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The effectiveness of immunotherapy for most cancer patients remains low, with 
approximately 10–30% of those treated surviving. Thus, much effort is being put into 
finding new ways to improve immune checkpoint therapy. Our review concludes that 
inhibition of proprotein convertase subtilisin/Kexin type 9 (PCSK9), which plays a 
critical role in regulating cholesterol metabolism, can cause movement of T cells toward 
tumors, with increased sensitivity to immune checkpoint therapies. 

We searched PubMed, NCBI, Scopus, and Google Scholar for the published articles 
without limitations on publication dates. We used the following terms: “PCSK9”, 
“Cancer”, “Immune Checkpoint”, and “Cancer Prognosis” in the title and/or abstract. 
Our search initially revealed 600 records on the subject and stored them in the used 
databases under EndNote X8 management software. A total of 161 articles were 
selected and through a careful review, 76 were included in our research. 

We concluded that PCSK9 reduces the number of LDL receptors (LDL-R) on the cell 
surface, which is linked to its ability to regulate cholesterol levels in the body. Also, we 
discuss how suppressing PCSK9 leads to the MHC-1 accumulation on the surface of 
cancer cells, which results in T lymphocyte invasion. Finally, we believe that inhibiting 
PCSK9 may be an effective strategy for improving cancer immunotherapy. 
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Introduction
Proprotein convertases (PCs) are serine proteases 

that convert various growth factors, cell surface 
glycoproteins, receptors, and metalloproteinases into 
active forms (1). PCSK9 is an enzyme and the ninth 
member of proprotein convertases that activates other 
proteins and also plays a vital role in regulating low-
density lipoprotein cholesterol (LDL-C) levels because 
of its ability to adjust the hepatic expression of LDL-R 
(2). PCSK9 is produced in many organs, including 
kidneys, intestine, endocrine pancreas, and brain, but 
most significantly in the liver (3). Recent studies have 
revealed its presence in cerebrospinal fluid (CSF) and in 
the atherosclerosis plaque (4). 

The inhibition of PCSK9 may be a promising 
treatment option to reduce LDL-C levels, though the 
cost of PCSK9 inhibitors may make their wide use 
difficult (5) (Figure 1). 

In this study, we demonstrate that inhibition of 
PCSK9 might enhance the anti-cancer effects of 
immune checkpoint inhibitors (ICIs) (6). Therefore, a 

better understanding of PCSK9's role in the cancerous 
pathways is extremely important (7). Since this marker 
has a significant role in different parts of body, it has 
been used as a pharmacological target in the past few 
years (8-10).  

Immune checkpoints are potent antioxidant 
regulators that control cellular tolerance and prevent 
tumors. Immune checkpoints assist the immune system 
in response to infections and cancer, which may protect 
tissues from damage (11-13). The concept that the 
immune system might restrict tumor development and 
cancer, dates back to 1893, when William Cooley used 
live bacteria as an immunological stimulant to treat 
cancer patients (2). This natural biological cancer-
prevention mechanism has already been identified and 
has been activated by the essential immune inspection 
chemicals in cytotoxic T cells (14). The CTLA-4, PD-1, 
and PD-L1 are the most widely studied inhibitory 
pathways, and by blocking them, we can activate the 
immune system to attack tumors (15-17). Ipilimumab 
[CTLA-4 monoclonal antibody (18)] was approved by 
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the Food and Drug Administration (FDA) as the first ICI 
in 2011 (19). Checkpoint therapy for cancer includes 
strategies that enhance the immune system response 
against tumor cells by targeting these regulatory 
pathways (20). 

On the other hand, we have ICIs that have emerged 
as one of the most promising types of immunotherapies 
on the horizon in recent years. ICIs are the latest 

breakthrough in oncology, providing a new treatment 
model for advanced solid tumors (21). This shifted the 
companies’ focus away from developing cancer-fighting 
therapies toward screening inhibitors, which aim to kill 
tumor cells by removing obstructive signals that block 
anti-tumor T cell responses (22). In summary, we 
believe blocking PCSK9 would be a promising approach 
for improving cancer immune checkpoint therapy (23). 

 

 
Fig. 1. A. Role of PCSK9 in increasing cholesterol availability for cancer cells (24). B. In tumor cells, upon binding to MHC I, 

PCSK9 mediates degradation via the endosomal/lysosomal pathway, preventing its recycling to the surface. 
 

Methods 
We searched PubMed, NCBI, Scopus, and Google 

Scholar for the published articles without limitations 
on publication dates. The first search used the 
following terms: “PCSK9”, “Cancer”, “Immune 
Checkpoint” and “Cancer Prognosis” in the title and/or 
abstract. Our search initially revealed 600 records in 
used databases managed by the EndNote X8 software 
and we chose around 200 articles that were proper for 
our research. A total of 39 duplicate references were 
removed. The full texts of the remaining 161 articles 
were carefully reviewed and 76 of them were included 
in our research. 
1. PCSK9 in Carcinoma 

The discovery that PCSK9 interacts with LDL-R 
marked a significant advancement because it allowed 
the development of effective therapeutic strategies for 
cancer and other diseases (25). This section discusses 

PCSK9's potential as a biomarker for specific types of 
cancers. 

1.1. PCSK9 and Hepatocellular Carcinoma 
Hepatocellular carcinoma (HCC) is the fifth 

malignant neoplasm and the third most prominent 
cause of cancer death (26). The link between abnormal 
blood lipid levels and HCC has been established in 
clinical studies by He et al., (1, 27); They discovered 
that PCSK9 reduces HCC cell growth, cell cycle, and 
apoptosis in HepG2 cell line (a cell culture created 
from a single cell and contains cells with a consistent 
genetic makeup) by interacting with glutathione S-
transferase p1 (GSTP1) and the c-Jun N-terminal 
kinase (JNK) signaling pathway (Up-regulated way) 
(28, 29). Still, the cell cycle study didn't find any G2/M 
phase arrest when PCSK9 was overexpressed or down-
regulated (29). This means that PCSK9 doesn't have a 
big effect on how HCC cells divide (30). However, it 
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has an impact on apoptosis with inhibitory effect (31). 
PCSK9 hinders the use of LDL and triglycerides by 
destroying LDLR (32). Fatty acid synthase (FASN) is 
expressed more often when PCSK9 is present (26, 30). 
It plays a crucial role in the synthesis of fatty acids from 
the beginning (29, 33). It also has a significant impact 
on the apoptosis of a variety of tumor types (34). 
Nevertheless, PCSK9 expression is unaffected by 
FASN blocking, which may lessen the anti-apoptotic 
impact (26). These results imply that FASN is 

downstream of PCSK9 in the apoptosis regulation 
mechanism (35). This research showed that FASN-
mediated anti-apoptosis was crucial to the formation of 
HCC and that PCSK9 facilitated this proliferation (26, 
30, 35). Nowadays, it has been found that using 
lipopolysaccharide (LPS) causes PCSK9 expression to 
be down-regulated while the expressions of SREBP2, 
HMGCR, and LDL-R are up-regulated (Figure 2) (32). 
In malignancies, PCSK9 expression was associated 
with poor outcomes in patients with HCC. 

 

 
Fig. 2. The schematic representation effect of LPS on PCSK9 in HCC (32, 36, 37). 
 

LPS is used for 24 hours to activate HepG2 and 
Huh7 cell lines as human HCC cells and significantly 
enhances intracellular cholesterol levels by increasing 
the expression of SREBP2, HMGCR, and LDL-R 
while down-regulating the expression of PCSK9 
(Down-regulated way). Surprisingly, these results 
relied on the nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-kB) signaling pathway.  

1.2. PCSK9 and Lung Cancer 
Non-small cell lung cancer (NSCLC) is the most 

common lung cancer type, with more than 80% of all 
occurrences (38). A study has shown that PCSK9 
levels in lung tumor samples are considerably lower 
than in normal surrounding tissue (32). By targeting 
adenocarcinoma in NSCLC therapy, human alveolar 
basal epithelial cells (A549, a cell line of human lung 
adenocarcinoma) were transfected with PCSK9 
siRNA, and it was discovered that PCSK9 siRNA 
could inhibit proliferation and increase apoptosis of 
A549 cells by inducing endoplasmic reticulum (ER) 
stress and mitochondrial dysfunction (39, 40). Patients 
with low degrees of PCSK9 had an excellent response 
to ICI therapy, which has enabled the development of 
PCSK9-based absolute biomarkers or scientific drugs 
(39-41). 

1.3. PCSK9 and Breast Cancer 
Breast cancer is a common disease in women 

worldwide, with 1.5 million women diagnosed each 
year (42). Pseurotin A (PS) is a special spiro 
heterocyclic γ-lactam alkaloid from the fungal culture 
of Pseudeurotium ovalis (38). Many studies have found 

that PS inhibits PCSK9 secretion in breast cancer by 
targeting BALB/c mice (38). While lipids were related 
to lung and colorectal cancer risks, no association was 
found between lipids and the histological 
characteristics of breast cancer tumors (43, 44). But 
still, in 2008 research by Shah et al., indicates that 
triglycerides may be negatively related to breast cancer 
risk, whereas HDL-C might protect postmenopausal 
women from breast cancer (45, 46). Coexisting 
physiological factors, such as an underlying metabolic 
syndrome, post-menopausal state, or chemotherapy, 
might impact the amounts of circulating lipids, 
potentially obscuring the relationship between lipid 
profile and breast cancer prognosis (42-44, 46). As a 
result of these studies, inhibiting PCSK9 may even 
improve breast cancer behavior and hold promise as a 
diagnostic and prognostic biomarker. 

1.4. PCSK9 and Prostate Cancer 
Prostate cancer (PC) is the second most commonly 

diagnosed cancer in men and the fifth cause of death 
globally (47, 48). PCSK9 siRNA therapy dramatically 
improved cell survival, reduced apoptosis, and 
protected lymph node carcinoma of the prostate 
(LnCap) against cell damage by increasing the 
expression of cytochrome C (cyto C), B-cell 
leukemia/lymphoma 2 (Bcl-2), and Bcl-2 associated X 
protein (49, 50). According to the convincing evidence 
derived from large-scale genetic data, the therapeutic 
suppression of lipid-lowering medications targeting 
PCSK9 may lessen the incidence of prostate cancer 
(51). Recent research shows that genetically mediated 
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regulation of PCSK9 is significantly linked to a 
decreased risk of both overall and early-onset prostate 

cancer, perhaps through a mechanism involving the 
reduction of Lp(a) levels (47, 50-52). 

 

 
Table 1. Amount of PCSK9 in different carcinomas. 

Cancer Name Most Influential Factor Expression Level Refs 
Hepatocellular 

carcinoma 
GSTP1, JNK signaling pathway, and HepG2 Upregulated (1, 27, 30, 38) 

Lung Cancer Adenocarcinoma human alveolar basal epithelial 
cells (A549) 

Downregulated (21, 40) 

Breast Cancer Pseurotin A (PS) – BALB/c Upregulated (38, 44, 46) 
Prostate Cancer Cyto C, Bcl-2, and Bax-LnCap Downregulated (32, 47, 50, 51) 

 
2. PCSK9 and Interaction with MHC-I 

Major histocompatibility complex 1 (MHC-I) is 
synthesized by ER, then assembled with beta 2-
microglobulin and stored by the ER until loaded with 
antigenic peptides (53). Within the cytosol, MHC-I 
molecules attach to the antigens and infectious agents 
such as viral particles and tumor-derived molecules 
(54). The expression of MHC-I proteins on cancer cells 
increases when PCSK9 is inhibited, resulting in a 
massive influx of cytotoxic T lymphocytes (Figure 1) 
(23). T Lymphocytes and the effector chemicals are 
essential for regulating spontaneous, induced, or 
transplanted immunity (55). Xinjian Liu et al., 
demonstrated that CD8+, CD4+ T helper cells (Th), T 
cells, and natural killer cells (NKCs) were significantly 

increased in PCSK9-deficient tumors in a flow 
cytometry study (23, 56). According to their findings, 
PCSK9-deficient tumor cells have many T-cell 
receptors (TCRs) and a wide diversity of mature T-
cells (23). As a result of MHC interaction with TCRs, 
other stimuli trigger the immune response. T 
lymphocytes and other immune cells, such as 
macrophages, eliminate MHC-I positive or 
heterogeneous tumor cells (5). This is a novel finding 
regarding how PCSK9 regulates cell surface MHC-I 
and thus influences intra-tumoral immune infiltration. 
Thus, it is possible that neutralizing PCSK9 encourages 
intra-tumoral T-cell infiltration and makes tumors 
more susceptible to immune checkpoint therapy 
(Figure 3) (57).  

 

 
Fig. 3. T cells attack tumor cells by binding to antigens on MHC-I molecules on their surfaces, initiating the adaptive immune 

response. On the other hand, with the connection of PD1 and anti-PD1 antibodies, the possibility of immunosuppression is 
neutralized. Both of these functions increase the anti-cancer effect. As a result of PCSK9 inhibition, T cells infiltrate the tumor, 
making it susceptible to immune checkpoint therapy (23, 58). 
3. Response to T-cell, MHC-I, PD-1 & CTLA-4 

The immune response requires two signals to 
activate T cells; triggered by B7.1/CD80 or B7.2/CD86 
interacting with naive T cells and the TCR (59, 60). 
CTLA-4 inhibits T cell activity by binding to B7 and is 
being studied as a potential prognosis marker in cancer 
treatment (15). PD-L1 is a ligand for the immune 
checkpoint PD-1, and its interaction negatively 
regulates T cell activation (61, 62). Antibodies 

targeting PD-1 or PD-L1 have become the new 
standard cancer treatment (15, 63). Increased CTLA-4 
and PD-1/PD-L1 expression is associated with poorer 
overall survival (62). Tumor-immune evasion 
commonly involves decreased MHC-I expression and 
increased immune checkpoint ligands on the cell 
surface (64, 65). PD-L1 expression in tumors can serve 
as a biomarker for the treatments inhibiting this 
molecule, and a higher level of MHC-I expression 
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indicates a potential response to the immune 
checkpoint therapy (5, 66, 67). 
4. PCSK9 & Immune Checkpoint Therapy 

Now, it is possible to understand how immune 
checkpoints affect tumor development and how 
PCSK9 plays a role in this way (68). The immune 
checkpoints are inhibitory pathways vital for the self-
tolerance and maintenance of collateral tissue 
protection by modulating the immune responses and 
their length (68). Thus, it is clear that tumors choose 
immune checkpoint pathways as a primary immune 
resistance mechanism, especially against T cells 
specific to the tumor antigens (53); therefore, they may 
be a potential target for cancer immunotherapy. In 
immunotherapies, the patient's immune system is used 
to fight cancer (23). They may overcome resistance 
mechanisms associated with other medicines by 
directly targeting the immune system (69). The balance 
between tumor cells and the immune system allows the 
tumor to grow uncontrollably and shift in favor of the 
tumor (46). The emergence of tumor cells with 

decreased immunogenicity is an example of this escape 
system, which dampens the anti-tumor immune 
response for tumor elimination (70). The ICIs have 
been used for decades to reactivate the immune system 
by inactivating checkpoint inhibitory proteins on 
cancer cells or T cells and to help the immune system 
detect and attack cancer cells (71). PD-1, CTLA-4, 
lymphocyte activation gene-3 (LAG-3), T cell 
immunoglobulin and mucin domain-containing protein 
3 (TIM3), T cell immunoreceptor with 
immunoglobulin and ITIM domain (TIGIT), and B- 
and T-lymphocyte attenuator (BTLA) (Table 2) are 
few examples of inhibitory immune checkpoint 
receptors, which were discovered and studied in cancer 
(60). Treatment of different cancers requires 
selectively targeting immune checkpoints with 
specially designed checkpoint-blocking antibodies 
(like CTLA-4 and PD-1) (63). Thus, PCSK9 inhibition 
has been proposed as a potential strategy to improve 
immune checkpoint treatment by inhibiting proteins 
that suppress checkpoint signaling pathways in T cells 
and improving their reaction to tumor cells (20). 

 

Table 2. Inhibitory Immune checkpoint receptors (ICRs).  
ICRs Expressed on A mechanism on T cell Marker For Ref 
PD-1 All T cells during 

activation. 
Connection by PD-L1 leads to 

rapid termination of TCR 
intracellular signaling and 

inhibition of T cell proliferation. 

- Angioimmunoblastic 
lymphoma 

- Downregulates immune 
responses 

(53) 

CTLA-4 All T cells during 
activation. 

Decreasing the function of T cells. Downregulates immune 
responses 

(72) 

LAG-3 Activated T cells, 
natural killer cells, B 

cells, and plasmacytoid 
dendritic cells 

Encouraging differentiation into T 
regulatory cells 

Offensive progression in 
different human tumors such as; 

- Melanoma, 
- Hodgkin's lymphoma, 

- Chronic lymphocytic leukemia, 
- Colorectal cancer, 

- Ovarian cancer, etc. 

(73) 

TIM-3 Interferon-γ-producing 
CD4+ and CD8+ T 
cells. Monocytes 

Suppress T-cell responses upon 
interaction with their ligand(s). 

Activation marker of 
macrophages and an inhibitor of 

macrophage activity 

(74) 

TIGIT Activated T cells are 
also found in NK cells 

Binds to T cell receptors and 
triggers direct inhibitory signals. 

T-Cell lethargy in Liver Cancer (75) 

BTLA CD4/CD8 single-
positive T-cells 

BTLA inhibits T-cell reactions and 
cytokine production 

Demonstrate putative permissive 
activation state of B cell 

subtypes in healthy blood 
donors. 

(76) 

 

Conclusion 
The present study shows PCSK9 functions through 

many mechanisms, including regulation of several 
cellular receptors, controlling circulating LDL, and 
apoptosis pathways, and regulation of the immune 
response to the tumor cells (71). The discovery that 
PCSK9 modulates cell surface MHC-I levels and 
intratumoral immune infiltration is novel in terms of 
mechanism. When PCSK9 is inhibited, various 
malignancies respond better to immune checkpoint 
therapy (64). Furthermore, our findings show that a 
combination of Alirocumab and Evolocumab 
significantly may reduce cholesterol levels by 
inhibiting PCSK9 (32). Based on previous studies, ICIs 
are strongly associated with activated T cells. Several 

immune checkpoints, including CTLA-4, PD-1, 
LAG3, and TIM3, inhibit immune system activity; 
blocking them triggers immune responses against 
cancerous cells (60). Finally, more individualized 
tumor genetics-based immune checkpoint combination 
approaches (such as PCSK9) must be researched. 
Despite numerous challenges, there is optimism that 
checkpoint inhibitors are paving the way to a new 
cancer treatment era. 
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