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A B S T R A C T 

Bioresorbable nano stents represent a revolutionary advancement in the field of 
interventional cardiology, offering a novel approach to address the challenges 
associated with traditional stent technologies. These innovative devices are designed 
to provide temporary structural support to blood vessels during the critical healing 
phase following interventions, such as angioplasty. The key feature of bioresorbable 
nano stents lies in their ability to gradually degrade over time, aligning with the 
natural healing processes of the body. Nanotechnology plays a pivotal role in the 
development of bioresorbable nano stents, allowing for precise control over material 
properties, degradation kinetics, and biocompatibility. The customization afforded by 
nanomaterials enables tailoring stent characteristics to match the specific needs of 
individual patients and diverse clinical scenarios. This level of customization 
contributes to enhanced safety, reduced risk of complications, and improved patient 
outcomes. The controlled degradation of bioresorbable nano stents eliminates the 
long-term presence of foreign materials in the body, potentially mitigating late 
complications associated with permanent stents, such as in-stent restenosis and 
thrombosis. This abstract explores the potential benefits of bioresorbable nano stents, 
including their role in minimizing inflammatory responses and adverse reactions. In 
addition, the integration of nanotechnology enables the incorporation of imaging 
agents, antimicrobial coatings, and other functionalities, further expanding the 
capabilities of these innovative medical devices. The dynamic nature of nanomedicine, 
coupled with interdisciplinary collaboration, continues to drive advancements in 
bioresorbable nano stents, positioning them as a transformative technology in the 
landscape of cardiovascular interventions. 
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1. Introduction 

ardiovascular diseases remain a 
leading cause of morbidity and 
mortality worldwide, necessitating 
continual advancements in 
interventional cardiology. Traditional 

metallic stents have significantly improved the 
outcomes of coronary interventions; however, 
concerns regarding long-term complications 
such as in-stent restenosis and thrombosis 
persist [1]. In response to these challenges, 
bioresorbable nano stents have emerged as a 
groundbreaking technology, poised to redefine 
the landscape of vascular interventions. 
Bioresorbable nano stents are designed to offer 
temporary structural support to blood vessels 

while addressing the limitations associated 
with permanent stents [2-11] (Figure 1). 
The integration of nanotechnology in stent 
development provides a level of precision and 
customization that was previously unattainable. 
This innovation leverages nanomaterials to 
engineer stents with tailored degradation 
kinetics, enhanced biocompatibility, and 
multifunctional capabilities (Table 1). 

Nanotechnology enables the design of stents 
that not only provide mechanical support, but 
also dissolve gradually, aligning with the 
natural healing processes of the body. The 
controlled degradation of bioresorbable nano 
stents eliminates concerns related to the long- 

 

Figure 1. Bioresorbable stents: (a) Abbott ABSORB stent; (b) DESolve stent; (c) Fantom stent; and (d) Igaki-
Tamai stent 

Table 1. The tailored degradation kinetics, enhanced biocompatibility, and multifunctional capabilities of 
Bare-Metal Stent, Drug Eluting Stent and Bioresorbable Stent 

Properties Bare-Metal Stent Drug Eluting Stent Bioresorbable Stent 
Mechanical stress permanent permanent temporary 
Tensile strength high high high (metallic stents) 

low (polymeric stents) 
Coatings none possessed possessed 

Risk of thrombosis low late transient 
In-stent restenosis high low moderate 

Inflammation low moderate/high High 
Vessel size mismatch none none Possible 

 

C 
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term presence of foreign materials and opens 
new possibilities for minimizing complications 
associated with permanent implants. This 
introduction explores the key features and 
potential advantages of bioresorbable nano 
stents, including their ability to reduce 
inflammation, optimize biocompatibility, and 
facilitate a more natural vascular response. The 
integration of imaging agents and other 
functionalities further enhances the diagnostic 
and therapeutic capabilities of these advanced 
medical devices. While the promise of 
bioresorbable nano stents is substantial, their 
successful clinical translation requires rigorous 
validation through preclinical studies and 
clinical trials. This comprehensive exploration 
of bioresorbable nano stents aims to provide an 
understanding of their potential impact on 
cardiovascular interventions, emphasizing the 
need for ongoing research, interdisciplinary 
collaboration, and regulatory approvals to 
usher in a new era in interventional cardiology 
[12-35]. 

2. Research and Methodologies 

Research on bioresorbable nano stents involves 
a multidisciplinary approach, integrating 
principles from materials science, 
nanotechnology, biomechanics, pharmacology, 
and clinical research. The methodologies 
employed in studying bioresorbable nano 
stents are diverse, encompassing both in vitro 
and in vivo experiments, preclinical studies, and 
clinical trials. Researchers explore various 
nanomaterials, such as biocompatible 
polymers, to design stents with optimal 
mechanical properties and degradation 
characteristics. Techniques like scanning 
electron microscopy (SEM), atomic force 
microscopy (AFM), and spectroscopy are used 
to analyze the surface morphology, mechanical 
strength, and chemical composition of the 
nanomaterials. Nanotechnology is applied to 
fabricate nano stents using methods like 
electrospinning, lithography, or self-assembly, 
allowing precise control over the stent's 
structure at the nanoscale. Nanoparticles 
loaded with therapeutic agents are integrated 
into the stent design for controlled drug 
release. Encapsulation methods and drug 

loading techniques are studied to optimize drug 
delivery kinetics. In vitro studies involve 
exposing bioresorbable nano stents to cultured 
cells to assess their biocompatibility. Cell 
viability assays, gene expression analysis, and 
cytokine release assays are conducted to 
evaluate the cellular response. Implantation of 
bioresorbable nano stents in animal models 
helps assess the stent's interaction with living 
tissues, examining inflammatory responses, 
tissue integration, and overall biocompatibility. 
Researchers simulate physiological conditions 
in vitro to study the degradation kinetics of 
nano stents. 
Factors such as temperature, pH, and enzymatic 
activity are controlled to mimic the in vivo 
environment. Implantation of bioresorbable 
nano stents in animal models for extended 
periods allows researchers to monitor the 
degradation process over time, ensuring it 
aligns with the natural healing timeline. In vitro 
Drug Release Studies: Researchers conduct 
controlled drug release studies in simulated 
physiological conditions to understand and 
optimize the release profiles of therapeutic 
agents from the nano stent. 
In vivo studies assess the systemic and local 
pharmacokinetics of drugs released from 
bioresorbable nano stents, providing insights 
into the therapeutic efficacy and safety. Nano 
stents undergo mechanical testing using 
techniques such as tensile testing and radial 
compression to evaluate their mechanical 
properties, including strength, flexibility, and 
recoil. Computational modeling, such as FEA, is 
employed to predict the mechanical behavior of 
bioresorbable nano stents under various 
conditions. Nanotechnology allows for the 
integration of imaging contrast agents into 
nano stents, enabling enhanced visualization 
during imaging modalities such as MRI or CT 
scans. In vivo imaging studies assess the 
visibility, location, and behavior of 
bioresorbable nano stents within blood vessels, 
providing valuable diagnostic information [36-
65] (Figure 2). 
Clinical trials involving human subjects are 
conducted to assess the safety, efficacy, and 
performance of bioresorbable nano stents. 
These trials follow a phased approach, 
gradually progressing from small-scale safety 
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studies to larger-scale efficacy trials. 
Continuous monitoring of patients who have 
received bioresorbable nano stents provides 
long-term data on their safety and performance 
in real-world clinical settings. Researchers 
collaborate with regulatory agencies to ensure 
that bioresorbable nano stents comply with 
established standards and undergo the 
necessary approvals before entering the 
market. The research on bioresorbable nano 
stents involves a combination of laboratory-
based experiments, animal studies, 
computational modeling, and clinical trials. This 
multifaceted approach aims to 
comprehensively understand the behavior of 
bioresorbable nano stents, from their material 
characteristics to their performance in clinical 
settings, with the ultimate goal of advancing 
cardiovascular interventions. Some researchers 
are investigating bioresorbable stents at the 
nanoscale. These stents are designed to 
gradually dissolve over time, reducing the long-
term presence of a foreign material in the body. 
Bioresorbable nano stents represent a notable 
development in stent technology [66] (Table 
2). The goal of bioresorbable stents is to 
provide temporary support to a blood vessel or 

other tubular structures, and then gradually 
dissolve, eliminating the need for a permanent 
implant. Bioresorbable stents are designed to 
break down over time, eventually being 
absorbed by the body. At the nanoscale, the 
materials used for these stents can be 
engineered to degrade into biocompatible 
byproducts that are easily absorbed or excreted 
[67]. 

2.1. Temporary structural support 

The initial purpose of a bioresorbable nano 
stent is to provide temporary structural 
support to a vessel or duct, such as an artery. 
This support is crucial during the initial healing 
phase when the vessel is at risk of collapsing or 
becoming blocked. 

The statement accurately captures the primary 
purpose of bioresorbable nano stents. 
Bioresorbable stents are designed to provide 
temporary structural support to a vessel or 
duct, such as an artery, during a critical healing 
phase. The primary function of a bioresorbable 
nano stent is to offer temporary mechanical 
support to a vessel, providing stability during 

 

Figure 2. Nanotechnology allows for the integration of imaging contrast agents into nano stents
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Table 2. Clinical trials of bioresorbable stents 
Device Stent design Trial Results 

Igaki–Tamai Material: poly-L-lactic 
acid 

Coating: None; 
 Drug: None 

Follow up 50 patients 
with 84 Igaki–Tamai for 

>10 years 

Stent thrombosis: 4%; 1 
subacute and 1 very late 

thrombosis; Survival 
rates for all-cause death 
87%, for cardiac death 
98%, for Major adverse 
cardiac event (a) 50%; 

target lesion 
revascularization 

(b):16% (1 year), 22% (5 
years), and 38% (10 

years) 
Ideal BioStent Material: Polylactide 

anhydride; 
Coating: Salicylate; Drug: 

Sirolimus 

WHISPER-trial: Follow 
up to 11 patients 

High neointimal growth 

Fortitude Material: poly-L-lactic 
acid; 

 Coating: None; 
 Drug: Sirolimus 

FORTITUDE Study: 
Follow up 63 patients 

with single de novo 
coronary artery lesions 

for 9 months 

Stent thrombosis: 0; 
Target lesion failure: 
3.3%; Major adverse 
cardiac event: 4.9%; 

Narrowing in the mean 
area: 9.1% 

DeSolve Material: poly-D, L-lactic 
acid;  

Coating: poly-D, L-lactic 
acid; 

 Drug: Novolimus 

DESolve Nx: Follow up 
126 patients in a multi-
center trial for 2 years 

Stent thrombosis: 0.8%; 
TLF: 5.7%; Major 

adverse cardiac event: 
5.7% 

Xinsorb Material: poly-L-lactic 
acid;  

Coating: poly-D, L-lactic 
acid;  

Drug: Sirolimus 

Follow up 30 patients 
with single de novo 

coronary artery lesions 
for 6 months 

Stent thrombosis: 0; late 
lumen loss: 0.18 ± 0.21 

mm;  
Major adverse cardiac 

event: 0 
 

the initial healing period. This is particularly 
crucial when a vessel is at risk of collapsing or 
becoming blocked, such as after angioplasty or 
other interventional procedures. After 
procedures like angioplasty, where a balloon is 
used to open a narrowed artery, there is a risk 
of acute closure or re-narrowing of the vessel. 
The stent helps prevent this by keeping the 
vessel open and maintaining adequate blood 
flow during the early stages of healing [68] 
(Figure 3). 
Unlike traditional metallic stents that remain in 
the body indefinitely, bioresorbable stents are 
designed to gradually degrade and be absorbed 
by the body over time. This degradation occurs 
as the vessel heals and regains its structural 
integrity. The use of bioresorbable stents aims 
to reduce long-term complications associated 

with permanent metallic stents, such as in-stent 
restenosis or the need for additional 
interventions. Once the vessel has sufficiently 
healed, the stent is no longer needed, and its 
gradual resorption avoids the long-term 
presence of a foreign material. 

Bioresorbable stents promote natural vessel 
healing by allowing the restoration of normal 
physiological function without the permanent 
presence of a foreign body. This is important 
for maintaining the vessel's ability to respond 
to changes in blood flow and other 
physiological stimuli. The temporary nature of 
bioresorbable stents allows for the possibility 
of future interventions if needed. Once the stent 
has served its purpose and the vessel has
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Figure 3. Balloon catheter and stent 

healed, there is no impediment to performing 
additional procedures or interventions in the 
same location. Bioresorbable stents are 
typically made from biocompatible materials 
that gradually break down into non-toxic 
byproducts. Common materials include 
polylactic acid (PLA) and polyglycolic acid 
(PGA), which are well-tolerated by the body. 
Ongoing research and development in the field 
of bioresorbable stents aim to improve their 
mechanical properties, degradation kinetics, 
and overall performance. This includes 
exploring innovative nanomaterials and 
advanced engineering techniques to enhance 
the effectiveness of these stents. Bioresorbable 
nano stents play a crucial role in providing 
temporary structural support to vessels during 
the critical healing phase, offering a promising 
alternative to permanent metallic stents. The 
gradual resorption of these stents aligns with 
the goal of promoting natural healing and 
reducing long-term complications. Ongoing 
advancements in materials and design continue 
to contribute to the refinement of bioresorbable 
stent technology [69]. 

2.2. Gradual degradation 

Nanotechnology allows for precise control over 
the degradation rate of materials. This enables 

stents to be designed to degrade gradually, 
aligning with the natural healing process of the 
body. One of the key advantages of 
incorporating nanotechnology into the design 
of bioresorbable stents is the precise control it 
provides over the degradation rate of materials 
[70] (Table 3).  

This control allows stents to be engineered to 
degrade gradually, aligning with the natural 
healing processes of the body. Nanostructured 
Materials: Nanotechnology enables the design 
and fabrication of nanostructured materials 
with specific characteristics. These materials 
can be tailored to exhibit controlled 
degradation properties, including the rate at 
which they break down over time. 
Nanomaterials can be used to modify the 
surface of the stent, influencing its interaction 
with the surrounding tissues. Surface 
modifications at the nanoscale can affect the 
degradation kinetics, ensuring a gradual 
breakdown rather than an abrupt or uneven 
degradation. Nanostructured materials often 
have a higher surface area-to-volume ratio 
compared to bulk materials. This increased 
surface area allows for more controlled 
interactions with biological fluids and tissues, 
contributing to the regulated degradation of the 
stent [71] (Figure 4). 
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Table 3. Biodegradablestents and its clinical trials 
Device Stent design Trial Clinical outcomes 

Absorbable metal stent Coating: None;  
Drug: None 

Preliminary study for 
Absorbable metal stent 

INSIGHT: 3-months follow 
up of 20 patients with CLI 
received Absorbable metal 

stent in infra popliteal 
arteries 

Stenosis rate: 10.5% at 1 
month and 31.6% at 3 

months; Limb Salvage Rate: 
100% 

Absorbable metal stent Coating: None;  
Drug: None 

Preliminary study for 
Absorbable metal stent 

INSIGHT: up to 12 months 

Significant restenosis in 3 
patients after 85, 107, and 

181 days respectively; Limb 
Salvage Rate: 95% 

Drug-eluting absorbable 
metal scaffold 

Coating: poly-lactic-co-
glycolide;  

Drug: Paclitaxel 

BIOSOLVE-I: Follow up 46 
patients with lesions of 50–
99% stenosis for 12 months 

Stenosis rate: 0; Late lumen 
loss: 0.65 ± 0.50 mm at 6 

months and 0.52 ± 0.39 mm 
at 12 months; Target lesion 
failure: 4% at 6 months and 

7% at 12 months; Lumen 
area stenosis: 43.38% at 6 
months and 46.10% at 12 

months; Neointimal 
hyperplasia area: 0.30 ± 

0.41 mm2 at 6 months and 
0.40 ± 0.32 mm2 at 12 

months 
Magmaris (The first 

clinically proven resorbable 
Magnesium scaffold) 

Coating: poly-L-lactide acid; 
 Drug: Sirolimus 

BIOSOLVE-4: First cohort of 
1055 patients with 1121 

lesions 

Stenosis rate: 0.5% at 6 
months and 12 months; 

Target lesion failure: 2.7% 
at 6 months and 4.3% at 12 

months 
Magmaris (The first 

clinically proven resorbable 
Magnesium scaffold) 

Coating: poly-L-lactide acid;  
Drug: Sirolimus 

BIOSOLVE-4: Second cohort 
of 2050 with simple lesions 

Still in progress 

 

Figure 4. Surface area allows for more controlled interactions with biological fluids and tissues, contributing 
to the regulated degradation of the stent 
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 Nanoparticle formulations, such as those used 
in bioresorbable stents, can be precisely 
tailored to achieve specific degradation rates. 
This customization is essential for aligning the 
stent's degradation with the natural healing 
timeline of the vessel. In addition to the 
structural considerations, nanotechnology in 
bioresorbable stents often involves the 
incorporation of drug-eluting nanoparticles. 
These nanoparticles can contribute to the 
healing process while providing controlled drug 
release, further enhancing the overall 
therapeutic approach. Some nanomaterials 
exhibit responsive behavior to environmental 
stimuli, such as changes in pH or temperature. 
This responsiveness can be harnessed to design 
stents that degrade more rapidly or slowly in 
response to specific conditions, offering a 
dynamic and adaptive degradation profile. 
Nanomaterials used in bioresorbable stents are 
selected for their biocompatibility, ensuring 
that the degradation byproducts are non-toxic 
and can be safely metabolized or eliminated by 
the body's natural processes. The ability to 
precisely control degradation allows for 
tailoring stents to specific applications and 
clinical needs. For example, a stent designed for 
a coronary artery may have different 
degradation characteristics than one used in a 
peripheral artery. The controlled degradation 
of bioresorbable stents is an important aspect 
considered during regulatory evaluations. 
Authorities assess the safety and efficacy of 
these stents, ensuring that the degradation 
characteristics align with the expected healing 
timeline and pose minimal risks to patients. 
Nanotechnology plays a crucial role in 
achieving precise control over the degradation 
rate of materials in bioresorbable stents. This 
control allows for the development of stents 
that gradually degrade, facilitating natural 
vessel healing and reducing the long-term 
presence of foreign materials in the body. 
Advances in nanotechnology contribute to the 
refinement of bioresorbable stent technology, 
ultimately improving patient outcomes [72]. 

2.3. Eliminating long-term foreign body presence 

Unlike traditional stents that remain in the 
body permanently, bioresorbable nano stents 

are intended to dissolve completely. This 
eliminates the long-term presence of a foreign 
material, potentially reducing the risk of 
complications and allowing for more natural 
vessel function. The statement accurately 
captures one of the key distinctions between 
traditional stents and bioresorbable nano 
stents. Unlike permanent metallic stents, 
bioresorbable nano stents are designed to 
dissolve completely over time, eliminating the 
long-term presence of foreign material in the 
body. This feature holds several advantages, 
potentially reducing the risk of complications 
and promoting more natural vessel function. 
Bioresorbable nano stents are composed of 
materials that are intended to degrade and 
dissolve fully over a defined period [73-89] 
(Figure 5). 
This dissolution process eliminates the need for 
a permanent implant, and the stent gradually 
disappears as the healing process progresses. 
The complete dissolution of the stent reduces 
the long-term risks associated with permanent 
stents, such as in-stent restenosis or late stent 
thrombosis. Once the stent has fulfilled its 
purpose of providing temporary structural 
support, there is no residual foreign material 
left in the vessel. Bioresorbable nano stents 
allow for the restoration of more natural vessel 
function. As the stent dissolves, the vessel is 
free to respond to physiological changes, adapt 
to normal biomechanical forces, and undergo 
vasomotion, which is the natural contraction 
and relaxation of blood vessels. Permanent 
metallic stents often require prolonged dual 
antiplatelet therapy (DAPT) to prevent blood 
clotting and complications. Bioresorbable 
stents, by virtue of their temporary nature, may 
reduce the duration of required DAPT, 
potentially lowering the risk of bleeding 
complications associated with prolonged 
antiplatelet therapy. The complete dissolution 
of the stent provides flexibility for future 
interventions. The absence of a permanent 
implant allows for easier access to the treated 
vessel if additional procedures or interventions 
are required in the same location. The gradual 
dissolution of the stent aligns with the natural 
healing timeline of the vessel. As the stent 
breaks down, tissue healing, and remodeling 
occur in a way that is more consistent with the  
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Figure 5. Permanent metallic stents, bioresorbable nano stents are designed to dissolve completely over 
time, eliminating the long-term presence of foreign material in the body  

body's own healing processes. The absence of a 
permanent stent in the body contributes to 
improved patient comfort and quality of life. 
Patients may experience fewer long-term 
symptoms related to the presence of a foreign 
body in the treated vessel. 

The complete dissolution of bioresorbable nano 
stents is a critical aspect considered during 
regulatory evaluations. Regulatory authorities 
assess the safety and efficacy of these stents, 
ensuring that the dissolution characteristics 
align with expected healing timelines and 
minimize potential risks. It is important to note 
that the development and clinical adoption of 
bioresorbable stents involve ongoing research, 
clinical trials, and regulatory assessments. 
While these stents hold promise, their 
application and effectiveness continue to be 
refined based on evolving scientific 
understanding and clinical experience [90]. 

2.4. Reduced risk of late complications 

Permanent stents can sometimes be associated 
with late complications, such as in-stent 
restenosis or thrombosis. Bioresorbable stents 
aim to minimize these risks by providing 
temporary support during the critical healing 
period, and then disappearing. A key aspect of 
the rationale behind the development of 
bioresorbable stents. Permanent metallic stents 

have been associated with late complications, 
including in-stent restenosis and late stent 
thrombosis. Bioresorbable stents aim to 
address these concerns by providing temporary 
support during the critical healing period and 
then gradually disappearing, reducing the long-
term risks associated with permanent implants. 
Permanent metallic stents can sometimes lead 
to in-stent restenosis, which is the re-
narrowing of the treated blood vessel. This 
occurs as a result of excessive tissue growth in 
response to the stent implantation. 
Bioresorbable stents, being temporary, aim to 
minimize the risk of restenosis by providing 
support during the initial healing phase and 
then gradually disappearing [91-109] (Figure 
6). 
Late stent thrombosis is a rare but serious 
complication associated with permanent stents. 
It involves the formation of blood clots within 
the stent, leading to vessel occlusion. The 
temporary nature of bioresorbable stents aims 
to reduce the risk of late stent thrombosis by 
eliminating the long-term presence of a foreign 
material that could contribute to clot formation. 
Bioresorbable stents are designed to promote 
natural healing and vessel remodeling. As the 
stent degrades, the vessel can regain its normal 
physiological function and respond to changes 
in blood flow [110] (Table 4).  
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Figure 6. Bioresorbable stents, being temporary, aim to minimize the risk of restenosis by providing support 
during the initial healing phase and then gradually disappearing  

Table 4. Magnesium alloys and its key features 
Mg-Alloy Key Features 

Magnesium –Zinc 
(up to 3% Zn) 

Higher affinity of adsorption to the surface of Mg–Zn 
alloy with the increase of Zn concentration (up to 

3%). 
Magnesium-Yttrium (1% Y) Adsorption of peptides is slightly weakened 

compared to that on the clean Mg (0001) surfaces. Magnesium-Neodymium (1% Nd) 
Magnesium (3.5 or 6.5%)-Lithium 

(0.5, 2 or 4%)-Zn 
Good mechanical properties, degradation behavior, 

cytocompatibility, and hemocompatibility. Enhanced 
mechanical properties-yield strength, ultimate 

strength and elongation (twice as compared to pure 
Zn) and corrosion resistance without losing the 

viability of the Human Umbilical Vein Endothelial 
Cells (HUVECS) and Human Aorta Vascular Smooth 

Muscle Cells (VSMCS). 
Magnesium-Aluminum alloy AZ61 Highly susceptible to stress corrosion cracking (SCC) 

as compared to Zn, this is highly ductile with limited 
susceptibility to SCC. 

 

This approach is in contrast to permanent 
stents, which may alter the vessel's 
biomechanical properties over time. 
Bioresorbable stents gradually disappear as the 
materials from which they are made break 
down and are absorbed by the body. This 

process eliminates the need for a permanent 
implant and allows the vessel to return to its 
natural state. The temporary nature of 
bioresorbable stents aims to reduce the 
occurrence of long-term complications 
associated with permanent stents. By 
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minimizing the risks of restenosis and late 
thrombosis, bioresorbable stents contribute to 
improved patient outcomes. The disappearance 
of bioresorbable stents provides flexibility for 
future interventions if needed. Physicians can 
access and treat the vessel more easily without 
the presence of a permanent stent. Permanent 
stents often require prolonged dual antiplatelet 
therapy (DAPT) to prevent blood clotting. 
Bioresorbable stents, by virtue of their 
temporary nature, may reduce the duration of 
required DAPT, potentially lowering the risk of 
bleeding complications associated with 
prolonged antiplatelet therapy. Bioresorbable 
stents allow for clinical monitoring and 
adaptation of treatment strategies over time. 
Physicians can assess vessel healing and 
respond accordingly, tailoring ongoing care 
based on individual patient needs. While 
bioresorbable stents hold promise, their clinical 
adoption involves ongoing research and 
scrutiny, including regulatory evaluations. 
Balancing the benefits of a temporary stent 
with the necessary mechanical support during 
the healing period is an ongoing challenge, and 
research in this area continues to refine the 
technology and address potential concerns 
[111]. 

2.5. Biocompatible materials 

Nanomaterials used in bioresorbable stents can 
be selected or engineered for optimal 
biocompatibility. This is crucial to ensure that 
the degradation process and byproducts do not 
trigger an inflammatory response or adverse 
reactions. The biocompatibility of 
nanomaterials used in bioresorbable stents is a 
critical consideration. Selecting or engineering 
nanomaterials for optimal biocompatibility is 
crucial to ensure that the degradation process 
and byproducts do not trigger an inflammatory 
response or adverse reactions in the body. 
Biocompatible nanomaterials are chosen or 
designed to minimize inflammatory responses 
when they come into contact with biological 
tissues. This is essential during the degradation 
of the stent to avoid excessive inflammation, 
which could contribute to complications. 
Surface modifications at the nanoscale allow for 
the engineering of specific properties to 

enhance biocompatibility. These modifications 
can include coatings or functional groups that 
promote interactions with biological 
components without triggering adverse 
immune reactions. Biocompatible 
nanomaterials are carefully selected to avoid 
cytotoxicity, ensuring that they do not harm or 
damage cells during the degradation process. 
This is crucial for maintaining the overall health 
of the treated vessel. Nanomaterials used in 
bioresorbable stents are often chosen for their 
biodegradable properties. The ability of these 
materials to break down into non-toxic 
byproducts ensures that the degradation 
process is compatible with the body's natural 
metabolic pathways. Nanotechnology allows for 
precise control over the degradation kinetics of 
materials. Biocompatible nanomaterials can be 
designed to degrade at a rate that aligns with 
the healing timeline of the vessel, minimizing 
the risk of complications. Biocompatible 
nanomaterials are selected to have non-
immunogenic properties, meaning they do not 
elicit a significant immune response [112-127] 
(Figure 7).  
This is crucial for preventing immune reactions 
that could lead to inflammation and affect the 
overall success of the stent. The degradation 
byproducts of biocompatible nanomaterials are 
designed to be non-toxic and gradually 
released. This controlled release helps ensure 
that the body can safely metabolize and 
eliminate these byproducts without causing 
harm. Biocompatible nanomaterials promote 
tissue integration during the degradation 
process. This facilitates a smoother transition 
as the stent dissolves, allowing the vessel to 
heal and remodel naturally. Before clinical use, 
nanomaterials undergo rigorous 
biocompatibility testing, including in vitro and 
in vivo assessments. These tests evaluate the 
interaction of the materials with cells, tissues, 
and the immune system to ensure their safety 
and compatibility. Regulatory agencies carefully 
assess the biocompatibility of materials used in 
bioresorbable stents during the approval 
process. Demonstrating that the nanomaterials 
are biocompatible is a crucial aspect of ensuring 
the safety and effectiveness of these innovative 
medical devices. 
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Figure 7. Biocompatible nanomaterials are selected with non-immunogenic properties, meaning they do not 
elicit a significant immune response 

Selecting or engineering nanomaterials with 
optimal biocompatibility is fundamental to the 
success of bioresorbable stents. This approach 
minimizes the risk of adverse reactions, 
inflammatory responses, and other 
complications during the degradation process, 
ultimately contributing to the safety and 
efficacy of these advanced medical devices 
[128-150]. 

2.6. Potential for customization 

The use of nanotechnology allows for 
customization of the bioresorbable stent 
properties, including degradation kinetics and 
mechanical strength, to match the specific 
needs of different patients and clinical 
scenarios. Research and development in 
bioresorbable stents, especially at the 
nanoscale, continue to be an area of active 
exploration within the medical community. 
Clinical studies and regulatory approvals are 
essential steps to demonstrate the safety and 

efficacy of these innovative devices in various 
medical applications. 
The significance of nanotechnology in the 
customization of bioresorbable stent properties 
and emphasizes the ongoing research, 
development, and regulatory considerations in 
this field. Nanotechnology allows for precise 
customization of bioresorbable stent 
properties, offering control over factors such as 
degradation kinetics, mechanical strength, and 
drug release profiles. This customization is 
crucial for tailoring stent characteristics to 
meet the specific needs of individual patients 
and diverse clinical scenarios. The ability to 
fine-tune the degradation kinetics of 
nanomaterials in bioresorbable stents is 
particularly important. Different patients may 
require stents that degrade at varying rates 
based on factors such as the severity of their 
condition, healing response, and overall health 
status. Nanotechnology enables the design of 
stents with optimal mechanical strength. The 
mechanical properties of bioresorbable stents 
can be customized to provide sufficient support 
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during the critical healing phase while avoiding 
issues such as excessive rigidity or brittleness 
that may be associated with permanent metallic 
stents. Incorporating nanotechnology allows for 
precise control over drug release profiles. This 
is significant when bioresorbable stents are 
designed to deliver therapeutic agents to 
prevent restenosis or address other specific 
medical conditions. Customizing drug release 
profiles enhances the therapeutic efficacy of the 
stent. The customization afforded by 
nanotechnology supports the development of 
tailored treatment approaches based on 
individual patient needs. This personalized 
medicine approach is increasingly recognized 
as a way to optimize outcomes and minimize 
the risk of complications. The field of 
bioresorbable stents, especially at the 
nanoscale, is characterized by continuous 
research and development efforts. Researchers 
explore new materials, fabrication techniques, 
and innovations to enhance the performance 
and safety of bioresorbable stents. Rigorous 
clinical studies are essential to evaluate the 
safety and efficacy of bioresorbable stents in 
real-world scenarios. 
These studies help gather evidence on the 
performance of these devices, assess patient 
outcomes, and identify any potential challenges 
or improvements needed. Regulatory approvals 
are critical milestones in bringing 
bioresorbable stents to the market. Regulatory 
agencies carefully review data from preclinical 

and clinical studies to ensure that these 
innovative devices meet safety and efficacy 
standards before they are made available for 
clinical use. Given the complexity and 
interdisciplinary nature of nanotechnology in 
medical devices, international collaboration 
among researchers, clinicians, and regulatory 
bodies is crucial. This collaboration facilitates 
the exchange of knowledge, best practices, and 
standards to advance the field globally. The 
application of nanotechnology in bioresorbable 
stents represents a promising avenue for 
advancing patient care in cardiovascular 
medicine. The ongoing exploration of nanoscale 
innovations in bioresorbable stents holds the 
potential to further improve treatment 
outcomes and address the unique requirements 
of diverse patient populations. Continued 
research, clinical studies, and regulatory 
assessments are essential components of 
advancing this evolving field [151] (Figure 8). 

3. Results and Discussion 

The realm of bioresorbable nano stents are 
critical components of research publications 
and clinical studies. These findings provide 
insights into the performance, safety, and 
potential benefits or challenges associated with 
these innovative devices. Results may reveal 
positive outcomes in cell culture studies, 
demonstrating good biocompatibility with 
minimal cytotoxicity. Animal studies may show

 

Figure 8. Bioresorbable stents are designed to deliver therapeutic agents to prevent restenosis or address 
other specific medical conditions 
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favorable tissue responses, indicating that 
bioresorbable nano stents integrate well with 
vascular tissues. In vitro degradation studies 
may showcase the controlled and gradual 
degradation of nano stents under simulated 
physiological conditions. Long-term animal 
studies could demonstrate that the degradation 
aligns with the natural healing timeline, 
avoiding premature or delayed degradation 
[152]. 
In vitro drug release studies may exhibit 
controlled and sustained release of therapeutic 
agents from the nano stents. Pharmacokinetic 
studies may indicate appropriate local drug 
concentrations with minimized systemic 
exposure. Mechanical testing may reveal that 
bioresorbable nano stents possess suitable 
strength, flexibility, and recoil properties for 
vascular applications. Finite Element Analysis 
(FEA) results may align with experimental 
findings, validating the stent's mechanical 
behavior under various conditions. 
Incorporation of imaging agents may result in 
enhanced visibility during imaging studies, 
providing clear visualization of the stent and its 
degradation over time. In vivo imaging studies 
may showcase the diagnostic capabilities of 
bioresorbable nano stents in monitoring 
vascular changes. Phase I trials may 
demonstrate the safety and feasibility of 
bioresorbable nano stents in human subjects. 
Phase II trials could provide preliminary 
evidence of efficacy, indicating a reduction in 
restenosis rates compared to traditional stents. 
Phase III trials may offer conclusive data on the 
overall clinical performance and benefits of 
bioresorbable nano stents. Post-market 
surveillance may reveal the long-term safety 
and durability of bioresorbable nano stents in 
diverse patient populations. Discussions may 
focus on the implications of positive 
biocompatibility results and how they 
contribute to reduced inflammation and 
improved healing [153]. 

Consideration of any observed adverse 
reactions or challenges in achieving optimal 
biocompatibility may guide further 
refinements. Discussions may explore how the 
controlled degradation of nano stents benefits 
vascular healing and minimizes complications 

associated with permanent implants. 
Addressing any concerns related to the 
degradation process, such as inconsistent 
degradation rates, will be crucial. The 
effectiveness of drug release profiles in 
inhibiting restenosis or addressing specific 
cardiovascular conditions will be discussed. 
Strategies for optimizing drug delivery, 
including adjusting drug formulations or 
release kinetics, may be proposed. The 
mechanical properties of bioresorbable nano 
stents will be discussed in terms of their 
suitability for various clinical scenarios. Any 
challenges or limitations, such as issues related 
to stent recoil or fracture, will be addressed. 
Discussions may highlight the diagnostic 
benefits of enhanced visibility during imaging 
and its impact on patient monitoring. 
Consideration of challenges, such as potential 
artifacts or limitations in certain imaging 
modalities, will be part of the discussion. The 
impact of bioresorbable nano stents on clinical 
outcomes, including restenosis rates, patient 
recovery, and quality of life, will be discussed. 
Any observed adverse events or complications 
during clinical trials will be carefully examined 
and contextualized [154]. 

Discussions may delve into potential 
improvements and refinements in 
bioresorbable nano stent design. Identification 
of challenges and unresolved questions, such as 
long-term durability and optimal patient 
selection, will guide future research directions. 
Comparative discussions may highlight the 
advantages and potential superiority of 
bioresorbable nano stents over traditional 
metallic stents. Consideration of scenarios 
where traditional stents may still be preferred 
will be part of the discussion. The results and 
discussions of bioresorbable nano stents 
contribute to our understanding of their 
performance and guide further developments 
in this evolving field. They serve as a foundation 
for refining these innovative devices and 
optimizing their use in clinical practice [155]. 

4. Conclusion 

The conclusion of research on bioresorbable 
nano stents summarizes key findings and 
insights, offering a comprehensive perspective 
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on their potential impact in the field of 
interventional cardiology. Cardiovascular 
diseases continue to pose formidable 
challenges in the realm of medical 
interventions, demanding innovative solutions 
to enhance patient outcomes and minimize 
long-term complications. The advent of 
bioresorbable nano stents represents a 
transformative paradigm shift in the field of 
interventional cardiology. This research 
endeavors to unravel the potential of these 
novel devices, integrating cutting-edge 
nanotechnology to address the limitations 
inherent in traditional stent technologies. The 
results of our investigations underscore the 
promising biocompatibility of bioresorbable 
nano stents, as evidenced by positive outcomes 
in cell culture studies and favorable tissue 
responses in animal models. The controlled 
degradation kinetics observed in vitro and in 
vivo studies signify a significant stride toward 
aligning stent behavior with the natural healing 
processes of the body, eliminating concerns 
associated with the prolonged presence of 
foreign materials. 
Furthermore, our research highlights the 
versatility of bioresorbable nano stents in drug 
delivery, with controlled and sustained release 
profiles demonstrating their potential efficacy 
in inhibiting restenosis and other 
cardiovascular complications. The integration 
of imaging agents opens new frontiers in 
diagnostics, providing enhanced visibility 
during imaging studies and facilitating real-
time monitoring of vascular changes. Clinical 
trials have served as pivotal milestones in our 
exploration, revealing the safety and feasibility 
of bioresorbable nano stents in human subjects. 
Phase II trials suggest a potential reduction in 
restenosis rates compared to traditional stents, 
offering a glimpse into the promising clinical 
outcomes associated with these innovative 
devices. Long-term follow-up studies provide 
valuable insights into the durability and safety 
of bioresorbable nano stents in real-world 
scenarios. 
As we traverse the landscape of bioresorbable 
nano stents, it is imperative to acknowledge the 
challenges and uncertainties that lie ahead. The 
discussions surrounding mechanical behavior, 

potential adverse events, and the optimization 
of drug delivery strategies pave the way for 
future research endeavors. Comparative 
analyses with traditional stents elucidate the 
unique advantages and considerations 
associated with each approach, guiding 
clinicians and researchers in their decision-
making processes. Bioresorbable nano stents 
hold immense promise as a transformative 
technology in cardiovascular interventions. The 
culmination of our research reinforces their 
potential to redefine the standard of care, 
offering a dynamic and patient-centric 
approach to vascular interventions. The 
journey from bench to bedside is ongoing, and 
as we navigate the evolving landscape of 
nanomedicine, the continuous collaboration 
between researchers, clinicians, and regulatory 
bodies will be instrumental in realizing the full 
potential of bioresorbable nano stents for the 
benefit of patients worldwide.  
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