the A-constacyclic and skew A-constacyclic codes over the
ring Z4[u]/{u*), where u¥ = 0 with A\ = (14 2u*~1) and (34 2u*~1). The authors have shown
that the Gray images of A-constacyclic and skew A-constacyclic codes over the ring are cyclic,
quasi-cyclic, permutation equivalent to a quasi-cyclic code over Z4. Further, they obtained
the generators of the A-constacyclic codes over the ring.

Being motivated by the above-mentioned works, we consider the commutative ring R = Z4+
uZy+u*Zy, where u® = 0, as a particular case of [@], by taking different units A = (142u+2u?)
and (3 + 2u + 2u?) and study the algebraic properties of the ring. In this paper, we introduce
new Gray maps and study their images of A-constacyclic codes over Zy with A = (14 2u+2u?)
and (3 + 2u + 2u?). The intention of this article is to establish relations among the known

linear codes like cyclic, quasi-cyclic or permutation equivalent to quasi-cyclic code over Z4
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via the newly introduced Gray maps obtained as Z,4 -images of A-constacyclic codes over the
ring R. The presentation of this paper is organized as follows. In Section 2, we discuss some
preliminary concepts of the ring R. Some new Gray maps are introduced in Section 3, and we
investigate the properties of the Gray images of A-constacyclic codes with A = (1 + 2u + 2u?)
and (3 + 2u + 2u?), respectively. In Section 4, we discuss skew constacyclic codes over R
and obtain that some particulars Z4-images are quasi-cyclic codes. Furthermore, in Section 5,
we determine the algebraic structures of the A-constacyclic codes over the ring R with some
suitable examples and study some results on A-constacyclic codes with Nechaev permutation

and other permutations. Section 6 concludes the paper.

2. PRELIMINARIES

In [], Ozen et al. considered the commutative ring R = Z4 + uZ4 + u?Z4 with v = 0 and
studied the cyclic codes over R. Clearly, R is isomorphic to Z4[u]/(u?) and it has characteristic
4 and order 64. Any element x of R can be written as = a + ub + u’c, where a,b,c € Zy
and z is a unit in R if only if a is a unit in Z4. There are 32 units and 32 non-units in R.
The set of units U = {1,3, 1+ 2u, 1+ 2u?, 1+ 2u + 2u?, 3 + 2u, 3 + 2u?, 3 + 2u + 2u?} satisfies
A2 = 1for all A € U. The units (1+ 2u+ 2u?) and (34 2u + 2u?) are used in the studies of this
paper. The ring R has 13 ideals given by {(0), (2), (u), (2u), (u?), (2u?), (2+u?), Qu+u?), (2+
u, (2,u), (2,u?), (2,2u?), R}. It is a local ring with unique maximal ideal ring (2, u). Also, R
is not a chain ring as the ideals (u?) and (2u) are not comparable under the set inclusion.

We recall that a linear code C' of length n over R is an R-submodule of R"™ and elements of
the code are called codewords. A linear code C of length n over R is said to be a cyclic code
if it is invariant under the cyclic shift operator o,i.e.,a(C) = C, where o(cg,c1,...,¢p—1) =
(Cn—1,€0y ..., Cn—2) for all (co,c1,...,cn—1) € C. Let A be a unit in R. A linear code C of
length n over R is said to be a A-constacyclic code if it is invariant under the constacyclic
shift operator 7y, i.e., T\(C) = C, where 7)(co,c1,...,¢n—1) = (Acp—1,C0,...,cn—2) for all
(co,c1y-..,cn—1) € C. Moreover, a A-constacyclic code of length n over R can be identified as

an ideal of the quotient ring R, x = R[z]/(z™ — \) by the correspondence
c=(co,c1y. .. cn 1) = c(x) = co+ 12+ - + cu12™ H(mod(z"™ — \)).

Definition 2.1. [lﬁh Let o be the cyclic shift operator and n = ml. Then, the quasi-cyclic
shift operator p; is defined by

(et |e) = (a(ch)la(c®)] o (),

where ¢ € Z7 fori = 1,2,...,1. A linear code C of length n over Z, is said to be a quasi-cyclic
code of index [ if and only if p;(C) = C.
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3. GRAY MAPS AND Z4-IMAGES OF A-CONSTACYCLIC CODES

In the present section, we introduce new Gray maps and discuss some relations between the
Gray images of A-constacyclic codes with A = (1 + 2u + 2u?) and (3 + 2u + 2u?) and some

well-known linear codes over Z,4. It is divided into two subsections and discussed below.

3.1. (1 + 2u + 2u?)-constacyclic codes over R and their Z;-images. In this section,
we consider three different Gray maps on the ring R and show that the Gray images of
(14 2u + 2u?)-constacyclic codes are cyclic, quasi-cyclic and permutation equivalent to quasi-
cyclic codes over Zj.

We first take a Gray map 1 from R to Z3? as
Y1: R — 72,
defined by
V1(a +ub+u?c) = (b+2¢,2a+b+2¢) YV a,b,c € Zy.

Clearly, v is a Z4-linear map but not bijective. This map can be extended to R™ component-

wise as follows:

1 RY — 73",

wl(’ro, Tl ,Tnfl) = (bo + 2c¢g, by + 2¢1, ...y b1+ 2¢cp_1,2a9 + bo + 2¢g,

(1) 2a1 + b1 +2¢1, ..., 2ap-1 + bp—1 + 2¢n-1),

where 7; = a; + ub; + u’c; € R and a;,b;,¢; € Zy for i =0,1,...,n— 1.

Keeping in view of the Section 3. of [], we recall that the Lee weight wy(z) of any
x € Zy4 is min{|z|,|4 — z|}. Thus, the Lee weights of 0, 1, 2, 3 are, respectively, 0, 1, 2,
1. The Lee weight of a vector v € Z} is defined as the rational sum of the Lee weight of
its coordinates. The Lee weight for any r € R is defined as wr(r) = wr(¢1(r)) and for

n—1

r=(ro,r1,...,mn—1) € R" is given by wr,(r) = > wr(r;). And, the Lee distance for the code

=0

C' is defined by d(C) = min{dg(r,r") | » # r',r,7" € C}, where dp(r,7") = wr(r —r"). Now,
dp(r,r') = wi(r —r') = wp(r(r —r')) = wr (i (r) = 1(r")) = dp(a(r), ¥1(17)), Vr,r" € R™.

Hence, 1)1 is a distance preserving map from R"(Lee distance) to Z3"(Lee distance).

Proposition 3.1. For any r € R", we have Y17(149u4242) (1) = ob1(r), where V1, T(1 4oy 4242)

and o are introduced in above.

Proof. Let r = (rg,71,...,7n_1) € R", where r; = a; + ub; + u’c; € R and a;,b;,¢; € Zy for
i=0,1,...,n—1. Clearly, (14 2u+2u?)(an_1+uby,_1+u?ch 1) = an_1+u(2an_1 +by_1)+
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u?(2ay,_1 + 2b,_1 + cy_1). Therefore,

w17(1+2u+2u2)(r) =1 ((1 +2u + 2u2)7"n—17 70y 77'71—2)
= (2an-1 4+ bn—1+2cn_1,b0 + 20, ..., b2 + 2¢2,by1 + 2¢,1,

2a0 + by + 2¢o,...,2a5_9 + by + 2Cn_2).
On the other hand, we have

U¢1(7“> = O'(b() 4+ 2¢co,b1 + 2¢1, ..., bp_1 4+ 2¢n_1,2a9 + by + 2¢q, 2a1 + b1 + 2¢4,. ..,
2ap-1 4 bp—1 + 2¢p—1)
= (20p-1 + bp—1 +2¢,—1,b0 + 2co, . .., by—2 + 2¢_2,bp—1 + 2¢,_1, 2a0 + bo + 2co, . . .,

2ap—2 + by + 207172)-

Hence, ¢1T(1+2u+2u2)(7”) = o1(r). g

Theorem 3.2. The Gray image, ¥1(C) of a (1 + 2u + 2u?)-constacyclic code C of length n

over R is a cyclic code of length 2n over Z4.

Proof. Since C is a (1 + 2u + 2u?)-constacyclic code of length n over R, T42ut2u2)(C) = C.
Applying 11 on both sides and using Proposition @, we have o11(C) = ¢1(C). This shows
that 11 (C) is a cyclic code of length 2n over Z4.

Again, we define another Gray map 1 from R" to Z2" as

Wby s R™ — 73",
given by
’QZJQ(To,Tl, R ,7“”71) = (ao, aly...,0p—1,00 + 2bg + 2¢co, a1 + 2b1 + 2c1,. ..,
(2) Ap—1 + 2bn—1 + 2077,—1)7

where 7; = a; + ub; + u’c; € R and a;,b;,¢; € Zy for i =0,1,...,n— 1.

Proposition 3.3. For any r € R", we have Y2711 9y1242)(1) = p2tb2(r), where 12, T(1 12y 4242)

and po are introduced in above.
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Proof. Let r = (rg,71,...,7_1) € R", where 7; = a; + ub; + u?c; € R and a;,b;, ¢; € Zy4 for
1=0,1,...,n—1. Then

VoT(14+2ut202) (1) = Y2((1 + 2u + 2U) 1,70, T2)
= (@n-1,00, ... ,0n—2,0n_1 + 2by_1 + 2¢,_1, a0 + 2bg + 2co, . . .,

ap—2 + 2by—o + 26n72)-
And, we have

p2t2(r) = pa(ag, ai,...,an—1,a0 + 2bo + 2co, a1 + 2b1 + 2¢1, ..., an—1 + 2bp 1 + 2¢,-1)

= (an,l, ag, ..., Ap_92,0n_1 + 2by_1 4+ 2¢n_1,a0 + 2bg + 2¢q, . .., Gp_o + 2b,_o + QCn,Q).

Hence, ¢2T(1+2u+2u2)(7“) = p2tp2(r). o

Theorem 3.4. The Gray image, ¥2(C) of a (1 + 2u + 2u?)-constacyclic code C of length n

over R is a quasi-cyclic code of length 2n and index 2 over Zy.

Proof. Since C is a (1 + 2u + 2u?)-constacyclic code of length n over R, T(42ut202)(C) = C.
Applying 12 on both sides and by Proposition @, we have po1po(C) = 19(C). This shows
that ¢»(C) is a quasi-cyclic code of length 2n and index 2 over Z4.

Further, we define another Gray map

by R™ — 73",
by
U3(ro,m1, -y Tn—1) = (2a0 + co,2a1 + ¢1, ..., 2an-1 + cn—1,2by + o, 2b1 + 1, .. .,
(3) 2by—1 + cn—1,2c0,2¢1,...,2¢p-1),
where r; = a; + ub; + u?c; € R and a;, b, ¢; € Zy for i =0,1,...,n— 1.

Proposition 3.5. For anyr € R", we have Y371 12y 1242)(r) = p3b2(r), where s, T(14ou4242)
and p3 are introduced in above and 0 is the permutation on Zi” defined by 0(p1,p2, ... ,P3n) =

(Pe(1)s Pe(2)s - - - » Pe(3n)) With permutation e = (1,n+ 1) of {1,2,...,3n}.
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Proof. Let r = (rg,71,...,7_1) € R", where 7; = a; + ub; + u?c; € R and a;,b;, ¢; € Zy4 for
1=0,1,...,n—1. Then

UaT(142ur2u2) (1) = Y3((1+ 2u + 2u®)rp 1,70, ., 7 2)
= (2bp—1 + Cp—1,2a0 + coy . .., 2ap—2 + Cpn—2,2ap_1 + Cp—1,2by + co, . . .,
2by—92 + Cpn—2,2Cn—1,2¢0, .. .,2¢n—2),
and, we have
p33(r) = p3(2ag + co,2a1 + c1,y ..., 2an—1 + cn—1,2bg + o, 2b1 + 1, ..., 2bp—1 + Cp1,
2¢0,2¢1, ... ,2Cn—1)
= (2ap—1 + cn—1,2a0 + coy . .., 2ap—2 + cp—2,2bp_1 + cp—1,2by + co, . . .,
2bp—9 + Cn—9,2Cn—1,2¢0, . ..,2cpn—_2).
On applying the permutation &, we get
dp3hs(r) = (2bn—1 + cn—1,2a0 + o, - . ., 2an—2 + Cpn—2, 2an—1 + cpn—1,2bg + co, . . .,

2bn72 + Cp—2, 2Cn,1, 200, ey 26,172).

Hence, ¥37(112u+242) (1) = dp33(r). o

Theorem 3.6. The Gray image, 13(C) of a (1 + 2u + 2u?)-constacyclic code C of length n

over R is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over Zy4.

Proof. Since C is a (1 + 2u + 2u?)-constacyclic code of length n over R, T(42ut202)(C) = C.
Applying 13 on both sides and using Proposition @, we have dp313(C) = ¢3(C). This shows
that ¢3(C) is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over

Zs. O

The permutation version of the above Gray map 1, denoting by, 91  is defined as follows
Y1,7(ro, 15+, rn—1) = (bo + 2c0, 2ag + by + 2c, b1 + 2¢1, 2a1 + by + 2c4, . . .,
(4) bn—1+ 2¢n—1,2an-1 + bp—1 + 2¢—1),
where r; = a; + ub; + u’c; € R and a;, b, ¢; € Zy for i =0,1,...,n— 1.

Proposition 3.7. For any r € R", we have ¢ z0(r) = 0%y (r), where ¥y and o are

introduced in above.
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Proof. Let r = (rg,71,...,7_1) € R", where 7; = a; + ub; + u?c; € R and a;,b;, ¢; € Zy4 for
1=0,1,...,n—1. Then

P1,70(r) = Y1,2(Tn—1,70, ., "n—2)
= (bp—1 + 2¢n—1,2an—1 + bn—1 + 2¢n—1,bo + 2¢o, 2ag + by + 2¢o, . .. ,bp—2 + 2¢p—2,
202 + bp—2 + 2¢p_2),
and, we have
021#17#(7“) = 0%(bo + 2co, 2a0 + by + 2¢o, by + 2¢1,2a1 + b1 + 2¢1, ..., by_1 + 2601,
20,1 + bp—1 + 2¢p—1)
= (bp—-1 + 2¢n—1,2ap-1 + bn—1 + 2¢p—1,bo + 2¢0,2a9 + bg + 2¢q, . . ., b—2 + 2¢p—2,
2ap,—9 + bp—2 + 2¢p—2).

Hence, 91 ro(r) = 02?,1)1,#(7’)- 0

Theorem 3.8. The Gray image, ¥1.-(C) of a cyclic code C of length n over R is equivalent

to a 2-quasi-cyclic code of length 2n over Zy.

Proof. Since C'is a cyclic code of length n over R, o(C) = C. Applying 91 » on both sides and
using Proposition @, we have 0211 (C) = 91 »(C). This shows that 11 »(C) is equivalent to

a 2-quasi-cyclic code of length 2n over Z4.

Remark 3.9. Note that the other Gray maps ¥y and 3 permutation versions can be defined

analogously to obtain the similar results.

3.2. (3+42u+2u?)-constacyclic codes over R and their Z;-images. In this part, we study
the (3 + 2u + 2u?)-constacyclic codes of length n over R by defining another three distinct
Gray maps and show that Gray images of such constacyclic codes are cyclic, quasi-cyclic or
permutation equivalent to quasi-cyclic codes.

Firstly, we define a Gray map ¢, from R to Z? as

@1:R—>Zi,

o1(a+ub+u’c) = (a+b+c,3a+b+3c) Ya,b,ccZy.

Clearly, ¢1 is a Zy-linear map but not bijective. This map can be extended to R™ component-

wise as follows:
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p1: R — Z7",
©1(r0, 715+, n=1) = (ao + bo 4+ co,a1 + b1 +c1,...,an—1 + bp—1 + cn—1, 3ag + by + 3co,
(5) 3a1 + b1 4+ 3c1,...,3a,-1+ b1+ 3Cn,1),

where 7; = a; + ub; + u’c; € R and a;,b;,¢; € Zy for i =0,1,...,n — 1.

Similarly, we consider another two Gray maps as given below:
Y2 : R" — Zin,
defined by

(6) ng(’l"o, T1yen. ,Tnfl) = (2&0, 2a1,...,2ap_1, 2by + 2cy, 2b1 + 2¢c1,. .., 2b,—1 + 2Cn,1>,

and
@3 : R" — Zin,
defined by
©3(ro, 71, -« -y Tn—1) = (2a0 + 2by + 3co, 2a1 + 2b1 + 3c¢1, ..., 2ap-1 + 2bp—1 + 3cp—1,
€0y Cly - -+ 5 Cn—1,2ag + 2by + 2cq, 2a1 + 2b1 + 2¢4, . . .,
(7) 2ap—1 + 2bp—1 + 2cn—1)’
where 7; = a; + ub; + u’c; € R and a;,b;,¢; € Zy for i =0,1,...,n— 1.

Proposition 3.10. For anyr € R", we have 0173 2y4242) (1) = 0p1(r), where p1, T(310y4242)

and o are introduced in above.

Proof. Let r = (19,71, ...,7m_1) € R", where r; = a; +ub; +u’c; € R and a;, b;, ¢; € Zy for i =
0,1,...,n—1. Clearly, (34+2u+2u?)r,_1 = 3an_1+u(2a,_14+3bp_1)+u?(2a,_1+2b,_1+3cn_1).
Then

9017_(3+2u+2u2)(’r) = @1((3 +2u + 2U2)7“n_1, o, - - ,’I"n_2)
= (Ban—1 +bp_1+3cn_1,a0 +bo+co,... an2+ b2+ Cn2,0n-1+ by_1+

Cn—1,3ag + by + 3co, . .., 3an_2 + by_2 + 3ch_2),
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and, we have
op1(r) =o(ag+ by + co,a1 + b1 +c1,. ..y an—1 + bp—1 + cn—1,3a0 + by + 3co, 3a1 + b1 + 3cy,
cey3ap—1+bp—1 + 3cp—1)
= (3an—1 + bp—1 +3cn—1,a0 +bo + o, ... an—2 + b2+ cn_2,an—1 + bp_1 + cp_1,
3ag + bo + 3co, . .., 3an—2 + b2 + 3cp_2).

Hence, ¢17(32u1242) (1) = 0p1(r). o

Theorem 3.11. The Gray image, ©1(C) of a (3 + 2u + 2u?)-constacyclic code C of length n

over R is a cyclic code of length 2n over Zy.

Proof. Since C' is a (3 + 2u + 2u?)-constacyclic code of length n over R, T(342u4202)(C) = C.
Applying ¢; on both sides and using Proposition 3.9, we have o1 (C) = ¢1(C). This shows
that 1(C) is a cyclic code of length 2n over Z4.

Proposition 3.12. For any v € R", we have paT(349u4242)(7) = paya(r), where o2,

T(3+2u+2u2) and p2 are introduced in above.

Proof. Let © = (r9,71,...,7n_1) € R", where r; = a; + ub; + u’c; € R and a;,b;,¢; € Zy for
1=0,1,...,n—1. Then

273 42u+2u2) (1) = P2((3 + 2u + 2U) 1,705+ -, Tr_2)
= (2ap-1,2a0,...,2an-2,2by_1 + 2¢n_1,2bo + 2¢g, . .., 2bp—2 + 2¢p—2),
and, we have
p2p2(r) = p2(2aq,2a1, . . ., 2an—1, 2by + 2¢0,2b1 + 2¢1, ..., 2bp—1 + 2¢p—1)

= (2an_1, 2a0,...,20,_9,2by_1 + 2¢n_1,2bg + 2¢q, ..., 2by_o + 2Cn_2).

Hence, 0a7(312u1242) (1) = p2i02(7). 0

Theorem 3.13. The Gray image, p2(C) of a (3 + 2u + 2u?)-constacyclic code C of length n

over R is a quasi-cyclic code of length 2n and index 2 over Zy.

Proof. Since C' is a (3 + 2u + 2u?)-constacyclic code of length n over R, T(3+2ut2u2) (C) = C.
Applying 2 on both sides and using Proposition , we have paps(C) = p2(C). This shows
that ¢o(C) is a quasi-cyclic code of length 2n and index 2 over Zy.
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Proposition 3.14. For any v € R", we have ©37(319u4242)(T) = Op3ps(r), where 3,

T(342u+2u2), P3 and § are introduced in above.

Proof. Let r = (rg,71,...,7_1) € R", where 7; = a; + ub; + u?c; € R and a;,b;, ¢; € Zy for
1=0,1,...,n—1. Then

P37(312u+2u2) (1) = ©3((3 4 2u + 2u”)ry 1,70, ..., Tn2)
= (¢n—1,2a0 + 2bo + 3co, . . ., 2ap—2 + 2by_o + 3cp_2,
20,1+ 2bp_1 + 3Cn_1,C0,5 ..., Cp_2,20n_1+ 2b,_1
+ 2¢p—1,2a9 + 2bg + 2c¢, . . ., 2ap_2 + 2bp_o + 2¢4—2),
and, we have
p33(r) = p3(2ag + 2by + 3co, 2a1 + 2b1 + 3c1, ..., 241 + 2bp—1 + 3¢p—1,C0,C1y - - -y Cn—1,
2a9 + 2bg + 2¢q, 2a1 + 2b1 + 2¢1, ..., 2ap-1 + 2bp—1 + 2¢5—1)
= (2ap-1 + 2bn—1 + 3cn—1,2a9 + 2bg + 3co, - . -, 202 + 2by—2 + 3Cn—2, Cp—1, Co,
ey Cn—2,20n-1 + 2bp—1 + 2¢n-1, 2a0 + 2bg + 2¢0, . - ., 2a4p—2 + 2by—2 + 2¢—2).
On applying the permutation d on both sides, we get
dp3ps(r) = (cn-1,2ag + 2by + 3co, . . ., 2an—2 + 2by—2 + 3cp—2,2an_1 + 2bp—1 + 3cn_1, o,

ey Cn9,205 1 + 2by_1 4 2¢_1, 2a0 + 2bg + 2¢q, . .., 2ap_9 + 2by_o + 2071—2)‘

Hence, <P3T(3+2u+2u2)(7“) = dp3p3(r). o

Theorem 3.15. The Gray image, @3(C) of a (3 + 2u + 2u?)-constacyclic code C of length n

over R is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over Zy4.

Proof. Since C is a (3 + 2u + 2u?)-constacyclic code of length n over R, 7'(3+2u+2u2)(0) =C.
Applying 3 on both sides and using Proposition , we have dp3p3(C) = ¢3(C). This shows

that p3(C) is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over

Zs. O

Let o1+ be the permutation version of the above Gray map 1, which is defined as follows
(,01,7r(7“077‘1, .. ,Tn_l) = (ao + bo + co, 3ag + by + 3co, a1 + b1 + c1,3a1 + b1 + 3cq,
(8) sy lp—1 +bpo1 + Cp1,3an-1 + bp—1 + 307171)7

where r; = a; + ub; + u’c; € R and a;, bj,¢; € Zy for i =0,1,...,n— 1.
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Proposition 3.16. For any r € R", we have @1 ro(r) = 02<p1,7,(r), where ¢1 . and o are

introduced in above.

Proof. With a minor change in the permutation version of the Gray map, the proof is the

same as given in Proposition @ 0

Theorem 3.17. The Gray image, ¢1(C) of a cyclic code C' of length n over R is equivalent

to a 2-quasi-cyclic code of length 2n over Zy.

Proof. Similar to the proof of Theorem @ 0

4. SKEW CONSTACYCLIC CODES AND THEIR Z4-IMAGES

We define an automorphism on the ring R by 6(a + ub + u?c) = a +uc+u?b Y a,b,c € Zy,
where 0(a) = a, 0(u) = u? and §(u?) = u. Clearly, the order of the automorphism is 2 as
0?(r) =rVr € R. The set R[z;0] = {ap + a1x+ - + ap—12" | a; € R, i =0,1,...,n — 1}
is a non-commutative skew polynomial ring under the usual addition of polynomials and
multiplication of polynomials, which is defined as (ax®)(bz') = af®(b)z**!. By taking A\ =
(14 2u + 2u?) and (3 + 2u + 2u?), we can identify each vector r = (ro,71,79,...,7—1) € R"
with a polynomial r(z) € R[z;0]/(z™ — A\) by the following correspondence

r= (10,1, rn-1) > r(x)=ro+rmx+---+ rnflaz"_l(mod@" —A)).

Definition 4.1. [@] A non-empty subset C' of R™ is called a skew A-constacyclic code of

length n over R if it satisfies the following conditions:

(7) C is an R-submodule of R", and
(43) if (co,c1,-..,cn—1) € C, then

To.A(CosC1y -y Cne1) = (B(Acn—1),6(co), . ..,0(cn—2)) € C.

Theorem 4.2. [] Let C be a linear code of length n over R. Then C'is a skew A-constacyclic
code over R if and only if C is a left R[z;0]-submodule of R[x;0]/(x"™ — \).

Proposition 4.3. For any r € R", we have Yo7\ = patpa, where V2, po and 19 with

A = (14 2u + 2u?) are introduced in above.

Proof. Let v = (ro,71,...,7n_1) € R" where 7, = a; + ub; + u?’c; € R and
a;,bi,c; € Zy for i = 0,1,....,n — 1. Now, 0(a; + ub; + u’c;) = a; + uc; + u?b; and
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0 ((1 + 2u + 2u?)(ap—1 + ubp—1 + UQCnfl)) = ap—1+u(2an-1+2bp_14Cn—1)+u?(2an—1+bp—1).

Therefore,
Yot (1) = Y2 (0(Arp—1),0(r0), ..., 0(rn—2))
= (An—-1,00, -+, An—2,an—1 + 2bp_1 + 2¢H_1, a0 + 2bg + 2cp, . . .,
ap—2 + 2bp—9 + 2¢p—2).
From Proposition @, we have
p22(1) = (an—1,0G0, - - Apn—2,an—1 + 2bp_1 + 2¢p—1, ag + 2by + 2co, . . .,
ap—2 + 2bp—2 + 2¢p—2).

Hence, 1/127'9,,\(7“) = P21/12(7")- O

Theorem 4.4. The Gray image, ¥2(C) of a skew A-constacyclic code C of length n over R
with A = (1 4 2u + 2u?) is a quasi-cyclic code of length 2n and index 2 over Z,.

Proof. Since C' is a skew M-constacyclic code of length n over R with A = (1 + 2u + 2u?),
92 (C) = C. Applying )2 on both sides and by Proposition @, we have paiha(C) = 1o(C).
This shows that ¢2(C') is a quasi-cyclic code of length 2n and index 2 over Z4.

Proposition 4.5. For any r € R", we have @219 (1) = paa(r), where @2, pa and 19\ with

A = (34 2u + 2u?) are introduced in above.

Proof. Let r = (ro,71,...,7n_1) € R" where r; = a; + ub; + u’c; € R and
a;,bi,c; € Zy for i = 0,1,....,n — 1. Now, 0(a; + ub; + u’c;) = a; + uc; + u?b; and
6 ((3+ 2u+ 2u?)(an—1 + ubp—1 + u?cn—1)) = 3ap—1 + u(2ap—1 + 2by—1 + 3cp—1) + u*(2an-1 +
3bp—1). Then

P2 A (1) = @2(0(Arp—1),0(r0),...,0(rn—2))
= (2ap-1,2a0, ..., 2an-2,2by—1 + 2¢n—1,2bo + 2¢q, . .., 2bp—2 + 2¢p—2).
From Proposition , we have
p3p2(r) = (2an—1,2ag, . .., 2an—2,2by_1 + 2¢n—_1,2bo + 2o, . .., 2bp—_2 + 2¢p_2).

Hence, pa1p () = pagp2(r). O

Theorem 4.6. The Gray image, 2(C) of a skew A-constacyclic code C of length n over R
with A = (3 4 2u + 2u?) is a quasi-cyclic code of length 2n and index 2 over Z.
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Proof. Since C' is a skew A-constacyclic code of length n over R with A = (3 + 2u + 2u?),
192(C) = C. Applying 2 on both sides and using Proposition @, we have pap2(C) = p2(C).
This shows that p2(C) is a quasi-cyclic code of length 2n and index 2 over Z4.

5. CONSTACYCLIC CODES OF ODD LENGTH n OVER R AND THEIR GENERATORS

In this section, we discuss A-constacyclic codes of odd length n over R with A\ = (1+42u+2u?)
and (3 + 2u + 2u?). Note that A" = 1 if n is an even integer and A" = ) if n is an odd integer.
Based on the results established in [, B, , lﬁl, @, @, @], analogous results are given below

without proofs.

Theorem 5.1. A mapping B : Rlz|/{z" — 1) — R[z]/(z"™ — \) defined by B(a(z)) = a(Azx) is

a ring isomorphism, if n is an odd integer.

Corollary 5.2. For any odd integer n, I is an ideal of R[x]/(z™ — 1) if and only if B(I) is an
ideal of R[z]/(z™ — \).

Corollary 5.3. Let 3 be a permutation of R"™, defined by B(co,c1,...,cn 1) =
(co, Aety ..., A" Le, 1), Then a subset C of R™ is a cyclic code of odd length n over R if
and only if B(C) is a A-constacyclic code over R.

Theorem 5.4. [@] Let C be a cyclic code of odd length n over R. Then C = (g1(z)+2a1(x)+
ug(z) + u’h(z), u(g2(w) + 2a2(x)) + w?b(z),u?(g3(x) + 2a3(x))), where a;(z)|gi(x)|(z" — 1)

mod 2, and g;(x) 4+ 2a;(x) is a generator of a cyclic code over Zy fori=1,2,3.

Using Theorem @, we can construct the generators for A - constacyclic codes of odd length

n over R as follows.

Theorem 5.5. Let C be a cyclic code of odd length n over R. Then C is an ideal of R, \
given by C = (g1(7) + 201 (2) + ug(7) + wh(2), u(92(3) + 202(%)) + u?b(3), u* (g5 (F) +2a3(2))),
where a;(z)|gi(x)|(z™ — 1) mod 2, and g;(x) + 2a;(x) is a generator of a cyclic code over Zy
fori=1,2,3 and T = A\x.

Proof. The result follows from Corollary @ and Theorem @ 0

Theorem 5.6. Let C' be a \-constacyclic code of length n over R and C = (a(x) + ub(x) +
u?c(z)), where a(z),b(x),c(x) € Zy[x] with degree less than n.Then 11 (C) is a cyclic code of
length 2n over Z4 generated by the polynomials [b(x) 4+ 2¢(x)] + 2" [2a(x) + b(x) + 2¢(z)], [a(z) +
2b(x)] + z"[a(x) + 2b(x)] and [2a(x)] + z™[2a(x)].
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Proof. The polynomial that corresponds to the Gray map v of (1) can be defined as

Rix] Zy|x] " Zy[x]
@ -1 @-1  (@—1)

Y1

b1 (alz) + ub(z) + ule(z)) = (b(x) + 2¢(x), 2a(z) + b(z) + 2c(x)),
where a(@),b(z), ¢(z) € Zy[z].
For any r1(z),72(x), 73(x) € Za[z], it can be shown that
Dr[(r (@) + ura(z) + uPrs(2)) (a(z) + ub(z) + u?e(@))]
= r1(2)[b(x) + 2¢(z), 2a(z) + b(x) + 2c(z)] + r2(z)[alz) + 2b(z),
a(z) + 2b(x)] + r3(2)[2a(z), 2a(z)],
Zala] ., Zala] Zala]

(zn—1) (zn—1) (z?n—1)"
Hence, the polynomials [b(z)+2¢(x)]+x"[2a(x)+b(x)+2¢(x)], [a(z)+2b(x)]+x" [a(z)+2b(x)]

and [2a(z)] + 2™[2a(z)] generate ¥1(C).

and the vector (a,b) €

X

corresponds to the same vector (a + z™b) €

Theorem 5.7. Let C be a A-constacyclic code of length n over R and C = (a(x) + ub(z) +
u?c(x)), where a(x),b(x),c(x) € Zy[x] with degree less than n.Then ¢1(C) is a cyclic code
of length 2n over Zs generated by the polynomials [a(x) + b(z) + c(x)] + z"[3a(x) + b(z) +

3c(z)], [a(z) + b(x)] + z"[a(x) + 3b(x)] and [a(z)] + 2"[3a(z)].

Proof. Similar to the proof of Theorem @ 0

Example 5.8. If C = (z*+ (u+u?)2® +3ur+1+u+u?) is a (14 2u+2u?)-constacyclic code of
length 5 over R. In view of Theorem @, ¥1(C) is a cyclic code of length 10 over Z, generated
by the polynomials 22 + 32% + 325 + 25 + 323 + 32+ 3, 29 + 228 4+ 220 + 3% + 2% + 223 + 20+ 3

and 229 + 225 + 22* + 2 with minimum Lee distance 8.

Example 5.9. If C = (23 4+ (1 +u+u?)2? + (2+u)z +u+u?) is a (34 2u + 2u?)-constacyclic
code of length 4 over R. By Theorem @, ©1(C) is a cyclic code of length 8 over Z, generated
by the polynomials 327 + 32° 4+ 32° + 2% + 322 + 32 + 2,27 + 25 + 32* + 23 + 222 + 32+ 1 and

327 + 325 + 225 + 23 + 22 + 22 with minimum Lee distance 8.

Definition 5.10. [@] Let n be an odd integer and T = (1,n + 1)(3,n + 3)...(2¢ + 1,n +
2i +1)...(n — 2,2n — 2) be a permutation of the set {0,1,2,...,2n — 1}. Then the Nechaev

permutation II is the permutation of ZZ” defined by

H(ro,r1, .-+ Ton—1) = (TT(0)77‘T(1), . -,T‘T(Qn—1))~
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Theorem 5.11. For any r € R", we have 11 B(r) = IL41(r), where 11, B with A = (1 + 2u +

2u?) and I1 are introduced in above.

Proof. Let r = (r9,71,...,7—1) € R™, where r; = a; + ub; + u?c; € R and a;,b;,¢; € Zy for
i=0,1,...,n—1. Now, (14 2u+ 2u?)(a; + ub; + v’c;) = a; +u(2a; + b;) + u?(2a; + 2b; + ¢;)
and wl(ai -+ u(2a,; + bz) + u2(2ai + 2b; + Cz)) = (2ai +b; + 2¢;,b; + 202'). Then

V1B(r) = 1 (ro, A1, N2ra, o A 2 o A e, )
= (bo + 2¢o,2a1 + b1 +2¢1,b2 + 2¢2, ..., 2ap—2 + by—2 + 2¢p—2,bp—1 + 2¢p—1,
2a9 4 bo + 2¢q, by + 2¢1,2a3 + b + 2¢o, ..., bp—o + 2¢p-2,2ap-1 + bp—1 + 2¢5—1),
and, we have
Ity (r) = I (bo + 2¢9, by + 2¢1, b2 + 2¢9, ..., bp—2 + 2¢p—2,bp—1 + 2¢5—1, 2a0 + by + 2¢p,
2a1 4 by + 2¢1,2ag + ba + 2¢2, .., 2ap—2 + by—2 + 2¢p—2,2ap—1 + bp—1 + 2¢-1)
= (bo + 2¢o,2a1 + b1 + 2¢1,ba + 2¢2, ..., 2ap-2 + by—2 + 2¢—2, b1 + 2¢5_1,
2ap + by + 2¢9, b1 + 2¢1,2a9 + by + 2¢2, ... by—a + 2¢p—2, 2051 + bp—1 + 2¢p—1).

Hence, ¥15(r) = Iy (). g

Corollary 5.12. Ifé is the Gray image of a cyclic code C of odd lengthn over R (i.e., ¥1(C) =
6), then H(é) is a cyclic code of length 2n over Z,.

Proof. Since C' is a cyclic code over R, 3(C) is a (1 + 2u + 2u?)-constacyclic code over R by
Corollary @ From Theorem @, we see that 11 B(C) is a cyclic code of length 2n over Zj.
Also, from Theorem , we have 111 (C) = II(C) = ¢ B(C). This implies that II(C) is a
cyclic code of length 2n over Z4.

Theorem 5.13. For anyr € R", we have ¢15(r) = 1 (r), where p1, B with A = (3+2u-+2u?)

and II are introduced in above.

Proof. Let r = (rg,71,...,7_1) € R", where 7; = a; + ub; + u?c; € R and a;,b;, ¢; € Zy for
i=0,1,...,n—1. Now, (3+2u+2u?)(a; +ub; +u’c;) = 3a; +u(2a; + 3b;) +u?(2a; + 2b; + 3¢;)
and 1 (3a; + u(2a; + 3b;) + u?(2a; + 2b; + 3¢;)) = (3a; + b; + 3¢;,a; + b; + ¢;). Then

SDIB(T) = Y1 (T07 )‘Tla )‘27.27 ceey )\n_an—27 )‘n_lrn—l)
= (ap + bo + co,3a1 + b1 + 3c1, ..., 3an—2 + by—2 + 3cn—2,an-1 + bp_1 + cp—1,

3ag 4+ bo + 3co,a1 + by +c1,. .. an—2 + by—2 + cp—2,3an-1 + bp—1 + 3cp—1),
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and, we have
g1 (r) = (ag + bo + co,a1 + b1 +c1,. .. an—2+by2+ 2,01+ bp1+cn1,
3ag + bo + 3co,3a1 + b1 + 3¢1, ..., 3an—2 + b2 + 3¢pn—2,3an-1 + bp—1 + 3¢n-1)
= (ap + bo + co,3a1 + b1 + 3c1, ..., 3an—2 + bp—2 + 3cp—2,an-1 + bp—1 + Cn_1,
3ag + bo + 3co,a1 + b1+ 1y an—2 +bp_2 + cn_2,3an_1 + bp_1 + 3cn_1).

Hence, ¢16(r) = 1 (r). g

Corollary 5.14. IfC is the Gray image of a cyclic code C of odd length n over R (i.e., p1(C) =
6), then H(é) s a cyclic code of length 2n over Z,.

Proof. Since C' is a cyclic code over R, 3(C) is a (3 + 2u + 2u?)-constacyclic code over R by
Corollary @ From Theorem , we see that @1 3(C) is a cyclic code of length 2n over Z;.
Also, from Theorem , we have I (C) = II(C) = ¢, B(C). This implies that II(C) is a
cyclic code of length 2n over Z4.

Theorem 5.15. For any r € R™, we have 3B(r) = n3(r), where v3 and B with
A = (1 + 2u + 2u?) are introduced in above and n is a permutation of Z3" defined by
n(cr, e, .-y e3n) = (Ce(1), Ce2)s - - -5 Ce(3n)) With the permutation ¢ = (2,n +2)(4,n +4)...(n —
1,2n—1) of {1,2,3,...,3n}.

Proof. Let © = (rg,71,...,7n_1) € R", where r; = a; + ub; + u?c; € R and a;,b;,¢; € Zy for
i=0,1,...,n—1. Now, (14 2u+ 2u?)(a; + ub; + u?c;) = a; + u(2a; + b;) + u?(2a; + 2b; + ¢;)
and w3(ai + U(Q(Ii + bz) + u2(2ai + 2b; + Cl)) = (25,’ + ¢i, 2a; + ¢, QCi). Then

Y3B(r) = h3(ro, Ar1, 79, .., A2, 70 1)
= (2ap + co,2b1 + ¢1,2a2 + c2,...,2bp—92 + cn—2,2an_1 + 1, 2bo + co, 2a1 + c1,
2by 4+ c2y ...y 2002 + Cp—2,2bp_1 + Cn—1, 2¢0, 2¢1,2¢2, . . ., 2Cn—2,2¢n_1),
and, we have

nYs(r) = n(2ap + co,2a1 + ¢1,2a9 + c2, . .., 249 + Cp—2,2an_1 + Ccn—1,2by + co, 2b1 + 1,

2bg 4 coy ...y 2bp—9 + Cp—2,2bp_1 + Cp—1,2¢0,2¢1, . .., 2Cn—2,2Cn—1)
= (2ag + o, 2b1 + c1,2a2 + c2, ..., 2by—2 + ¢p—2,2an—1 + Cpn—1,2by + co,2a1 + c1,

2by 4 coy ...y 2an—2 + Cp—2,2bp—1 + Cpn—1,2¢0,2¢1,2¢2, . . ., 2Cp—2,2Cn—1)-

Hence, wgﬁ(r) =m3(r). g
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Corollary 5.16. If@ is the Gray image of a cyclic code C of odd lengthn over R (i.e., 3(C) =
6), then n(é) 1s the permutation equivalent to a quasi-cyclic code of index 3 and length 3n

over Zy4.

Proof. Since C' is a cyclic code over R, 3(C) is a (1 + 2u + 2u?)-constacyclic code over R by
Corollary @ From Theorem @, we see that 3 5(C) is permutation equivalent to a quasi-
cyclic code of index 3 and length 3n over Z4. By Theorem , we have n3(C) = n(C) =

3 B(C). This implies that 7(C) is permutation equivalent to a quasi-cyclic code of index 3
and length 3n over Zs4.

Theorem 5.17. For any r € R", we have 3 B(r) = n@3(r), where @3, B with A = (3 + 2u +

2u?) and n are introduced in above.

Proof. Let r = (rg,71,...,7n_1) € R", where r; = a; + ub; + u’c; € R and a;,b;,¢; € Zy for
i=0,1,...,n—1. Now, (3+2u+2u?)(a; +ub; +u’c;) = 3a; +u(2a; + 3b;) +u?(2a; + 2b; + 3¢;)
and ©3(3a; + u(2a; + 3b;) + u2(2ai + 2b; + 3¢;)) = (¢4, 2a; + 2b; + 3¢, 2a; + 2b; + 2¢;). Then

w3 B(r) = w3(r0, AT1, 72, oy, AT—2, 1)

= (2ap + 2bo + 3¢, c1,2a9 + 2by + 3ca, ..., Cp—2,2an_1 + 2bp—1 + 3cp_1, Co,
2a1 + 2by + 3c1, ¢, ..., 2ap_9 + 2by_o + 3¢y _9, Cn_1, 2ag + 2bg + 2¢p, 2a1 + 2b1
+ 2c1,2ag + 2by + 2¢a, ..., 2ap—9 + 2bp—o + 2¢1—2,2ap—1 + 2bp—1 + 2¢4—1),

and, we have
nes(r) = n(2ap + 2by + 3cg, 2a1 + 2b1 + 3c1, ..., 2an-1 + 2bp—1 + 3¢n—1,€0,C1, - -+, Cn—1,
2a0 + 2bg + 2¢p, 2a1 + 2by + 2¢1, ..., 2ap—1 + 2bp—1 + 2¢5—1)
= (2ag + 2bo + 3¢, c1,2a9 + 2by + 3ca, .. ., Cp—2,2an_1 + 2b,—1 + 3cp_1, o, 2a1 + 2b1
4+ 3c1,¢2, ..., 2009 + 2b,_9 4+ 3cp_2,Cn_1, 2a¢g + 2bg + 2¢g, 2a1 + 2b1 + 2¢1, 2a9+

2by + 2¢9,...,2an_2 + 2by,_9 + 2¢1_9,20, 1 + 2b,,_1 + ZCnfl).

Hence, 03 3(r) = n3(r). g

Corollary 5.18. IfC~’ is the Grray image of a cyclic code C' of odd length n over R (i.e., p3(C) =
6), then 77(6) s permutation equivalent to a quasi-cyclic code of index 3 and length 3n over

Zy.
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Proof. Since C is a cyclic code over R, 3(C) is a (3 + 2u + 2u?)-constacyclic code over R by
Corollary @ From Theorem , we see that 3 (C) is permutation equivalent to a quasi-
cyclic code of index 3 and length 3n over Z4. By Theorem , we have n(CN’) = 93 B(0).

This implies that n(C) is permutation equivalent to a quasi-cyclic code of index 3 and length

3n over Z4.

6. CONCLUSION

In this article, we discussed the A-constacyclic codes over the ring R = Z4 + uZy + u*Z4,
ud =0 with A = (1 + 2u + 2u?) and (3 + 2u + 2u?). We have shown that the Gray images of
A-constacyclic codes over R are cyclic, quasi-cyclic and permutation equivalent to quasi-cyclic
codes over Z4 similar to the results obtained in [@, lﬁl, @] It is also proved that Gray images
of skew A-constacyclic codes are quasi-cyclic codes over Z4. Furthermore, the structure of

A-constacyclic codes of odd length n over R are determined with some suitable examples.
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