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Keywords  Abstract 

In this study, we present an analytical model developed to describe broadband 

inhomogeneous wave propagation in an unsaturated visco-poroelastic layered 

medium which can be applied in geomechanics issues as hydrocarbon reservoirs. 

By taking into account the effect of the tortuosity parameter on the movement of 

pore fluids, the proposed formulation is capable of describing the wave behavior 

at high as well as mid and low frequencies. The boundary conditions proposed in 

this study, account for the connection between the surface pores, along with the slip that occurs between 

the two media at their interface. This enables us to model the layered medium in a more realistic way, 

where, the pore fluids are able to pass through the layers and the layers are able to move relative to each 

other. Finally, a sensitivity analysis is carried out and the effect of the various parameters on wave 

propagation inside the layered medium is investigated. 

Reflection, 

Refraction, 

Wave propagation, 

Porous materials, 
Unsaturated soil, 

Boundary conditions 

1. Introduction 
Scientists and researchers have always been 

interested in finding the properties of waves and 

their utilization in various fields of science and 

technology. Amongst which of particular interest 

is the science of earth and the possibility of 

tapping into its resources and understanding its 

geological structures and inner workings. In this 

regard, there have been many efforts by the 

scientific communities around the world to 

develop mathematical models to understand the 

complexities of wave propagation in unsaturated 

soils.   
The first serious study of wave propagation 

in porous media can be credited to Biot [1, 2]. 

Wherein, he developed a model for wave 

propagation in a saturated porous medium. He 

showed for the first time that three waves can 

propagate in such a medium, of which two belong 

to the compressional waves and the third one is 

related to the sole shear wave. Since then, others 

have tried to use, verify and develop the equations 

and results which are developed by Biot [3-7]. In 

this regard, Plona [5] and Berryman [3] have 

shown the validity of the Biot's theory and the 

propagation of the second compressional wave in 

a saturated porous medium . 
Concerning the extension of the Biot's 

formalism, using the concepts of mixture theory, 

Brutsaert [8] has developed a model capable of 

predicting wave behavior in an unsaturated porous 

medium, where the pores are filled by two 

immiscible fluids. In the following years Santos et 

al. [9, 10] have also extended the theory of Biot 

and developed a method for obtaining the elastic 

constants related to an unsaturated porous 

medium. Tuncay and Corapcioglo [11] have used 

a Lagrangian viewpoint and the volume averaging 

technique to develop a model for wave 

propagation in an unsaturated porous medium, 

showing the existence of three compressional 

waves and one shear wave. Also Lo et al. [12] 

have used an Eulerian framework and developed 

a model to describe wave behavior in such a 

medium . 
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     Even though these models are all capable of 

predicting wave propagation behavior at low 

frequencies, they all fall short at considering the 

inertial coupling effects and hence are not suitable 

to analyze wave behavior at high frequencies, 

where the tortuosity parameter plays an important 

role. therefore, by using the relations proposed by 

Fredlund and Morgenstern [13] and Fredlund and 

Rehardjo [14], and by the constitutive relations of 

Conte et al. [15] and Smeulders [16], 

Ghasemzadeh and Abounouri [17] have 

developed a model capable of predicting wave 

velocity at all frequencies, in a single-layered 

medium . 
        It seems that Geertsma and Smith [18] were 

the first ones to develop a mathematical 

description for wave propagation in a layered 

porous medium. It should be noted that in their 

study it was assumed that the wave incidence is 

normal to the interface between the two media. In 

order to successfully describe the wave 

propagation phenomenon in a layered medium, 

one needs to know how the wave travels inside 

each one of those media, and what happens when 

these waves reach the interface between the two 

layers. Or in other words, one needs to have two 

models, one for describing wave propagation in a 

single medium and the other for describing wave 

behavior at the interface of every two adjoining 

media. Therefore, a need for boundary conditions 

feels at the interface. For instance, Yang et al. [19] 

had used the traction-free boundary condition for 

the expression of the scattering wave . 
     Deresiewicz and Skalak [20] and Murty [21] 

had come up with boundary conditions that have 

been used by researchers in the ensuing years. In 

this regard Deresiewicz and Skalak [20] came up 

with the general boundary condition for the case 

that the pores at the interface of the two porous 

media are either fully connected or are not 

connected at all. Murty [21] has also introduced a 

more general boundary condition which has been 

named as loose contact, where a portion of the 

incident energy is dissipated and the rest is 

partitioned between that of the reflected and 

refracted waves. Also, Vollmann et al. [22] has 

shown that the border between the two half-

spaced graded in a way leads to a frequency and 

wavelength which depend on refraction and 

reflection behavior of waves . 
Later, researchers including but not limited 

to Hajra and Mukhopadhyay [23], Wu et al. [24], 

vashisth et al. [25], Sharma and Saini [26] and Lin 

et al. [27] have used these boundary conditions to 

model the phenomenon of reflection and 

refraction of the incident waves in saturated 

porous media. 
     Tomar and Arora [28] started the first attempts 

at modeling wave propagation phenomenon in a 

three-phase layered porous medium, where the 

pores are filled by two immiscible fluids. In order 

to reach that goal they used the formalism 

developed by Tuncay and Corapcioglo [11] and 

ignored the viscosity of the pore fluids. They also 

assumed that one of the two media is a porous 

elastic half-space consisting of three phases and 

the other one is an elastic solid consisting of only 

the solid phase. Later Arora and Tomar [29] 

extended their 2006 paper to a layered medium 

consisting of a three-phase elastic porous half-

space for the upper and the lower media. 
     Yeh et al. [30] used the model of Lo et al. [12] 

and the normal coordinates were developed by Lo 

et al. [31] to derive the energy and amplitude 

ratios of the reflected and refracted waves at the 

interface of two unsaturated porous media. The 

novelty of their approach compared to Arora and 

Tomar [29] was the use of normal coordinates to 

obtain the relations, between the amplitude ratios 

of the propagating waves in different phases of the 

porous medium . 
      Sharma and Kumar [32] have derived the 

amplitude and energy ratios of the reflected waves 

at the surface of an unsaturated porous medium 

and air. They based their model on that of Tuncay 

and Corapcioglo [11] and used the concept of 

Christoffel equations (Reference?). One of the 

distinct features of their study is the use of the 

concept of inhomogeneous waves in a way as 

defined by Borcherdt [33, 34], where it is proven 

that for wave propagation in a viscoelastic 

medium, the angle between the planes with equal 

amplitude and the planes with equal phase is not 

equal. Kumar and Majhi [35] have studied on 

propagation of shear horizontal (SH) plane waves 

in inhomogeneous soil using visco-elastic 

coefficient as function of depth. Furthermore, 

Amirkhizi et al. [36] have investigated the 

scattering of oblique SH waves off finite periodic 

media, consisting of elastic and viscoelastic 

layers . 
     Kumar and Sharma [37] have extended the 

model developed by Lo et al. [12] to layered 

porous media. In their formulation, they have used 
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the concept of inhomogeneous wave propagation. 

They have also utilized the boundary conditions 

obtained by Sharma [38] for the case of a welded 

contact in which surface pores at the interface of 

the two media are partially connected. 
     Based on the brief account that has been given 

for the phenomenon of wave propagation in 

saturated and unsaturated layered media, it is clear 

that the mathematical foundations are now fully 

established for tackling such problems even 

deeper. Therefore in this paper we will build upon 

the collective findings of all the researchers 

mentioned in the previous paragraphs, and by 

utilizing the constitutive relations obtained by 

Ghasemzadeh and Abounouri [17] and [39], we 

will develop a formalism for inhomogeneous 

wave propagation in a layered three-phase 

unsaturated viscoelastic porous medium . 
     The novelty of the formalism derived in this 

paper is the inclusion of inertial coupling effects 

at high frequencies caused by the tortuosity of the 

porous medium and consequently the credibility 

of the results at high-frequency values. Another 

feature of the model developed here is that the 

concept of loose boundary condition is utilized in 

tackling the problem of a layered three-phase 

unsaturated porous medium, and the effect of the 

bonding parameter Ψ is seen on the amplitude and 

energy ratios of the reflected and refracted waves. 

Finally, by taking into account the connection in 

the surface pores of the two media at their 

interface, the boundary conditions proposed, 

enable us to provide a more realistic mathematical 

interpretation of the situation that exists in the 

field. 

 

2. Model parameters and the constitutive 

relations 
2.1. Dispersion relations 

Based on Ghasemzadeh and Abounouri [17] the 

following governing equations can be given for 

wave propagation in a three-phase unsaturated 

porous medium:Captions for Tables should 

appear above the table. All other captions should 

appear below the illustration (figures, graphs, 

photos).

𝜁 𝛻𝛻 ⋅ 𝑢⃗ 𝑠 − 𝐺(𝛻𝛻 ⋅ 𝑢⃗ 𝑠 − 𝛻2𝑢⃗ 𝑠) + 𝜍 𝛻𝛻 ⋅ 𝑢⃗ 𝑤 + 𝜉 𝛻𝛻 ⋅ 𝑢⃗ 𝑎   − (𝜏𝑤 − 1)𝜙𝑤𝜌𝑤𝜕𝑡
2(𝑢⃗ 𝑠 − 𝑢⃗ 𝑤)− (𝜏𝑎 − 1)𝜙𝑎𝜌𝑎𝜕𝑡

2(𝑢⃗ 𝑠 − 𝑢⃗ 𝑎)

− 𝑏𝑤𝜕𝑡(𝑢⃗ 𝑠 − 𝑢⃗ 𝑤)− 𝑏𝑎𝜕𝑡(𝑢⃗ 𝑠 − 𝑢⃗ 𝑎)− 𝜌𝑠(1 − 𝜙)𝜕𝑡
2𝑢⃗ 𝑠 = 0 (1) 

−𝜙𝑤𝑊𝛻𝛻 ⋅ 𝑢⃗ 𝑠 + 𝜙𝑤
2 𝐿𝛻𝛻 ⋅ 𝑢⃗ 𝑤 + 𝜙𝑎𝜙𝑤𝐶𝛻𝛻 ⋅ 𝑢⃗ 𝑎 + (𝜏𝑤 − 1)𝜙𝑤𝜌𝑤𝜕𝑡

2(𝑢⃗ 𝑠 − 𝑢⃗ 𝑤)+ 𝑏𝑤𝜕𝑡(𝑢⃗ 𝑠 − 𝑢⃗ 𝑤)− 𝜙𝑤𝜌𝑤𝜕𝑡
2 𝑢⃗ 𝑤 = 0  (2) 

−𝜙𝑎𝑀𝛻𝛻 ⋅ 𝑢⃗ 𝑠 + 𝜙𝑎𝜙𝑤𝐶𝛻𝛻 ⋅ 𝑢⃗ 𝑤 + 𝜙𝑎
2𝑁𝛻𝛻 ⋅ 𝑢⃗ 𝑎 + (𝜏𝑎 − 1)𝜙𝑎𝜌𝑎𝜕𝑡

2(𝑢⃗ 𝑠 − 𝑢⃗ 𝑎)+ 𝑏𝑎𝜕𝑡(𝑢⃗ 𝑠 − 𝑢⃗ 𝑎) − 𝜙𝑎𝜌𝑎𝜕𝑡
2 𝑢⃗ 𝑎 = 0  (3) 

where u  _s  , u  _w  , u  _a   are defined as the 

displacement fields of the solid phase, the wetting 

pore fluid phase (as water) and the non-wetting 

pore fluid phase (as air or oil), respectively.  ϕ_w  

and ϕ_a  denote volume fractions of the wetting 

and the non-wetting pore fluid phases. τ_w  and 

τ_a denote the effective tortuosity for the wetting 

and the non-wetting pore fluid phases. The 

parameters ρ_s,〖 ρ〗_w and ρ_a  are solid, water 

and air density. The parameters G and χ are 

defined as the shear modulus of the solid skeleton, 

and effective stress parameter, respectively. The 

other parameters used in equations (1)-(3) can be 

seen in Appendix (A) . 
In order to solve the system of partial differential 

equations (1)-(3), they used the Helmholtz 

decomposition of the displacement field and 

obtained the uncoupled system of partial 

differential equations for the compressional and 

shear waves propagating in a three-phase 

unsaturated porous medium as shown below:   
For the scalar part: 

(4) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 21 1 1 1 1 0b b b b
s w a w w w t s w w w t w a a a t s a a a t a w t s w t w a t s a t a s t s

                  +   +   − −   + −   − −   + −   −   +   −   +   − −   =  

(5) ( ) ( ) ( )
22 2 2 2 2 21 1 0W L C b b

w s w w w a a w w w t s w w w t w w t s w t w w w t s
           −   +   +   + −   − −   +   −   −   =  

(6) ( ) ( ) ( )
22 2 2 2 2 21 1 0M N C b b

a s a a w a w a a a t s a a a t a a t s a t a a a t s
           −   +   +   + −   − −   +   −   −   =  

and for the vector part: 
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( ) ( ) ( ) ( ) ( )2 2 2 2 2 21 1 1 1 1 0G b b b b
s w w w t s w w w t w a a a t s a a a t a w t s w t w a t s a t a s t s

                        − −  + −  − −  + −  −  +  −  +  − −  =  (7) 

( ) ( )2 2 21 1 0b b
w w w t s w w w t w w t s w t w w w t s
            −  − −  +  −  −  =  

(8) 

( ) ( )2 2 21 1 0b b
a a a t s a a a t a a t s a t a a a t s
            −  − −  +  −  −  =  (9) 

In the above equations, Φi(𝑖 = 𝑠, 𝑤, 𝑎) and 

Ψ𝑗(𝑗 = 𝑠,𝑤, 𝑎) denote the scalar and vector 

potentials, respectively for the solid and fluid 

phases.  

By transforming equations (4)-(6) from the 

space-time domain to the frequency-wavenumber 

domain, and using some algebraic manipulations, 

Ghasemzadeh, and Abonouri [17] have obtained 

the following dispersion relations for 

compressional wave propagation in a three-phase 

unsaturated porous medium where the pores are 

filled by two immiscible fluids : 

(10) 
2 3

2 2 2 0
1 2 3 4

A A k A k A k
p p p

   
+ + + =   

   
 

where kP  stands for compression wave number 

and A1, A2, A3, and A4 are introduced in 

Appendix (A). 

The dispersion relation (10) is a cubic 

polynomial in k_p^2 with three complex roots. 

This shows that in an unsaturated three-phase 

porous medium, three waves propagate which 

based on the descending value of their real parts; 

they respectively denote P1, P2, and P3 waves. 

The complex roots only occur when the medium 

is dispersive; i.e., when the pore fluids are 

viscous. It should be noted that the solid phase in 

the formalism developed here is elastic and 

therefore, intrinsic attenuation only occurs if the 

pore fluids are viscous. If the medium is 

dispersion less; i.e., if the pore fluids are not 

viscous then the roots are real numbers and hence 

no attenuation occurs. It should also be noted that 

the P1 and P2 waves are similar to the fast and 

slow Biot waves and propagate regardless of the 

existence of the second pore fluid. The P3 wave is 

created as a result of the existence of the second 

pore fluid and generally has the lowest velocity 

and the highest attenuation  . 

Similarly, by transforming the relations (7)-

(9) from the space-time domain to the 

wavenumber-frequency domain and doing some 

algebraic manipulation similar to that of 

Ghasemzadeh and Abonouri [17] have done, the 

following dispersion relation for shear wave 

propagation can be obtained: 
2 0

22 33 13 22 31 12 21 33 11 22 33
b b Gk b b b b b b b b b

s
+ + − =  (11) 

 

The dispersion relation (11) is a bilinear 

equation showing that two roots exist, of which 

only one is physically possible. This shows that in 

an unsaturated three-phase porous medium only 

one shear wave propagates. Similar to the case of 

compressional waves, if the medium is dispersive; 

then, the roots are complex numbers and if the 

medium is non-dispersive; then, the roots are real 

numbers. The existence of only one shear wave 

also tells us that the addition of the second pore 

fluid does not have any effect on the number of 

shear waves propagating in the porous medium . 

In order to model wave propagation in a 

layered three-phase unsaturated porous medium, 

it is of importance to find some relations amongst 

the amplitude ratios of waves in all of the three 

phases. For that matter, based on Lo et al. [31] and 

by using the relations (4)-(6) or their counterparts 

in wavenumber-frequency domain and some 

algebraic manipulations, the following relations 

can be obtained: 

( ); 1,2,3A A i
wi i si

=  =  (12) 

( ); 1,2,3A A i
ai i si

=  =  (13) 

where, A
si

, A
wi

 and A
ai

 denote the amplitude 

ratios for the solid, wetting pore fluid and the non-

wetting pore fluid phases for compressional wave 

propagation. Here the subscript 1,2,3i =  

denotes that the relations belong to the case of the 

P1, P2 and the P3 wave propagation. Other 

parameters used are defined below: 

( ) ( ) ( ); 1,2,3
11 23 13 21 12 23 13 22
i i i i i i i iY Y Y Y Y Y Y Y i

i
 = − − − =  (14) 

( ) ( ) ( ); 1,2,3
11 22 12 21 12 23 13 22
i i i i i i i iY Y Y Y Y Y Y Y i

i
 = − − =  (15) 

where the following relations hold: 

2 ,iY B a
jk jk i jk

= −    1 ;v
i i
 =     1 ;v

i i
 =   ( ) , ( 1,2), 1,2,3 ji k ==  (10) 
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( ) ( )1 (( ( 1) ( 1) ( 1)) ); 111
B ib ib ia a a a w w w s a w

          = − + + − − − − − = −  

( )( )1 ,
12 21

B B ibww w w
   −= = − +           

( )( ) ( )1 ; 113
B ib iaa a a

   −= − + = −  

( ) ( ); ,122
B ib iw w w w

   = − = −               0
23

B =  

(11) 

,
11

a =                         ,
12

a =                 
13

a =  

( ) ,21
Wa w
= −               2 ,

22
a L

w
=            

23
a C

w a
 =  

(12) 

 

Also in a similar manner, by using the 

relations (8)-(9) or their counterpart in the 

wavenumber-frequency domain and some simple 

algebraic manipulations such as that outlined in 

Tomar and Arora [28], the following relations can 

be obtained for shear wave amplitude in different 

phases of the porous media: 

,
1 2

B J B B J B
w s a s
= =  (19) 

where, B
s

, B
w

 and B
a

 denote the shear wave 

amplitudes for the solid, wetting pore fluid and the 

non-wetting pore fluid phases. The parameters 

1
J  and 

2
J  are defined below: 

( ) ( ) ( )
2 2 21 1 ; 1

1
J ib ib i

w w w w w w w w w w
            
   

= − − − + − = −      
   

 (13) 

( )( ) ( ) ( )1 ; 1
2

J ib ib i
a a a a a a a a
      = − − + − + = −  (14) 

 
It can be deduced from dispersion relations that 

the interference of non-variable parameters of the 

environment affects wave propagation. This 

shows the fact that the non-homogeneity of 

materials affects the speed of the waves . 

 
2.1. Amplitude and energy ratio coefficients 

     In order to obtain wave energy ratios, 
first, we need to define particle velocities and 

surface tractions at the boundary of the two layers. 

To this end, we will define vector and 

displacement potentials so that we can use them in 

obtaining the particle displacement vectors. It 

should be noted that for simplicity we assume that 

the waves only propagate inside the x-z plane. 

Similar to figure 1, by assuming the propagation 

of plane waves and using potential functions given 

by Borcherdt [40], we have the following 

relations: 

r xe ze
x z

= +  (15) 

0 0
u uK ke d e
p x p z

= −  (16) 

( ) ,1,2,3
1

u u u uK ke d e K ke d ei
pi x pi z s x s z

= + = +=  (17) 

( ) ,1, 2,3
1

K ke d e K ke d ei
pi x pi z s x s z

= − = −=  (18) 

where: 

( )2 2 2 2,0,1,2,3
1 1

u u u ud k k d k ki
pi pi s s
= − = −=                                          (19) 

( )2 2 2 2,1,2,3
1 1

d k k d k ki
pi pi s s
= − = −=                                          (20) 

( )

1 / 2

2 2
12 2 2Re Re Im 2

0 0 02
cos

0

u u uP k k k
p p p

u

  
  
            = + +                      

   
  

                                         
(21) 

( ) 21 2 cos Im
0 0
u uA P k

p
  

= −  
 

                                         (22) 

( ) ( )sin sin
0 0 0
u u uk iP A  = − −                                          (23) 

( ); ,1,2,3
1 4

u u u uk v k vi
pi i s

 = ==                                          (24) 

( ); ,1, 2,3
1 4

k v k vi
pi i s

 = ==                                          (25) 

In the above relations, subscripts 0, 1, 2, and 
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3 denote the incident, P1, P2 and P3 waves, 

respectively. 𝑝𝑖  denotes parameters defined for 

compressional waves and 𝑆1 is for the shear 

wave. It should also be noted that the superscript 

u denotes the parameters pertaining to the upper 

medium, whereas the non-existence of u means 

that the parameters are defined for the lower 

medium. Parameters, 𝑑𝑝𝑖
𝑢 , 𝑑𝑝𝑖, and, 𝑑𝑠1

𝑢 , 𝑑𝑠1 

account for the compressional and shear wave 

attenuation when propagating in a dissipative 

medium. The parameter k defined in (23) is the 

wave vector and to ensure the validity of the 

Snell`s law at the boundary of the two layers, it is 

the same for the upper and lower medium. 

Parameters, 𝑘𝑝𝑖
𝑢 , 𝑘𝑠1,

𝑢  and, 𝑘𝑝𝑖, 𝑘𝑠1 are the wave 

vectors for the compressional and shear waves in 

the upper and lower medium. 

Also similar to that shown in figure 1, 

𝛾𝑖
𝑢;(𝑖 = 0,1,2,3,4) denotes the angle between the 

propagation and attenuation vectors for the 

incident, reflected P1, P2, P3, and the shear wave 

and 𝛾𝑖; (𝑖 = 1,2,3,4) denotes the angle between 

the propagation and attenuation vectors for the 

refracted P1, P2, P3 and the shear wave. 𝜃𝑖
𝑢 ; (𝑖 =

0,1,2,3,4) denotes the angle between the 

propagation vectors of the incident, P1, P2, P3, 

and the shear wave with that of the Z axis for the 

upper medium and 𝜃𝑖 ; (𝑖 = 1,2,3,4) denotes its 

counterpart for the P1, P2, P3 and the shear wave 

in the lower medium. Similarly 𝐴𝑖
𝑢; (𝑖 =

0,1,2,3,4) denotes the attenuation vectors for the 

incident, P1, P2, P3 and the shear wave in the 

upper medium and 𝐴𝑖; (𝑖 = 1,2,3,4) denote that 

for the P1, P2, P3 and the shear wave in the lower 

medium. Finally, 𝑃𝑖
𝑢; (𝑖 = 0,1,2,3,4) and 𝑃𝑖; (𝑖 =

1,2,3,4) denote the propagation vectors for the 

incident, P1, P2, P3 and the shear wave in upper 

and lower media. 

 

 
Figure 1. Schematics of the propagation and the 

attenuation vectors of the incident, reflected and 
refracted waves in unsaturated Visco-pore elastic 

layered media 
 

It should also be noted that in order to define 

the relations (15)-(25) we only need the 

propagation and attenuation angles, i.e. 𝜃0
𝑢, 

and 𝛾0
𝑢;, for the incident wave. The other angles 

are related to 𝜃0
𝑢 and 𝛾0

𝑢 due to the validity of the 

Snell`’s law at the interface, as stated by Borcerdt 

et al. [41] and established by equating the 

parameter k  from equation (23) for the upper and 

the lower media. 

Regarding the displacement potentials in the 

upper medium we have:

3 3 3
exp , exp , exp

0 0 0

u u u u u u u u u u uA i t K r A i t K r A i t K r
s sj j w j sj j a j sj j

j j j

  
  

          
 = −   =  −   =  −             

          = = =

 
(26) 

exp , exp , exp
1 1 1 1 1 2 1 1

u u u u u u u u u u uB i t K r J B i t K r J B i t K r
s s w s a s

  
  

           = −   = −   = −           
          

 
(27) 

and for the lower medium: 

𝛷𝑠 = ∑𝐴𝑠𝑗 𝑒𝑥𝑝 (𝑖(𝜔𝑡 − 𝐾𝜙𝑗 ⋅ 𝑟 ))

3

𝑗=1

,  𝛷𝑤 = ∑𝛤𝑗𝐴𝑠𝑗 𝑒𝑥𝑝 (𝑖(𝜔𝑡 − 𝐾𝜙𝑗 ⋅ 𝑟 ))

3

𝑗=1

, 𝛷𝑎 = ∑𝛱𝑗𝐴𝑠𝑗 𝑒𝑥𝑝(𝑖(𝜔𝑡 − 𝐾𝜙𝑗 ⋅ 𝑟 ))

3

𝑗=1

 (28) 

exp , exp , exp
1 1 1 1 1 2 1 1

B i t K r J B i t K r J B i t K r
s s w s a s

  
  

           = −   = −   = −           
          

 
(29) 

In equations (26)-(29), ; 𝛷𝑠, 𝛷𝑤 and 𝛷𝑎 

denote the scalar displacement potentials for wave 

motion in the solid, wetting and the non-wetting 

fluid phases. Similarly,𝛹𝑠 , 𝛹𝑤  and 𝛹𝑎 denote 

Archive of SID.ir

Archive of SID.ir



Propagation of inhomogeneous waves … Journal of Petroleum Geomechanics; Vol. 5; Issue. 3; autumn 2022 
 

7 

vector displacement potentials for wave 

propagation in the solid, wetting and the non-

wetting fluid phases. 𝐴𝑠𝑗; (𝑗 = 1,2,3) Denote 

wave amplitudes for the P1, P2 and P3 waves. 

Also 𝐵𝑠1 is the wave amplitude for the sole shear 

wave. The same goes for the upper medium where 

the parameters are denoted by the superscript 𝑢 in 

their definition. The subscript 0 which is used here 

for the upper medium is related to that of the 

incident wave, which can be any one of the three 

compressional waves or the shear wave 

propagating in the porous medium. 

Parameters 𝛤𝑗, 𝛱𝑗 ,  𝐽1, and  𝐽2  were respectively 

defined in Error! Reference source not found., 

Error! Reference source not found., (13), and 

(14). 

Using Helmholtz decomposition of the 

displacement field and by assuming the validity of 

plane strain conditions in the x-z plane, the 

particle displacements are obtained as: 

; ;

; ;

u u u u u u u u uu x z u x z u x z
sx s s wx w w ax a a

u u u u u u u u uu z x u z x u z x
sz s s wz w w az a a

=   −   =   −   =   −  

=   +   =   +   =   +  

                                         (30) 

; ;

; ;

u x z u x z u x z
sx s s wx w w ax a a

u z x u z x u z x
sz s s wz w w az a a

=   −  =   −  =   − 

=   +   =   +   =   +  
                                         

(31) 

Based on Conte et al. [15] and Ghasemzadeh 

and Abounouri [17], the following constitutive 

relations governing stress-strain conditions in the 

medium are defined: 

( ) ( ) ( )1 1TG HI u L C I u C N I uu u
s w w a as s

     = +  + +  + +  −   −  +                                              (32) 

,p W u L u C u p M u C u N u
w s w w a a a s w w a a

   =  −  −  =  −  −                                           
(33) 

 

 In the above equations   denotes the total 

stress tensor. 𝑝𝑤  and 𝑝𝑎 denote the pore-water and 

pore-air pressures. I  stands for the identity tensor 

and the rest of the parameters were previously 

defined. 

From equations (30)-(33), we can now obtain 

the particle velocities and the surface tractions at 

the interface of the two layers. Then by using the 

boundary conditions given in relation (34) which 

are valid at the boundaries of the two porous 

media, we can obtain an inhomogeneous system 

of equations comprising of eight equations and 

eight unknowns. Solving this system of equations 

numerically using the LU method gives us the 

amplitude ratios of the reflected and refracted 

waves with respect to that of the incident wave, 

which then enables us to calculate the normalized 

energy ratios. 

Boundary conditions for the loosely-bonded 

interface are defined as: 

( )

( )

( )

1

1

1

u u u up p u u
zz zz w w sz wz

u u u up p u u
zx zx a a sz az

u u uu u u u u u
sz sz sz wz sz wz

u u uuT u u u uu u
zx sz az sz azSx Sx

 

 




= − = −

 −


= − = −

 −

= − = −


= − = −−
 −

                                         (34) 

σzz  and σzx  denote the normal and tangential 

stresses at the interface and the Parameters 𝑢̇sz 

and 𝑢̇𝑠𝑥  define particle velocities in the z and x 

directions. The superscript u shows that the 

parameters are defined for the upper medium. The 

parameter T denotes the surface flow impedance 

parameter which is a nonzero finite positive value 

representing the resistance to the free discharge of 

pore fluids at the interface.  

In the boundary conditions defined above, it 

is assumed that the surface pores at the interface 

of the two layers can be either totally connected or 

disconnected or they can be in a state between 

these two extremes. This state of connection 

between the pores of the two media is defined by 

the parameter Ζ. Here when Ζ = 0;, the fluid 

pressures between the upper and lower media are 

equal. This, in turn, means that the fluids are in 

contact with each other and therefore we have 

Archive of SID.ir

Archive of SID.ir



Propagation of inhomogeneous waves … Journal of Petroleum Geomechanics; Vol. 5; Issue. 3; autumn 2022 
 

8 

open pores. On the other hand, when Z=1, the 

relative particle velocities in each of the media 

equal zero. This means that the pores are totally 

closed. Finally, when Ζ is between 0 and 1, the 

pores are partially connected. 

 It is also assumed that as a result of the 

imposed tangential stress a slip might occur at the 

interface. In this regard, the parameter Ψ is termed 

the bonding parameter and takes the value of 0 and 

1 and all the values in between. In other words, the 

bonding parameter shows how close the boundary 

condition is to the smooth and welded contact. 

The value 0 for the bonding parameter shows that 

the two layers would slip with respect to each 

other;, even, if the tangential stresses are trivial. 

And the value 1 for the bonding parameter which 

denotes the welded contact shows that the two 

layers would never slip with respect to each other, 

even if the tangential stresses are big.  

Using equations (30)-(34), we can obtain the 

following non-homogeneous system of equations 

involving eight equations and eight unknowns: 

( )
8

; 1,2,3,4,5,6,7,8

1

R H q L
J LJ L

J

= =
=

                                         (35) 

In the above system of equations, 𝑅𝐽  denotes 

the amplitude ratios of the reflected (J =1, 2, 3, 4) 

and refracted (J = 5, 6, 7, 8) waves with respect to 
that of the incident wave. 𝐻𝐿𝐽, and 𝑞𝐿 are some 

coefficients defined in Appendix (B). 

After obtaining the amplitude ratios, we can 

use the energy flux relations as defined by 

Achenbach [41] to obtain energy ratios of the 

reflected and refracted waves with respect to that 

of the incident wave. These relations are defined 

as below: 

( ), 1,2,3,4P u u p u u p u u i j
ij zxi sxj zzi szj wi szj wzj ai szj azj

     
= + + − + − =   

   
                                         (36) 

( ), 0,1,2,3,4u u u u u u u u u u uP u u p u u p u u i j
ij zxi sxj zzi szj wi szj wzj ai szj azj

     
= + + − + − =   

   
                                         (37) 

Equations (36) and (37) denote the average 

energy flux for the lower and the upper media 

respectively. In other words, they define the 

average rate of energy transmission across the 

interface between the two porous half-spaces. By 

using these equations, we can obtain the relations 

given in Appendix (C) for the energy flux of the 

reflected and transmitted waves and their 

interaction. 

After obtaining the average energy flux 

relations as in ((C.1)-((C.30), we can now obtain 

the normalized energy matrices as given below 

[37]:

( )

00 01 02 03 04

10 11 12 13 14

, ; , 0,1,2,3,4
0020 21 22 23 24

30 31 32 33 34

40 41 42 43 44

u u u u uE E E E E

u u u u uE E E E E

u u u uu u u u uE E P P i jE E E E E
ij ij

u u u u uE E E E E

u u u u uE E E E E

 
 
 
 
 
 = = =
 
 
 
 
 
 

                                         (38) 

( )

11 12 13 14

21 22 23 24
, ; , 1,2,3,4

00
31 32 33 34

41 42 43 44

E E E E

E E E E
uE E P P i j

ij ijE E E E

E E E E

 
 
 
 = = =
 
 
 
 

                                         (39) 

In equations (38) and (39), the diagonal 

elements represent the energy ratios of the 

reflected and refracted waves with respect to that 

of the incident wave. The rest of the elements 

represent interaction energy ratios of the reflected 

and refracted waves with that of the incident wave 
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and one another.  

 

The following relations hold for the elements 

of the energy matrices given above: 
4 4 4

0 0 0

u u uE E E
I ij ii

j i i

= −  
= = =

 (47) 

4 4 4

1 1 1

E E E
I ij ii

j i i

= −  
= = =

 (40) 

4 4
1

1 1

u uE E E E E
T I I ii ii

i i

= + + + = 
= =

 (49) 

In the above equations; 𝐸𝐼
𝑢 , 𝐸𝐼  and 𝐸𝑇 denote 

the total interaction energy ratio in the upper 

medium, the total interaction energy in the lower 

medium and the total energy ratio, respectively. It 

should be noted that 𝐸00  should not be taken into 

account when calculating the total energy ratio. 

Also according to the law of the preservation of 

energy, as shown in equation Error! Reference 

source not found. the total energy ratio should 

equal unity. 

 

3. Sensitivity analysis and results 
Due to a large number of parameters used in the 

analytical model developed in the last section, it is 

almost impossible to clearly see the effect of each 

parameter on wave behavior at the boundary of 

the two porous media. Hence, it is useful that a 

numerical analysis is carried out to see the effect 

of important parameters involved in the model. 

The soil parameters used in this study are 

shown in table 1. As can be seen from this table, 

an unsaturated silty loam (Fredlund and Xing 

[42]) is used for the upper medium and an 

unsaturated sand (Ghasemzadeh and Abonouri 

[17]) is used for the lower medium. The 

parameters a, n, m are related to the soil water 

characteristic curve which is defined for 

unsaturated soils. A detailed account of the soil 

water characteristic curve and the methods used to 

obtain the desired parameters can be found in 

Fredlund et al. [43].The pore fluid parameters are 

also shown in table 2. 

 
Table 1. Soil properties (Ghasemzadeh and Abonouri [17] & Fredlund and Xing [42]) 

Parameter Unit Symbol 
Upper medium M1 (Silty 

Loam [42]) 

Lower medium M2 (sand 

[17]) 

Solid density 𝑘𝑔.𝑚−3 𝜌𝑠  2798 2650 

Soil Poisson ratio − 𝜈 0.3 0.3 

Soil shear modulus 𝑀𝑃𝑎 𝐺 45 50 

Porosity − 𝜙 0.48 0.3 

Intrinsic permeability 𝑚2  𝑘0 6 × 10−13 10−11 

Soil parameter − 𝑎 67.32 10 

Soil parameter − 𝑚 0.499 1 

Soil parameter − 𝑛 7.32 2 

Residual suction 𝑘𝑃𝑎 𝜓𝑟 200 2000 

Residual saturation − 𝑆𝑟 0.270 0.05 

Pore-size index − 𝜆 1.82 2.2 

 
Table 2. Pore fluid properties 

Parameter Unit Symbol Value 

Air density 𝑘𝑔.𝑚−3 𝜌𝑎  1.1 

Air bulk modulus 𝑀𝑃𝑎 𝐾𝑎 0.11 

Air viscosity 𝑃𝑎.𝑠 𝜂𝑎  18 × 10−6 

Water density 𝑘𝑔.𝑚−3 𝜌𝑤 1000 

Water bulk modulus 𝐺𝑃𝑎 𝐾𝑤 2.25 

Water viscosity 𝑃𝑎.𝑠 𝜂𝑤 1 × 10−3 
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In the following, we will first start by 

analyzing the effect of frequency and the degree 

of saturation of the wetting pore fluid phase on 

wave propagation velocity in the two adjoining 

porous media. The wave numbers obtained from 

the dispersion relations Error! Reference source 

not found. and Error! Reference source not 

found. are complex numbers, implying that the 

waves undergo intrinsic attenuation in the Visco-

poroelastic medium. In order to obtain wave phase 

velocity (v) and intrinsic attenuation coefficient 

(c), the following relations are used: 

( )ReV k=  (41) 

( ) ( )1 2 Im ReC Q k k−= =  (42) 

where, k stands for the complex wave number and 

is defined as Re( ) Im( )k k k i= +                                          

Figure 2 shows the wave velocity variations 

with respect to a change in frequency and the 

degree of water saturation for the upper and lower 

media. Here similar to the notation used in figure 

1, M1 denotes the upper medium and M2 denotes 

the lower medium. Also 𝑆𝑤
𝑢 denotes the degree of 

water saturation in the upper medium (M1) and 𝑆𝑤 

denotes that for the lower medium (M2). 

Using these figures it can be seen that an 

increase in the frequency leads to an increase in 

wave velocities of the compressional and shear 

waves both in the upper and lower media. But, 

there are differences in the sensitivity of these 

waves to frequency variations. Where, for the P2 

and P3 waves, we have the highest variations with 

regards to a change in frequency and for the P1 

and shear waves the variations are comparatively 

much smaller.

 

  
(a) (b) 

  
(c) (d) 

Figure 2. P1 (a), P2 (b), P3 (c) and SV (d) wave velocities with respect to 𝜔 and 𝑆𝑤 for the upper and lower media. 

 
Based on these figures, it can also be 

observed that for some of the water saturation 

degrees considered, the velocity variations are not 

uniform with respect to changes in frequency. 

This means that for some of the water saturation 

degrees we get sudden jumps in wave velocity; 
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whereas, for others, we do not. Based on this, it 

can be deduced that the water saturation degree 

plays an important role in determining both the 

velocity of the waves and their sensitivity to 

certain frequency range variations.  

In terms of the medium`s effect on the 

velocity variations, we can see that the P1 and the 

shear waves travel at higher velocities when they 

are propagating through the upper medium. This 

behavior is expected, as the silty loam has a higher 

solid density than the sand. Interestingly, when we 

observe the behavior of the P2 and P3 waves, we 

see that they do not always travel faster in the 

upper medium. Knowing that the P2 and P3 waves 

only exist in a porous medium with various fluid 

phases, one can deduce that their behavior is also 

hugely affected by the parameters of the porous 

medium other than the solid density. 

Figure 3 shows variations in the intrinsic 

attenuation with respect to variations in frequency 

and the degree of water saturation for the upper 

and lower media. Based on these figures it can be 

observed that for the P1 and the shear waves, a 

bell-shaped curve is present both for the upper and 

lower media, with the ones for the upper medium 

being shifted towards higher frequencies. Other 

distinct patterns that can be seen with respect to 

wave attenuation versus frequency belong to that 

of the P2 and P3 waves. For the P2 wave it can be 

seen that the highest attenuations occur at lower 

frequencies and as the frequency increases, the 

attenuation diminishes. This shows that P2 waves 

can travel further at high frequencies when 

compared to that of lower frequencies.  

  

(a) (b) 

  

(c) (d) 
  

Figure 3. P1 (a), P2 (b), P3 (c) and SV (d) wave intrinsic attenuations with respect to 𝜔 and 𝑆𝑤 for the upper and 

lower media. 

Unlike that of the P2 wave, the P3 wave 

intrinsic attenuation increases with frequency 

with the exception of the case for 𝑆𝑤 = 0.1. 

Similar to that of the velocity variations, this 

reduction or increase in intrinsic attenuation with 

frequency is not uniform. We can see that 

depending on the type of the wave and the degree 

of water saturation, the reduction or increase in 

attenuation starts at certain frequencies and most 

of it occurs at specific frequency ranges. 
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 Also relevant to the topic is the effect of the 

medium type on attenuation variations. It can be 

seen that for the P1, P2 and the shear waves, not 

only the attenuation curves shift to higher 

frequencies for the upper medium, but they also 

have higher values. This shows that for most of 

the frequency range considered, the ratio of the 

imaginary to the real part of the wave number 

parameter is bigger for the upper medium than for 

the lower medium. This trend however, does not 

hold true for the P3 wave. It can be seen that the 

amount of intrinsic attenuation is much higher for 

the P3 wave in the lower medium than in the upper 

medium. This along with the case of velocity 

variations discussed before shows that the 

mechanisms controlling the P3 wave behavior are 

different than those of the other waves. 

Figure 4 shows the change in the normalized 

energy ratios for the reflected and refracted P1, 

P2, P3 and shear waves at the surface along with 

their interaction energy ratios in the lower and 

upper media, with respect to a change in the angle 

of incidence and frequency. Here ωu denotes 

frequencies for the energy ratios of the reflected 

waves and ω denotes that of the refracted waves. 

Apart from the parameters mentioned in tables 1 

and 2, the values of Sw=0.6, Ζ=1, 𝛾0
𝑢=45°, Ψ=1 

and T=1×106 MPa.s/m are also used in obtaining 

the energy ratios shown in these figures. 

Using these figures, it can be seen that for 

normal angles of incidence, the energy of the 

incident P1 wave is partitioned to the refracted P1 

wave mostly and for low grazing angles most of 

it, is given to the reflected one. It can also be 

observed that the energy ratio curves for the 

reflected and refracted P1 waves resemble that of 

an exponential curve in the sense that the energy 

ratio value is constant for most of the incident 

angles and then most variations occur for the final 

15 degrees. From a mathematical viewpoint, this 

mostly happens as the potential functions defined 

in equations (26)-(29) were of exponential forms. 

Another thing that can be deduced from the 

P1 energy ratio curves is the fact that the reflected 

and refracted waves are out of phase with each 

other. Considering the effects of frequency on the 

energy ratio of the P1 wave, no noticeable 

variations are observed. This means that the P1 

wave is not affected by changes in frequency and 

its value stays the same regardless of its 

propagation frequency. 

Comparing the values of the energy ratios for 

the P2, P3 and shear waves with that of the P1 

wave, it is clear that the P1 wave is dominant both 

in the reflected and refracted cases. This is 

expected, as the type of the incident wave is also 

of the P1 type. If we had considered the incidence 

of other wave types at the interface, more energy 

would have been partitioned to other waves. It is 

also worth noting that in a real physical situation, 

only the P1 and shear waves have a chance of 

reaching the interface of the two layers, and the P2 

and P3 waves would probably totally dissipate 

long before they even reach the interface due to 

high intrinsic attenuation. 

When considering the behavior of other 

waves other than the P1, we can see that unlike the 

P1 wave, where we had distinct patterns with 

respect to θ; these waves show erratic behaviors, 

in the sense that their behavior changes based on 

the propagation frequency. This shows that these 

waves are more affected by changes in frequency. 

The same behavior was also seen in the velocity 

and intrinsic attenuation parameters for the P2 and 

P3 waves. 

Figure 5 shows the change in the normalized 

energy ratios for the reflected and refracted P1, 

P2, P3, and shear waves at the surface along with 

their interaction energy ratios in the upper and 

lower media, with respect to a change in the angle 

of incidence and the degree of saturation of the 

water phase. Here  𝑆𝑤
𝑢 denotes water saturation 

degree for the energy ratio of the reflected wave 

and 𝑆𝑤 denotes that of the refracted one. Apart 

from the parameters mentioned in tables 1 and 2, 

the values of 𝜔 = 100 𝑟𝑎𝑑/𝑠, 𝛾0
𝑢 = 45°, Ζ = 1, 

Ψ = 1 and 𝑇 = 1 × 106 𝑀𝑃𝑎. 𝑠/𝑚 are used in 

obtaining the energy ratios shown in these figures. 

Using these figures, it can be seen that 

changing the water saturation degree does not 

affect the overall trend in the energy ratio 

variations with respect to a change in the incident 

angle. But it is clear that the P1 wave has more 

sensitivity to 𝑆𝑤 variations than 𝜔. Here we can 

see that when the water saturation degree is 

increased, the curves for the reflected and 

refracted P1 wave energy ratios are shifted to the 

right. Also, similar to the case of frequency 

variations, we can see that the reflected and 

refracted energy ratios are out of phase with each 

other.  

Considering the energy ratio variations for 

the P2, P3 and the shear waves, we can see that 

the P2 and the P3 waves are more sensitive to 

frequency variations; whereas, the shear wave is 

more sensitive to 𝑆𝑤 variations. This behavior is 
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in line with that we saw in velocity and intrinsic 

attenuation variations of these waves with respect 

to frequency and water saturation degree 

variations.

  
(a) (b) 

  
(c) (d) 

 
                                      (e) 
Figure 4. Wave energy ratio in layered media, (a) P1, (b) P2, (c) P3, (d) SV and (e) interaction energy ratios with 

respect to (𝜃) and (𝜔) 
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(a) (b) 

  
(c) (d) 

 
                                             (e) 

Figure 5. Normalized wave energy ratio in layered media, (a) P1, (b) P2, (c) P3, (d) SV and (e) interaction 

energy ratios with respect to (𝜃) and (𝑆𝑤) 

Figure 6 shows the energy ratios of the reflected 

and refracted P1, P2, P3 and shear waves along with 

their interaction energy ratios in the lower and 

upper media, with respect to a change in the angle 

of incidence and the bonding parameter. Here Ψ𝑢 

denotes the bonding parameter for the energy ratio 

of the reflected wave and Ψ denotes that of the 

refracted wave. Apart from the parameters 

mentioned in tables 1 and 2, the values of 𝜔 =
100 𝑟𝑎𝑑/𝑠, 𝛾0

𝑢 = 45°, Ζ = 1, Sw = 1 and 𝑇 =
1 × 106 𝑀𝑃𝑎. 𝑠/𝑚 are used in obtaining the 

energy ratios shown in these figures. 

The most important issue to note here is the 

effect of  Ψ on the total energy ratio. It was 

mentioned before that this parameter shows how 

much slip occurs at the interface of the two porous 

media. Where Ψ = 1 denotes the case for the 

welded contact and Ψ = 0 denotes the case for 

smooth contact. The former means that no slip is 

allowed to happen at the interface, while the latter 

implies that the two media slip pass each other 
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with no resistance. 

Here again, we see that changing the bonding 

parameter does not affect the overall variation 

behavior of the reflected and refracted waves, 

particularly for the P1 wave. Nonetheless, 

changing this parameter can create subtle 

variations, which can be easily observed. For 

example it can be seen that for some of the values 

of the Ψ parameter; namely, the Ψ = 0 and Ψ =
0.1, the P1 wave energy ratio has dips and peaks; 

whereas, for the case of the 𝑆𝑤 and 𝜔 variations 

we do not see such a behavior. We can also see 

that, the symmetry we observed in figures 4 and 5 

is more pronounced here for P2, P3 and shear 

modes. This shows that when the frequency and 

the water saturation degree are constant, the 

reflected and refracted waves have more or less 

the same variation patterns with respect to the 

incident angle but in the opposite phases.  

 
 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Wave energy ratio with respect to incident angle (𝜃) and bonding parameter (Ψ) in layered media, (a) P1, 

(b) P2, (c) P3, (d) SV, (e) total energy ration and (f) interaction energy ratios  

Also based on the figure 6 (e), we can see that 

most of the energy dissipation belongs to Ψ = 0.1 

and the higher or lower than we go towards the 

smooth and welded contact i.e., Ψ = 0 and Ψ =
1, where the amount of energy dissipation 

decreases, until at the limiting values of the 

bonding parameter no dissipation occurs and the 

total energy ratio equals unity. This final figure 

shows how introducing the notion of slip at the 

interface into the model can affect the total energy 

dissipation.   

Finally, Due to the classic definition of the critical 

angle used in waveform tomography, there should 

be an incident angle at which no refraction occurs. 

Whereas, based on figures 4, 5 and 6 it can be 

observed that no such angle exists. This along 
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with the fact that equating the energy ratio of the 

refracted matrix in equation (46) to zero, does not 

give a solution for the incident angle proves that 

no critical angle exists at the layer of the two 

viscoelastic media investigated in this study. In 

the continuation of this research, regarding the 

significant advancement in investigating 

phenomena on a micro-scale [44-46], the wave 

propagation equations can be studied at nano and 

micro scales. 

4. Conclusions 

• In the present study, an analytical model is 

developed capable of predicting broadband 

wave behavior in layered unsaturated visco-

poroelastic media. Using the concept of the 

Helmholtz decomposition of a vector field and 

by transforming the uncoupled system of partial 

differential equations governing wave motion 

from the time-space domain to the wavenumber-

frequency domain, dispersion relations were 

obtained for the compressional and shear waves 

that consider the tortuosity in the pore-space of 

the unsaturated medium and hence unlike 

similar models can account for the inertial 

coupling effects. These dispersion relations 

show that in an unsaturated three phase porous 

medium 4 wave modes can propagate, where 

three of them are of compressional modes and 

one is the shear mode.  

• The other important issue considered in this 

study is the use of inhomogeneous waves and 

the loose boundary condition to model wave 

behavior at the interface of the two porous 

media. It was shown that through the bonding 

parameter, we can account for the slip that 

occurs at the interface and the subsequent 

energy loss that follows such a phenomenon. 

This along with the fact that the surface pore 

connection was seen in the boundary 

connections, allowed us to propose a more 

realistic mathematical view of the actual field 

condition that exists at the interface of the two 

porous media. 

• We have carried out sensitivity analyses on 

wave velocity and energy ratios of the 

propagating waves and have shown that the P1 

and the shear waves are not much affected by 

variations in frequency and the degree of water 

saturation, whereas the P2 and particularly the 

P3 waves are hugely influenced by such 

variations. This can explain from a 

mathematical point of view how increasing 

frequency or saturation degree can affect 

different wave modes and the maximum 

amplitude drop in waveforms with respect to 

offset from the source as seen in actual field 

seismograms. 

• The other important result that can be obtained 

from this study is the invariability in the trend of 

the P1-wave energy ratio variations with respect 

to the incident P1 wave when the rest of the 

parameters were altered. This shows that energy 

partitioning at the interface of soil layers or 

inhomogeneities in the real media that leads to 

scattering is mostly dependent on ray incidence 

angle and not the physical source or medium 

parameters.  

• It was shown that for the incident P1 wave, most 

of the energy is partitioned to the reflected and 

refracted P1 waves, and the other waves take 

only a trivial amount of the incident wave 

energy. From this, it can be deduced that the 

scattering phenomena in real media which 

account for part of the wave energy attenuation 

can mostly be attributed to reflection and 

refraction of the same wave mode at 

inhomogeneities inside the medium and to a less 

extent to mode conversion.  

• Finally, it was mentioned that no solution exists 

for the case of total reflection and hence it can 

be concluded that no critical angle exists for the 

unsaturated Visco-poroelastic media considered 

in this study. This can have implications in 

improving refraction tomography techniques in 

future studies. 
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Appendix A 
The other parameters used in (1)-(3) are defined as: 
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where the parameter 𝜙 is the porosity and the parameters 𝐾𝑤  and 𝐾𝑎 are defined as the bulk modulus of the 

wetting and the non-wetting pore fluid phases. 𝜂𝑤  and  𝜂𝑎   are the viscosity of the wetting pore fluid and 

the non-wetting pore fluid phases. 𝑘𝑤  and 𝑘𝑎 denote the effective permeability of the wetting and the non-

wetting pore fluid phases, 𝑚1
𝑠  , 𝑚2

𝑠  , 𝑚1
𝑤  and 𝑚2

𝑤  are defined as the volume change coefficient of the solid 

phase with respect to net normal stress, volume change coefficient of the solid phase with respect to matric 

suction, volume change coefficient of the wetting pore fluid phase with respect to net normal stress and the 

volume change coefficient of the wetting pore fluid phase with respect to the matric suction, respectively. 

Also, the volume change coefficients of the non-wetting phase are related to , ,
1 2 1
s s wm m m and 

2
wm  using the 

following  equations: 

1 1 1
a s wm m m= −                                          (A.24) 

 

2 2 2
a s wm m m= −                                         (A.25) 

Knowing the volume change coefficients for the solid phase 
2
sm  and 

1
sm , one can define the effective stress 

parameter   as: 

2 1
s sm m =                                                                    (A.26) 

The parameters of dispersion equation of compressional waves in equation Error! Reference source not 

found. are defined as: 

1 13 22 31 12 21 33 11 22 33
A a a a a a a a a a= − − +                                                                                            (A.27) 

( ) ( ) ( )

( )

2 2 2

2 11 33 11 22 13 21 23 31 22

2

12 23 31 21 33 22 33 22 31 21 33

A a a L a a N a a a a L a M
w a w a

a a a a N a W a a a a a a
a w

   

    

 
= − − + + − 

 

 
+ + − − + + 

 

                             (A.28) 

( ) ( ) ( )

( ) ( ) ( )

2 2 22 2
3 13 11 23 13 23 12 23 12 33

2 2 2

22 21 23 31 22 23 31 21 33

A a LM a a LN a a W a a M a NW a L
w a w a w a a w w

a N a a a L a M a a a N a W
a w a a w

         

           

 
= + − + + + + + 

 

+ − − + − − +

                                         (A.29) 

( ) ( )( )2
4 23 23

A a a W M L N M NW
w a w a w a a

            = − + − + +                                          (A.30) 

( ) ( ) ( )2 2 21 1 1
11

a ib ib
w w w a a a w a s
            = − + − − − + −                                          (A.31) 

( ) 21
12 21

a a ib
w w w w
    = = − − +                                          (A.32) 

( ) 21
13 31

a a ib
a a a a
    = = − − +                                          

 
(A.33) 

( ) 2 21
22

a ib
w w w w w w
       = − − +                                          (A.34) 

23 32
a a C

w a
 = = −                                          (A.35) 

( ) 2 21
33

a ib
a a a a a a
       = − − +                                          (A.36) 
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The parameters of dispersion equation of shear waves are as below: 

( ) ( ) ( )2 2 21 1 1
11

b ib ib
w w w a a a w a s
            = − + − − − + −                                          (A.37) 

( ) 21
12 21

b b ib
w w w w
    = = − − +                                          (A.38) 

( ) 21
13 31

b b ib
a a a a
    = = − − +                         (A.39) 

( ) 2 21
22

b ib S
w w w w w w w
       = − − +                                          (A.40) 

( ) 2 21
33

b ib
a a a a a a
       = − − +                                          (A.41) 

 
Appendix B  
Coefficients of system of equation (35) : 

( )

( )

2 2(( ( )) 2 ) (( ( )
1

( )) ); 1,2,3

u u u u u u u u u u u u u u u u u uu uH C N C N G H d k C LC Li w i i a i w i a pi w i

u u u u u u u u u uC N C N H i
i a i w i a

     

   

=  − − −  −  − − + − −

− − −  −  − =

                                         (B.1) 

2
14

u uH G d k
s

= −                                          (B.2) 

( )
( )

( )

2 2(( ( )) 2 ) (( ( )
1 4

( )) ); 1,2,3

H C N C N G H d k C LC L
w i i a i w i a pi w ii

C N C N H i
i a i w i a

     

   

= −  + − +  +  + + − − −
+

− − −  −  − =

                                         (B.3) 

2
18

H Gd k
s

= −                                          (B.4) 

( ) 2 2(( ( )) 2 ) (( ( )
1 1 1 1 1 0 1

( )) );
1 1 1

u u u u u u u u u u u u u u u u u uu uq C N C N G H d k C LC Lw a w a p w

u u u u u u u u u uC N C N H
a w a

     

   

= −  + − +  +  + + − − −

− − −  −  −

                                         
(B.5) 

( )2 ; 1,2,3
2

u uH G d k i
i pi
= − =                                          (B.6) 

( )( )24
u u uH G d k d k

s s
= − +   (B.7) 

( )
( )2 ; 1,2,3

2 4
H Gd k i

pii
= − =

+
  (B.8) 

( )( )28
d k d kH G s s

− + +=  (B.9) 

2
2 0

u uq G d k
p

= −  (B.10) 

( ); 1,2,3
3

uH d i
i pi

= =                                  (B.11) 

34
H k=                                          

 
(B.12) 

( )
( ); 1,2,3

3 4
H d i

pii
= − =

+
                                         (B.13) 

38
H k= −                                          (B.14) 

3 0
uq d
p

=                                          (B.15) 
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( )( ) ( )1 1 ( (( 2 ) 2 ); 1,2,3
4

u u u uH k G d T G d i
i pi pi

=  − − +  + =                                          (B.16) 

( )( ) 2 21 1 (( )( 1) )
44

u u uH k d G Td
s s

=  − −  − −                                   (B.17) 

( )
( )( ) ( )1 1 ( ) 1,2,3

4 4
H Tk i

i
= −  =

+
                                         (B.18) 

( )( )1 1 ( )
48

H Td
s
= −                                           (B.19) 

( )( )1 1 (2 ( 1) )
4 0

u uq G d T k
p

= −  − +                                          (B.20) 

( )( )

( )

2 21 1 ((( )( ) ( 1) )
5 1

2 2( )( )); 1,2,3

u u u u u u u u u uH Z C L W d k d Z
i i a i w pi i p

u u u u u u u uk d C L W i
pi i a i w

  

 

= −  + − + +  −

− +  + − =

                                         (B.21) 

( )( )1 1 ( ( 1))
54 1

uH Z Zk J= − −                                          (B.22) 

( )
( )2 2( )( ); 1,2,3

5 4
H d k C L W i

pi i a i wi
 = − +  + − =

+
                                         (B.23) 

0
58

H =                                          (B.24) 

( )( ) 2 2 21 1 ((( )( ) ( 1) ) ( )( ))
5 1 1 0 1 0 0 1 1

u u u u u u u u u u u u u u u u u uq Z C L W k d d Z k d C L W
a w p p p a w
    = − −  − + + +  − + +  + −                                          (B.25) 

( )( )

( )

2 21 1 ((( )( ) ( 1) )
6

2 2( )( )); 1,2,3
1 1

u u u u u u uH Z C N M d k d Z
i i w i pi i ai

u u u u u uk d C N M i
pi w a

 

 

= −  +  − + +  −

− +  +  − =

                                         (B.26) 

( )( )1 1 ( ( 1))
64 2

uH Z Zk J= − −                                          (B.27) 

( )
( )2 2( )( ); 1,2,3

6 4
H d k C N M i

pi i w i ai
 = − +  +  − =

+
                                         (B.28) 

0
68

H =                                          (B.29) 

( )( ) 2 21 1 ((( ) ( 1) ( ))
6 1 1 0 1 0 1 1

2 2( )( ))
0 1 1

u u u u u u u u u u u u uq Z C N M d d k C N M Z
w a p p w a

u u u u uk d C N M
p a

    



= − −  −  + +  − −  +  −

+ +  +  −

                                         (B.30) 

( )( 1); 1,2,3
7

u uH d i
i pi i

= −  − =                                          (B.31) 

( 1)
74 2

uH k J= − −                                          (B.32) 

( ) ( ) ( )1 ; 1,2,3
7 4

H d iipii
  −= =

+
                                         (B.33) 

( )1
278

JH k −=                                          

 
(B.34) 

( 1)
7 0 1

u uq d
p
= −  −                                          (B.35) 

( )( 1); 1,2,3
8

u uH d i
i pi i

= −  − =                                          (B.36) 
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( 1)
84 1

uH k J= − −                                          (B.37) 

( )
( )( 1); 1,2,3

8 4
H d i

pi ii
=  − =

+
                                         (B.38) 

( 1)
88 1

H k J= −                                          (B.39) 

( 1)
8 0 1

u uq d
p
= −  −                                          

 

(B.40) 

Appendix C 
Energy flux relations of reflected and refracted waves: 

2 2 2 2( )( ( ( ) ( ( 1)) )
00 0 1 1 1 1

((( 1) ) ) 2 )
1 0

u u u u u u u u u u u u u u u u u uP k d L C C L W N
p w a w w a

u u u u u u u u uC N M G H M W d
a p

      

   

= +  + +  + − + − −  + 

+ − − −  + + + +

                                         
(C.1) 

( )

2 2((( ( ( ) ( ( 1)) ) ((( 1) ) )
01 1 1 1 1 1

2 2 222 ) ( ( 1)) )( (
0 1 1 11

((( 1) ) )
1

u u u u u u u u u u u u u u u u u u u u u uP L C C L W N C N M
w a w w a a

u u u u u u u u u u u u uu u u u u uG H M W d k C L W NL C
p w aw a w

u u u u uC N M
a

          

     

  

= −  + +  + − + − −  +  + − − −

+ + + + +  + − + − −  +  + +

+ − − −  2)) 2 )
1 0 1

u u u u uH M W d G k d R
p p

+ + + −

                                         
(C.2) 

2((( (( ) ( 1)) (( 1) ( )) 2 )
0 1 1 0

2( (( ) ( 1)) (( 1) ( )) )
1 1

22
0

u u u u u u u u u u u u u u u u u u u u u u uP C L C N M W G H M W d
i w i i i i a i i p

u u u u u u u u u u u u u u u u u u u u uC L C N M W H M W k d
w i i i i a i i pi

u uG k d
p

     

     

= −  − + + −  + + − +  − −  − + + + +

+  − + + −  + + − +  − −  − + + +

− ( )) ; 2,3R i
i

 =

                                         

(C.3) 

2(( (( ) ( 1)) (( 1) ( )) 2 )
04 2 1 1 1 1 2 1 2 0

22 ( (( ) ( 1)) (( 1)
0 2 1 1 1 1

( )) ))
2 1 2

u u u u u u u u u u u u u u u u u u u u u u uP J C L J J C N J J W J M G H M W d
w a p

u u u u u u u u u u u u u u uG d d k J C L J J C
s p w

u u u u u u u uN J J W J M H M W
a

     

   

 

= − − + + −  + + − + − − − + + + +

+ + − + + −  + + −

+ − − − + + +

                                         
(C.4) 

( )

2 2((( ( ( ) ( ( 1)) ) ((( 1) ) )
10 1 1 1 1 1

2 2 222 ) ( ( 1)) )( (
1 1 1 11

((( 1) ) )
1

u u u u u u u u u u u u u u u u u u u u u uP L C C L W N C N M
w a w w a a

u u u u u u u u u u u u uu u u u u uG H M W d k C L W NL C
p w aw a w

u u u u uC N M
a

          

     

  

=  + +  + − + − −  +  + − − −

+ + + + +  + − + − −  +  + +

+ − − −  + 2)) 2 )
0 1 1

u u u u uH M W d G k d R
p p

+ + −

                                         
(C.5) 

2 2 2 2( )( ( ( ) ( ( 1)) )
11 1 1 1 1 1

2((( 1) ) ) 2 )
1 1 1

u u u u u u u u u u u u u u u u u uP k d L C C L W N
p w a w w a

u u u u u u u u uC N M G H M W d R
a p

      

   

= − +  + +  + − + − −  + 

+ − − −  + + + +

                                         
(C.6) 

((( (( ) ( 1)) (( 1) ( ))
1 1 1

2 22 ) ((( ) ( 1))
1 1

2 2(( 1) ( )) ) 2
1 2 2

u u u u u u u u u u u u u u u uP C L C N
i i i w i i a

u u u u u u u u u u u u u u uM W G H M W d k C L
i i p i i w

u u u u u u u u u u u u u uC N M W H M W k d G k d
i i a pi p

     

  

  

= −  − + + −  − + − +  − 

+  + − − − − +  − + + − 

− + − +  − +  + − − − − ( )) ; 2,3
1 1

u R R i
i

 =

                                         

 

(C.7) 

(( (( ) ( 1)) (( 1)
14 2 1 1 1 1

2( )) 2 ) 2
2 1 2 1 1

( (( ) ( 1)) (( 1) ( )) )) R
2 1 1 1 2 1 1 2 1 4

u u u u u u u u u u u u uP J C L J J C
w

u u u u u u u u u u u u uN J J W J M G H M W d G d d
a s p

u u u u u u u u u u u u u u u u u u u uJ C L J J C N J J W J M H M W R
w a

   

 


     

= − − + + −  + + −

+ − + + − − − − +

+ − − + + −  − + − + −  + + − − − k

                                         
(C.8) 
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((( (( ) ( 1))
20 1 1 2

2(( 1) ( )) 2 )
2 1 1 1 1 2

2k(( ) ( 1)) ((( 1) ( ))
2 1 1 2 1 1 2

)) 2
1 1 0

u u u u u u u u uP C L
w

u u u u u u u u u u u u u uC N M W G H M W d
a p

u u u u u u u u u u u u u u u uC L d k C N
w a a

u u u u u u uM W H M W d G k
p

  

  

     

=  − + + − 

+ + − +  − −  − + + + +

+  − + + − + +  − +  − 

−  − + + + − 2 )
2 2

ud R
p



                                         
(C.9) 

((( (( ) ( 1)) (( 1) ( ))
2 2 2

22 ) k(( ) ( 1))
2 2 2

2(( ( 1) ( )) ) )

2

u u u u u u u u u u u u u u u uP C L C N
i i i w i i a

u u u u u u u u u u u u u u u uM W G H M W d C L d
i i p i i w a

u u u u u u u u u u u u uC N M W H M W k d
i i i a i i pi

G

     

  

  

= −  − + + −  + + − +  −

+  + − − − − −  − + + −

+ − + − +  −  +  + − − −

− ( )2 ) ; 1,3
2 2

u uk d R R i
p i

 =

                                         
(C.10) 

2 2( ( ( ) ( ( 1)) )
22 2 2 2 2 2

2((( 1) ) ) 2 )
2 2

2( ( 1)) (( )
2 2 2 2 2 2 2

((( 1) )

u u u u u u u u u u u u u u u u u uP d L C C L W N
a w a w w a

u u u u u u u u uC N M G H M W d
a p

u u u u u u u u u u u u u u u u u uL C C L k d C W N
w p a a

u u u uC N
a

      

  

      

  

= −  + +  + − + − −  + 

+ − − −  + + + +

+  + − + −  + −  + 

+ − − 2 2) 2 ) )
2 2
u u u uM G H M W k R − + + + +

                                         
(C.11) 

2(( (( ) ( 1)) (( 1) ( )) 2 )
24 2 1 2 2 1 2 1 2 2

( (( ) ( 1)) 2 )
2 1 2 2

( (( 1) ( )) ) k
1 2 1 1 2

u u u u u u u u u u u u u u u u u u u u u u uP J C L J J C N J J W J M G H M W d
w a p

u u u u u u u u u u uJ C L J k d G d
w s a

u u u u u u u u u u u uJ C N J J W J M H M W
a

     

  

  

= − − + + −  + + − + − + + − − − −

+ − − + + −  +

+ − + − + −  + + − − − 2)
2 4

R R k

                                         
(C.12) 

((( (( ) ( 1)) (( 1)
30 1 1 3 3 1

2( )) 2 ) ((( ) ( 1))
1 1 1 3 1 1 3

2 2(( 1) ( )) ) k ) 2
1 1 3 1 1 0 3

u u u u u u u u u u u u uP C L C
w

u u u u u u u u u u u u u u u u u uN M W G H M W d C L
a p w

u u u u u u u u u u u u u u uC N M W H M W d G k d
a p p

   

    

  

=  − + + −  + + −

+  − −  − + + + + +  − + + − 

+ + − +  −  −  − + + + − )
3

R

                                         
(C.13) 

((( (( ) ( 1)) (( 1)
3 3

2( )) 2 ) ( (( ) ( 1)) (( 1) ( ))
3 3 3 3

2 2) ) 2

u u u u u u u u u u u uP C L C
i i i w i

u u u u u u u u u u u u u u u u u u u u u u u u u uN M W G H M W d C L d C N
i a i i p i i w a i i a

u u u u u u uM W H M W k d G k d
i i pi
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