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Abstract: A graph G of order n is called k−step Hamiltonian for k ≥ 1 if we can

label the vertices of G as v1, v2, . . . , vn such that d(vn, v1) = d(vi, vi+1) = k for i =
1, 2, . . . , n−1. The (vertex) chromatic number of a graph G is the minimum number of

colors needed to color the vertices of G so that no pair of adjacent vertices receive the

same color. The clique number of G is the maximum cardinality of a set of pairwise
adjacent vertices in G. In this paper, we study the chromatic number and the clique

number in k−step Hamiltonian graphs for k ≥ 2. We present upper bounds for the
chromatic number in k−step Hamiltonian graphs and give characterizations of graphs
achieving the equality of the bounds. We also present an upper bound for the clique

number in k−step Hamiltonian graphs and characterize graphs achieving equality of
the bound.
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38 On chromatic number and clique number in k−SH graphs

1. Introduction

Throughout this paper, G = (V (G), E(G)) is a simple graph with V (G) as its

vertex set and E(G) as its edge set. The open neighborhood of a vertex v ∈ V (G),

denoted by NG(v)(or just N(v)) is the set {u : uv ∈ E(G)}. The degree of a

vertex v, degG(v)(or just deg(v)) is the number of neighbors of v in G, that is,

deg(v) = |NG(v)|. We refer to δ(G) and ∆(G) as the minimum and maximum degree

among all vertices of G, respectively. Also, a vertex v ∈ V (G) is called a pendant

vertex if deg(v) = 1. Let Kn, Cn and Pn be a complete graph, a path and a cycle

with n vertices, respectively. The distance between two vertices u and v in G, d(u, v),

is the minimum length among all paths between u and v and the maximum distance

d(u, v) among two vertices u, v of G is the diameter of G and is denoted by diam(G).

For a set A ⊆ V (G), G[A] is the subgraph of G induced by A. A circulant graph

Cm(a1, a2, . . . , ak) with 0 < a1 < a2 < . . . < ak <
m+1
2 is a graph of order m with

vertices {v1, v2, . . . , vm} such that vi is adjacent to vi+aj
for all aj ∈ {a1, a2, . . . , ak},

where the summation i+ aj is taken modulo m. For a graph G, the corona graph of

G, cor(G), is the graph obtained by adding a pendant vertex to every vertex of G.

For other notation and terminology not defined here, we refer to [15].

A proper vertex coloring of a graph G is an assignment of colors to the vertices of

G such that every pair of adjacent vertices receives different colors. The chromatic

number of a graph G, denoted by χ(G), is the minimum number of colors required

in a proper vertex coloring of G. If G has a proper vertex coloring of k colors, then

χ(G) ≤ k. The study of chromatic number of graph is an active area of research, see

for example [6, 11–14]. A clique in a graph G is a set S of pairwise adjacent vertices

and the number of vertices in the maximum clique is referred to as the clique number

of G, denoted by ω(G).

A graph G is said to be Hamiltonian if G has a spanning cycle referred as a

Hamiltonian cycle. Although the Hamiltonicity problem is a widely studied subject

in graph theory, no exact characterization for the existence of the Hamiltonian cycle

has been found. A good survey on the developments of Hamiltonicity problem can

be found in [4]. The concept of Hamiltonicity has been extended by Lau et al. [9]

to k−step Hamiltonicity as follows: For a graph G of order n, if we can arrange the

vertices as v1, v2, . . . , vn such that d(vn, v1) = d(vi, vi+1) = k for i = 1, 2, . . . , n − 1

and k ≥ 1, then we call G a k−step Hamiltonian (or just k−SH) graph with

v1, v2, . . . , vn, v1 as the k−step Hamiltonian (or just k−SH) walk of G. The k−step

Hamiltonicity of some family of graphs including trees, tripartite graphs, cycles, grid

graphs, torus graphs, cubic graphs and subdivision of cycles, have been studied, see

[1, 2, 5, 7–10].

In this paper, we continue the study of k−SH graphs by proving bounds for the

chromatic number and the clique number in k−SH graphs, where k ≥ 2. In Section

2 we give a proof for the fact that a k−SH graph has at least 2k + 1 vertices. In
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Section 3, we present upper bounds for the chromatic number in k−SH graphs and

give characterizations of graphs achieving the equality of the bounds. In Section 4,

we present an upper bound for the clique number in k−SH graphs and characterize

graphs achieving equality of the bound. We make use of the following known results.

Theorem 1 (Brooks’ Theorem). For every connected graph G other than an odd
cycle or a complete graph, χ(G) ≤ ∆(G).

Theorem 2 (Chartrand et al. [3]). If G is a connected graph of order n and
diameter d, then χ(G) ≤ n− d+ 1.

2. Preliminary

The following theorem has played an important role in several works on the subject of

k−step Hamiltonian graphs, while the proof given in [8] does not have any argument

for the bound n ≥ 2k + 1.

Theorem 3 (Lau et al. [8]). The cycle Cn for n ≥ 3 is k−SH for k ≥ 2 if and only
if n ≥ 2k + 1 and gcd(n, k) = 1.

We provide in the following a proof for the above bound.

Theorem 4. If G is a k−SH graph of order n for k ≥ 1, then n ≥ 2k + 1.

Proof. The result is obvious if k = 1. Thus assume that k ≥ 2. Let G be a k-SH

graph of order n, and let W : v1, v2, . . . , vn, v1 be a k−SH walk in G. Thus d(vn, v1) =

d(vi, vi+1) = k for each i = 1, 2, . . . , n − 1. Since d(v1, v2) = k, let x0, x1, . . . , xk be

a shortest path between v1 and v2, where x0 = v1 and xk = v2. Clearly each of xi,

(i = 1, 2, . . . , k − 1) lies on W . We follow the walk W starting from v1. We relabel

the vertices x1, . . . , xk−1 according to their place in W . Let the relabeled vertices be

xj1 , xj2 , . . . , xjk−1
, where xjr is before xjs if r < s. For each r ∈ {1, 2, . . . , k − 1}, xjr

has two consecutive vertices on W namely x′jr and x′′jr , and without loss of generality,

assume that x′jr is on the left side of xjr and x′′jr is on the right side of xjr inW . Clearly

{x′j1 , x
′′
j1
} ∩ {v1, v2} = ∅. For each r = 2, . . . , k − 1, {x′jr , x

′′
jr
} 6⊆ {v1, v2, xjs , x′js , x

′′
js
}

for s < r. So for each r = 2, . . . , k − 1, {x′jr , x
′′
jr
} − {v1, v2, xjs , x′js , x

′′
js

: s < r} 6= ∅.
So n ≥ k + 1 + 2 + k − 2 = 2k + 1.

For the sharpness of the bound in Theorem 4, consider the graph G = C2k+1 for

k ≥ 1. By Theorem 3, G is k−SH.
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3. Chromatic number

We begin with the following bound.

Theorem 5. If G is a k−SH graph of order n for k ≥ 2, then χ(G) ≤
⌈
n
2

⌉
. If equality

holds, then k = 2.

Proof. Let G be a k−SH graph of order n for k ≥ 2. Without loss of generality,

assume that v1, v2, . . . , vn, v1 is a k−SH walk of G. Clearly, d(vi, vi+1) = d(vn, v1) = k

for i = 1, 2, . . . , n − 1. We define a vertex coloring c of G as follows: If n is even,

then for i = 0, 1, . . . , n2 − 1, we let c(v2i+1) = c(v2i+2) = i + 1. If n is odd, then for

i = 0, 1, . . . , n−12 − 1, we let c(v2i+1) = c(v2i+2) = i+ 1 and c(vn) = n−1
2 + 1. Clearly

no pair of adjacent vertices receive the same color. The number of colors used in this

proper vertex coloring c is
⌈
n
2

⌉
. Therefore, χ(G) ≤

⌈
n
2

⌉
, as required.

Assume now that χ(G) =
⌈
n
2

⌉
. Since G is k−SH for k ≥ 2, clearly G is connected

and G is not a complete graph. If G is an odd cycle, then χ(G) = 3, that is, n+1
2 = 3.

This means G = C5. By Theorem 3, C5 is 2−SH. Thus assume that G is not an

odd cycle. Since G is not a complete graph or an odd cycle, by Brooks’ Theorem,

χ(G) ≤ ∆(G). Therefore we have
⌈
n
2

⌉
≤ ∆(G). Let v be a vertex of maximum degree,

that is deg(v) = ∆(G) and let A = V (G)−N [v].

Assume that n is even. Then, n ≤ 2∆(G) and |A| = n − ∆(G) − 1 ≤ ∆(G) − 1.

Since G is k−SH, there exist two vertices y, z ∈ A such that y, v, z are consecutive

vertices in a k−SH walk of G. Let W be such k−SH walk and W ′ = W − {y, v, z}.
Then it remains ∆(G) vertices from N(v) in W ′ and some vertices of A. Thus, clearly

there exist two consecutive vertices α, β in W with α, β ∈ N(v). Therefore, k = 2.

The case n odd is similarly verified.

We next show that for each n ≥ 5, there exists a graph achieving equality of the

bound in Theorem 5.

Proposition 1. For each n ≥ 5, there exists a 2−SH graph G of order n with χ(G) =
⌈
n
2

⌉
.

Proof. If G is a graph of order n ≤ 4, then by Theorem 4, G is not 2-SH. Thus,

we consider n ≥ 5. Let G = Gn be a graph obtained from the complete graph Kn,

(n ≥ 5) with V (Kn) = {v1, v2, . . . , vn} by removing the edges of the Hamiltonian

cycle v1, v2, . . . , vn, v1. The graph G is connected since Kn, n ≥ 5 has
⌊
n−1
2

⌋
edge-

disjoint Hamiltonian cycles. Note that for each i = 1, 2, . . . , n, vi is adjacent to every

vj for j 6∈ {i + 1, i − 1} with the summations i + 1 and i − 1 are taken in modulo n

and so d(vi, vi+1) = 2. Therefore, v1, v2, . . . , vn, v1 is a 2−SH walk of G and thus G

is 2−SH. By Theorem 5, χ(G) ≤
⌈
n
2

⌉
.

We next prove that χ(G) ≥
⌈
n
2

⌉
. For even n, clearly {v2i : 1 ≤ i ≤ n

2 } is a clique.

Therefore, χ(G) ≥ ω(G) ≥ n
2 . Now, we prove by induction on n that for each odd

n ≥ 5, χ(G) ≥
⌈
n
2

⌉
= n+1

2 . For the base step assume that n = 5. Then G = G5 = C5.

Clearly, χ(G) = 3 ≥ n+1
2 . Assume the result holds for all odd n′ with 5 ≤ n′ < n.
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Now, consider the graph G = Gn for odd n. Let c be a proper vertex coloring of

G. Since G is not a complete graph, there exist i, j such that c(vi) = c(vj). Clearly,

j = i − 1 or j = i + 1. Without loss of generality, we assume that j = i + 1. Now,

remove vi and vi+1 and also the edge vi−1vi+2 to obtain Gn−2. Clearly, the restriction

of c on Gn−2 is a proper vertex coloring of Gn−2. By the induction hypothesis, we

have |{c(v) : v ∈ V (Gn−2)}| ≥
⌈
n−2
2

⌉
= n−1

2 . Therefore, for the graph G = Gn, we

have |{c(v) : v ∈ V (G)}| ≥ 1 +
⌈
n−2
2

⌉
= n+1

2 , as desired.

As another example of families of graphs achieving the equality in the bound

in Theorem 5, consider the complete graph Kn
2

for even n ≥ 6 with vertices

v1, v2, . . . , vn
2

. Let G = cor
(
Kn

2

)
with V (G) = V

(
Kn

2

)
∪
{
u1, u2, . . . , un

2

}
such

that ui is adjacent to vi in G for i = 1, 2, . . . , n2 . Clearly, d(vi, uj) = 2 for

i 6= j. Also, it is clear that χ(G) = χ
(
Kn

2

)
= n

2 because we can color each

vertex ui for i = 1, 2, . . . , n2 with one of the color in the set {1, 2, . . . , n2 } that

is different from the color of vi. The 2−SH walk is then given by the sequence

of vertices v1, u2, v3, u4, . . . , un
2−1, v

n
2
, u1, v2, . . . , vn

2−1, u
n
2
, v1 when n

2 is odd and

u1, v2, u3, v4, . . . , un
2−1, v

n
2
, u2, v1, un

2
, vn

2−1, . . . , u4, v3, u1 when n
2 is even.

Now, we propose the following problem.

Problem 1. Characterize all 2−SH graphs G of order n with χ(G) =
⌈
n
2

⌉
.

Theorem 6. There is no forbidden induced subgraph characterization for 2−SH graphs
of order n with chromatic number

⌈
n
2

⌉
.

Proof. Let G be a graph of order a. The result is obvious if a ≤ 2. Thus, assume

that a ≥ 3. Let b = 2
⌈
a
2

⌉
. Then we form the graph cor(Kb). Identify each vertex of

G with a pendant vertex of cor(Kb) to obtain a graph H of order 2b. Since the adding

edges are between pendant vertices of cor(Kb), clearly χ(H) = χ(cor(Kb)) = b. As

before, one can easily see that the graph cor(Kb) is 2−SH and no two pendant vertices

of cor(Kb) are consecutive in the 2−SH walk. Therefore, a 2−SH walk in cor(Kb) is

also a 2−SH walk in H and thus H is 2−SH. Thus G is an induced subgraph of H,

where H is a 2−SH graph with χ(H) =
⌈
|V (H)|

2

⌉
.

Proposition 2. The difference
⌈
|V (G)|

2

⌉
− χ(G) can be arbitrarily large in a 2-SH graph

G.

Proof. Let n ≥ 7 be an odd integer, and r = n+1
2 − 3. Consider the graph G =

C2(r+3)−1. By Theorem 3, G is 2−SH. Then,
⌈
|V (G)|

2

⌉
− χ(G) =

⌈
2(r+3)−1

2

⌉
− 3 =

r = n−5
2 .

Theorem 7. For each k ≥ 3, there exists a k−SH graph G of order n with χ(G) =
⌈
n
k

⌉
.
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42 On chromatic number and clique number in k−SH graphs

Proof. Let k ≥ 3 and consider the graph G = C2k+1. By Theorem 3, G is k−SH.

Since G is an odd cycle of order 2k + 1, then χ(G) = 3 =
⌈
2k+1

k

⌉
.

We propose the following conjecture.

Conjecture 1. If G is a k−SH graph of order n for k ≥ 1, then χ(G) ≤
⌈
n
k

⌉
.

We next present another upper bound for the chromatic number in a k−SH graph.

Theorem 8. If G is a k−SH graph of order n for k ≥ 2, then χ(G) ≤ n−k, with equality
if and only if k = 2 and G = C5.

Proof. Let G be a k−SH graph of order n for k ≥ 2. Clearly, G is connected. Since

G is k−SH, we have diam(G) ≥ k and thus, by Theorem 2, we have χ(G) ≤ n−k+1.

If χ(G) = n − k + 1, then we obtain the contradiction 2k + 1 ≤ n ≤ 2k − 1 from

Theorems 4 and 5. Thus χ(G) ≤ n− k.

We next prove the equality part. Assume that χ(G) = n − k. Since G is k−SH,

it follows by Theorem 4 that n ≥ 2k + 1. If k ≥ 3, then by Theorem 5, χ(G) <
⌈
n
2

⌉
and so n < 2k + 1, a contradiction. Therefore, k = 2 and thus n ≥ 5. Now, we have

χ(G) = n−2 ≤
⌈
n
2

⌉
. If n is even, then n ≤ 4, a contradiction. If n is odd, then n ≤ 5

and thus n = 5. Therefore, G is a 2−SH graph of order 5. We can easily check that

G = C5.

The converse is clear.

Let Cm(1, 2) be the circulant graph of order m. Abd Aziz et al. [1] obtained the

following sufficient condition for the graph Cm(1, 2) to be k−SH.

Theorem 9 (Abd Aziz et al. [1]). If gcd(m, 2j − 1) = 1 for m ≥ 6 and 2 ≤ j ≤⌈
m−1

4

⌉
, then Cm(1, 2) is j−SH.

They then gave a construction namely B−construction that produces a (k+1)−SH

graph from any given k−SH graph G. The construction is as follows:

B-Construction. Let G be a k−SH graph of order n for k ≥ 1 with a given

k−SH walk v1, v2, . . . , vn, v1. Consider the graph cor(G) with the new n vertices

u1, u2, . . . , un such that ui is adjacent to vi for i = 1, 2, . . . , n. Then, the B-

construction produces a graph B(G) from G as follows:

(i) For odd n, B(G) = cor(G).

(ii) For even n, B(G) is obtained from cor(G) by the following scheme:

Step 1. For an integer m, m ≥ 6 and k ≤
⌈
m−1
4

⌉
− 1 with gcd(m, 2k + 1) = 1,

the circulant graph Cm(1, 2) is (k + 1)−SH by Theorem 9. Let C1
m(1, 2) and

C2
m(1, 2) be two copies of Cm(1, 2). Without loss of generality, assume that
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u1,1, u1,2, . . . , u1,m, u1,1 (respectively u2,1, u2,2, . . . , u2,m, u2,1) is a (k + 1)−SH

walk of C1
m(1, 2) (respectively C2

m(1, 2)). Note that d(ui,j , ui,j+1) = k + 1 for

i = 1, 2 and for j = 1, 2, . . . ,m, where the summation j + 1 is taken in modulo

m.

Step 2. Identify the vertices u1,1, u1,m, u2,1 and u2,m to the vertices un, u1, vn
and v1, respectively.

The i-th iterated construction B of G, Bi(G) for any i ≥ 1 is defined recursively

by B1(G) = B(G), B2(G) = B(B(G)) and Bi(G) = B(Bi−1(G)) for i ≥ 2.

Theorem 10 (Abd Aziz et al. [1]). If G is k−SH for k ≥ 1, then B(G) is
(k + 1)−SH.

From the B-construction above, we can obtain the following two results.

Lemma 1. If G is a k−SH graph of order n with χ(G) ≥ 5 and H is a graph obtained
from G by B-construction, then χ(H) = χ(G).

Proof. Let G be a k-SH graph of order n with χ(G) ≥ 5 and H be a graph obtained

from G by applying the B-construction. If n is odd, then by the above construction,

H = B(G) = cor(G). Clearly, χ(H) = χ(G) because in H, we can color every vertex

ui for i = 1, 2, . . . , n with one of the color in the set {1, 2, . . . , χ(G)} that is not the

color of vi.

If n is even, then H = B(G) is obtained from cor(G) as described above. Since the

circulant graph Cm(1, 2) contains a triangle, χ(Cm(1, 2)) ≥ 3 and it is not difficult to

see that for m ≥ 6, χ(Cm(1, 2)) = 3 when m ≡ 0(mod 3) and χ(Cm(1, 2)) = 4 when

m 6≡ 0(mod 3). Note that in B(G), we have vn = u2,1, un = u1,1, v1 = u2,m and

u1 = u1,m. As before, we can color cor(G) with χ(G) colors. Let c be this coloring.

Now, we can color C1
m(1, 2) and C2

m(1, 2) in such a way that the vertices u1,1 and u1,m
receive c(un) and c(u1), respectively, and the vertices u2,1 and u2,m receive c(vn) and

c(v1), respectively. Therefore, we have χ(H) = χ(G).

Theorem 11. For each l ≥ 5, there exists a chain of graphs H2 ⊆ H3 ⊆ H4 ⊆ . . . such

that χ(Hi) = l for each i ≥ 2, Hi is i−SH, and
n(Hi+1)

n(Hi)
> 2.

Proof. Let l ≥ 5 and H2 = G2l be the graph defined in the proof of Proposition

1. Then, we know that H2 is 2−SH with χ(H2) = l. Now, for each i > 2, let

Hi = Bi−2(H2). By Theorem 10 and Lemma 1, for each i > 2, Hi is an i−SH

graph with χ(Hi) = l. Clearly, from the construction of Hi for i ≥ 2, we have
n(Hi+1)

n(Hi)
> 2.
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Corollary 1. For each k ≥ 3, there exists a k−SH graph G such that χ(G) <
n(G)

2k−1
.

C5 G1 G2

G3 G4 G5

G6 G7

Figure 1. The graphs in F.

4. Clique number

In this section, we present an upper bound for the clique number in a k−SH graph

and characterize the graphs achieving the equality of the bound. Let F be the family

of graphs shown in Figure 1.

Theorem 12. If G is a k−SH graph of order n for k ≥ 2, then ω(G) ≤ n− k − 1, with
equality if and only if k = 2 and G ∈ F .

Proof. Let G be a k−SH graph of order n for k ≥ 2 and S be a maximum clique

in G. Let v1 and v2 be two consecutive vertices on a k−SH walk of G and assume

that P : x0, x1, . . . , xk−1, xk is a shortest path in G from v1 to v2, where v1 = x0
and v2 = xk. Clearly, |S ∩ {x0, . . . , xk}| ≤ 2, otherwise we will have a shorter

v1, v2-path. Therefore, ω(G) ≤ n − k + 1. Suppose that ω(G) = n − k + 1. Then,

|S ∩ {x0, . . . , xk}| = 2. Let xi, xi+1 ∈ S ∩ {x0, . . . , xk}. Without loss of generality,

we can assume that xi 6= v1. Then, there is no vertex at distance k from xi, a

contradiction. Thus, ω(G) ≤ n− k.

Suppose that ω(G) = n − k. Clearly 1 ≤ |S ∩ {x0, . . . , xk}| ≤ 2. Suppose that

|S ∩ {x0, . . . , xk}| = 1. Let xi ∈ S ∩ {x0, . . . , xk}. If xi = v1, then v2 is the only

vertex at distance k from xi in G, a contradiction. Thus xi 6= v1. Similarly, xi 6= v2.

But then there is no vertex at distance k from xi in G, a contradiction. Next suppose

that |S ∩{x0, . . . , xk}| = 2. Let xi, xi+1 ∈ S ∩{x0, . . . , xk}. Since |S| = n− k, clearly

there exists a vertex y 6∈ S ∪ V (P ). Without loss of generality, assume that xi 6= v1.
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Then there exists at most one vertex at distance k from xi (possibly d(xi, y) = k), a

contradiction.

We conclude that, ω(G) ≤ n − k − 1, as desired. We next prove the equality part.

Assume that ω(G) = n−k−1. Let v1, v2, x0, x1, . . . , xk and S be as described above.

Claim 1. k = 2.

Proof of Claim 1. Suppose k ≥ 3. Clearly |S| ≥ 2. According to |S∩{x0, . . . , xk}| ≤ 2,

we have three possibilities.

Suppose that |S ∩ {x0, . . . , xk}| = 0. If there exists a vertex xi for i = 1, 2, . . . , k − 1

such that xi is adjacent to some vertex y ∈ S, then there is no vertex at distance

k from xi in G, a contradiction. Therefore, every vertex xi for i = 1, 2, . . . , k − 1

has no neighbor in S. But then, v2 is the only vertex at distance k from v1 in G, a

contradiction.

Next suppose that |S ∩ {x0, . . . , xk}| = 1. Let xi ∈ S ∩ {x0, . . . , xk}. Since |S| =

n−k−1, there exists a vertex y 6∈ S∪V (P ). Suppose xi = v1. If d(v1, y) 6= k, then v2 is

the only vertex at distance two from v1 in G, a contradiction. Therefore, d(v1, y) = k

and thus y is adjacent to xk−1. Clearly, y is not adjacent to x0, x1, . . . , xk−2. But

now, x1 is at distance at most k−1 to other vertices of G, a contradiction. Therefore,

xi 6= v1 and similarly xi 6= v2. But then, xi is at distance k to at most one vertex of

G (possibly d(xi, y) = k), a contradiction.

Next, suppose that |S ∩ {x0, . . . , xk}| = 2. Let xi, xi+1 ∈ S ∩ {x0, . . . , xk}. Since

|S| = n− k− 1, there exist two vertices y, z 6∈ S ∪ V (P ). Assume that xi = v1. Since

G is k−SH, there is another vertex at distance k from v1 different from v2. Clearly,

that vertex is either y or z. Without loss of generality, assume that d(v1, y) = k.

Since k ≥ 3, y has no neighbor in S. Also, it is clear that y is not adjacent to

x1, x2, . . . , xk−2. Thus, y is adjacent to xk−1. But now, xi+1 is at distance k to at

most one vertex of G (possibly d(xi+1, z) = k), a contradiction. Therefore, xi 6= v1.

Similarly, xi 6= xk−1. Now, assume that xi = x1. Clearly d(xi, y) = d(xi, z) = k

since G is k−SH. Again, since k ≥ 3, y and z have no neighbor in S. Also, y

and z are not adjacent to v1, x1, . . . , xk−1. Thus, both y and z are adjacent to v2.

But now, v2 is the only vertex at distance k from v1, a contradiction. Therefore,

xi 6= x1. Similarly, xi 6= xk−2 (k ≥ 4). Next, consider xi 6= x1 or xi 6= xk−2
(k ≥ 5). Again d(xi, y) = d(xi, z) = k. Clearly, y and z are adjacent to some vertex

in {v1, x1, . . . , xk−1, v2} − {xi}. But, every xi, y−path and every xi, z−path created

by joining y and z to any of those vertices has length at most k − 1, a contradiction.

So the proof of Claim 1 is complete. ♦

We now prove that G ∈ F = {C5, G1, G2, G3, G4, G5, G6, G7}. Note that |S| =

ω(G) = n − 3. Let v1 and v2 be two consecutive vertices on a 2−SH walk of G and

assume that P : x0, x1, x2 is a shortest path in G from v1 to v2, where v1 = x0 and

v2 = x2. Since k = 2, clearly |S| ≥ 2. According to |S ∩ {x0, x1, x2}| ≤ 2, we have

three cases.

Case 1. |S ∩ {x0, x1, x2}| = 0.
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Since G is 2−SH, there exist two vertices y1, y2 at distance two from x1 and clearly,

y1, y2 ∈ S. Therefore, x1 is not adjacent to y1 and also not adjacent to y2. Assume

that |S| ≥ 3 and consider y3 ∈ S. Since v1, v2 are consecutive vertices in the 2−SH

walk, we have at least four other vertices x1, y1, y2, y3 in the 2−SH walk of G. Clearly,

two vertices in S will be consecutive in the 2−SH walk, a contradiction. Thus, we

assume that |S| = 2. Since G is 2−SH, there exists a vertex at distance two from v1
different from v2 and clearly, that vertex is from S. Without loss of generality, let

d(v1, y2) = 2. Thus v1 is adjacent to y1. Since d(x1, y2) = 2 and y2 is not adjacent to

v1, clearly y2 is adjacent to v2. If y1 is adjacent to v2, then x1 is the only vertex at

distance two from y1, a contradiction. Therefore, y1 is not adjacent to v2. Thus, we

have G = C5.

Case 2. |S ∩ {x0, x1, x2}| = 1.

Let xi ∈ S ∩ {x0, x1, x2}. Since |S| = n − 3, there exists a vertex y 6∈ S ∪ V (P ). If

x1 ∈ S, then there exists at most one vertex at distance two from x1 in G (possibly

d(x1, y) = 2), a contradiction. Therefore, x1 6∈ S. Without loss of generality, assume

that x0 ∈ S. Clearly, d(x0, y) = 2 since G is 2−SH. Now, follow the 2−SH walk

starting from x2, x0, y. Assume that |S| ≥ 4 and consider y1, y2, y3 ∈ S \ {x0}. The

next vertex after y in the 2−SH walk is either x1 or some vertex in S \{x0}. Suppose

the next vertex after y is x1. Then the next vertex after x1 should be in S \ {x0}, say

y1. But then the next vertex after y1 in the 2−SH walk does not exist, a contradiction.

Therefore, the next vertex after y in the 2−SH walk is from S \ {x0}, say y1. Then

the next vertex after y1 should be x1 and the next vertex after x1 is from S \{x0, y1},
say y2. But again there is no next vertex after y2 in the 2−SH walk, a contradiction.

Therefore 2 ≤ |S| ≤ 3.

Assume that |S| = 2. Let S = {x0, y1}. Since G is 2−SH, the two vertices at distance

two from x1 are y1 and y. Therefore, x1 is not adjacent to y1 and also not adjacent

to y. Since d(x0, y) = 2, y is adjacent to both y1 and x2. And since ω(G) = 2, x2 is

not adjacent to y1. Thus we have G = C5.

Next assume that |S| = 3. Let S = {x0, y1, y2}.
Assume that y is adjacent to x1. Then, the next vertex after y in the 2−SH walk

is either y1 or y2. Without loss of generality, assume that the next vertex after y is

y1. The next vertex after y1 should be x1. Thus y1 is not adjacent to x1. Then, the

next vertex after x1 should be y2 and thus x1 is not adjacent to y2. Now, the vertices

x2, x0, y, y1, x1, y2 are consecutive in the 2−SH walk. Assume that y is adjacent to

x2. Suppose y is not adjacent to y2. Since d(y, y1) = 2, y1 is adjacent to x2. If

y2 is adjacent to x2, then x0 is the only vertex at distance two from x2 in G, a

contradiction. Therefore y2 is not adjacent to x2 and thus we have G = G5. Suppose

next y is adjacent to y2. If y2 is adjacent to x2, then x1 is the only vertex at distance

two from y2 in G, a contradiction. Therefore y2 is not adjacent to x2. If y1 is

adjacent to x2, then we have G = G4, otherwise we have G = G5. Assume next y is

not adjacent to x2. Since d(y, y1) = 2, y is adjacent to y2. If y2 is adjacent to x2,

then x1 is the only vertex at distance two from y2 in G, a contradiction. Therefore

y2 is not adjacent to x2. If y1 is not adjacent to x2, again x1 is the only vertex at
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distance two from y2 in G, a contradiction. Therefore y1 is adjacent to x2. Thus we

have G = G3.

Next, assume that y is not adjacent to x1. Then y is adjacent to at least one of

y1 or y2 since d(x0, y) = 2. Without loss of generality, assume that y is adjacent to

y2. If x1 is adjacent to y2, then y2 is at distance two to at most one vertex of G, a

contradiction. Therefore, x1 is not adjacent to y2. If y2 is adjacent to x2, then x1 is

the only vertex at distance two from y2 in G, a contradiction. Thus, y2 is not adjacent

to x2. Suppose y is adjacent to y1. Then clearly y is adjacent to x2, for otherwise

there is no next vertex after y in the 2−SH walk. Then, x1 is the next vertex after

y in the 2−SH walk. Then, the next vertex after x1 is either y1 or y2. But then the

next vertex in the 2−SH walk does not exist, a contradiction. Therefore, y is not

adjacent to y1. Assume that y is not adjacent to x2. Then the next vertex after y in

the 2−SH walk is y1. Then the next vertex after y1 is x1. Thus y1 is not adjacent to

x1. Then the next vertex after x1 is y2. If y1 is not adjacent to x2, then, x1 is the

only vertex at distance two from y2 in G, a contradiction. Therefore, y1 is adjacent

to x2. Thus we have G = G6. Now, assume that y is adjacent to x2. Then, the next

vertex after y in the 2−SH walk is either x1 or y1. Suppose the next vertex after y is

x1. Then, the next vertex after x1 is either y1 or y2. But in either case, there exists

no next vertex in the 2−SH walk, a contradiction. Therefore, the next vertex after y

is y1. Then, the next vertex after y1 must be x1 and so y1 is not adjacent to x1. Then

clearly the next vertex after x1 is y2. If y1 is adjacent to x2, then G = G2, otherwise

G = G1.

Case 3. |S ∩ {x0, x1, x2}| = 2.

Without loss of generality, assume that x0, x1 ∈ S. Since |S| = n− 3, there exist two

vertices y1, y2 6∈ S∪V (P ). Clearly, the vertices y1, x1, y2 are consecutive in the 2−SH

walk. Also, x0 is consecutive with one of y1 or y2 in the 2−SH walk. Without loss of

generality, assume that x0 is consecutive with y1. Now, follow the 2−SH walk starting

from x2, x0, y1, x1, y2. Assume that |S| ≥ 4 and consider z1, z2 ∈ S \ {x0, x1}. Then

the next vertex after y2 must be in S \ {x0, x1}. Without loss of generality, assume

that the next vertex after y2 in the 2−SH walk is z1. But then the next vertex after

z1 in the 2−SH walk does not exist, a contradiction. Therefore 2 ≤ |S| ≤ 3.

Assume that |S| = 2. Since d(x0, y1) = d(x1, y1) = d(x1, y2) = 2, it follows that x0 is

adjacent to y2, x2 is adjacent to y1 and y1 is adjacent to y2. If x2 is adjacent to y2,

then x1 is the only vertex at distance two from y2 in G, a contradiction. Therefore,

x2 is not adjacent to y2. Thus we have G = C5.

Next assume that |S| = 3. Let S = {x0, x1, z}. Then, clearly the next vertex after

y2 in the 2−SH walk is z and so y2 is not adjacent to z. If z is adjacent to x2, then

y2 is the only vertex at distance two from z in G, a contradiction. Therefore, z is not

adjacent to x2.

Assume that y1 is not adjacent to y2. Since d(x0, y1) = d(z, y2) = 2, clearly y1 is

adjacent to z and y2 is adjacent to x0. Suppose now y2 is adjacent to x2. If y1 is

adjacent to x2, then G = G3, otherwise G = G6. Suppose next y2 is not adjacent to

x2. If y1 is adjacent to x2, then G = G6, otherwise G = G7.
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Assume next y1 is adjacent to y2. Now, look at the adjacency between x0 and y2.

First, assume that x0 is adjacent to y2. Consider the adjacency between y1 and z.

Suppose y1 is not adjacent to z. Since d(x1, y1) = 2, y1 is adjacent to x2. If x2 is

adjacent to y2, then G = G5, otherwise G = G1. Suppose next y1 is adjacent to z.

Now, assume that y1 is not adjacent to x2. If x2 is adjacent to y2, then G = G2,

otherwise G = G6. Next, assume that y1 is adjacent to x2. If x2 is adjacent to y2,

then G = G4, otherwise G = G3. Now, assume that x0 is not adjacent to y2. Since

d(x0, y1) = d(x1, y2) = 2, it follows that y1 is adjacent to z and y2 is adjacent to x2.

If y1 is adjacent to x2, then G = G5, otherwise G = G1.

For the converse, it is not difficult to show that any graph G ∈ F is 2−SH with

ω(G) = n− 3.
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