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Abstract

Background: Hyperlipidemia and low antioxidant levels is one the diabetes side effects. Some studies have indicated the possible
effects of nutrients on the improvement of hyperlipidemia, by their antioxidants ingredients.
Objectives: The aim of the present study was to evaluate the effect of the synthetic antioxidant, tempol, on blood lipid profiles and
glucose levels in healthy and diabetic rats.
Materials andMethods: Adult Wistar rats were randomly divided to four experimental groups including, healthy control, diabetic
control, diabetic receiving tempol and healthy receiving tempol groups. Diabetes was induced by injection of streptozotocin (60
mg/kg, Intraperitoneally (IP)). The rats were then fed saline or tempol (30 mg/kg) by gavage for 60 days. Blood samples were col-
lected by cardiac puncture. Next, glucose, high-density lipoprotein (HDL), low-density lipoprotein (LDL), very low-density lipopro-
tein (VLDL), cholesterol, triglyceride and HbA1c were measured by specific kits. Also, the coronary risk index was calculated.
Results: The blood glucose level increased following diabetes induction. The level of blood glucose in the diabetic receiving tempol
group decreased compared to the control diabetic group. The comparison of LDL, VLDL, cholesterol, triglyceride, HbA1c and coro-
nary risk index among experimental groups indicated the increase of these factors in the diabetic group. High-density lipoprotein
in the diabetic groups was lower than the other groups.
Conclusions: It can be concluded that tempol can improve dyslipidemia and may decrease hyperglycemia in diabetes. It seems
that antioxidants such as tempol can improve dyslipidemia and may decrease hyperglycemia in diabetes.
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1. Background

Diabetes mellitus is a major public health problem
throughout the world, and is the leading cause of global
mortality (1). Diabetic disease is characterized by hyper-
glycemia, which is the accumulation of free glucose in the
blood. Hyperglycemia induces oxidative stress via glucose
autoxidation and leads to generation of free radicals due to
autoxidation of glucose and glycosylation of proteins (2-4)
and has an important role in the development of diabetic
complications (5-7). Diabetes is likely to increase the risk of
developing various metabolic disorders, including hyper-
lipidemia, liver-kidney dysfunctions, and hypertension (8).

On the other hand, hyperlipidemia has been observed
in diabetic patients (9-11) and experimental diabetic ani-
mal models (12-14). Triglyceride levels are enhanced under
diabetic conditions (5-7). In experimental models of dia-
betes, high glucose induced oxidative stress (15), increases
in oxidative stress related to lipid, and inhibition of the

synthesis of endogenous antioxidants (16, 17). Oxidative
stress and triglyceride levels are enhanced in patients with
diabetes (2).

In cure of diabetes it is important to prevent dia-
betes complications. The current evidence suggests that
supplementation of antioxidant compounds may protect
against diabetic complications (15, 18-21). There are ev-
idences about the protection effect of antioxidant com-
pounds against diabetic problems (15, 18-23).

Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-
oxyl) is a member of a family of nitroxide compounds that
is an efficient scavenger of free radicals (24) and improves
insulin responsiveness and dyslipidemia in models of
diabetes mellitus (25). The anti-inflammatory, neuro-
protective effects of tempol have been shown previously
(26-30). Furthermore, it is an efficient scavenger of free
radicals and improves diabetes-associated dyslipidemia
(25) and cardiac fibrosis in rats (31).
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2. Objectives

There is no direct study on the efficient activity of tem-
pol on hyperlipidemia in diabetes. Therefore, this study
aimed to test the hypothesis that chronic oral administra-
tion of tempol could ameliorate hyperlipidemia in a dia-
betes rat model.

3. Materials andMethods

3.1. Animals

Forty Wistar rats, weighting 200 - 300 g, were sup-
plied by the breeding colony of the Iran Pasteur institute,
Tehran. They were maintained at 20 ± 2°C on a 12-hour
light/dark cycle (lights on 07:00 am). Water and food were
available ad libitum. All rats were acclimatized to the envi-
ronment for one week prior to initiation of testing. All pro-
cedures for the treatment of animals were approved by the
research committee of the Hamadan university of medical
sciences.

3.2. Induction of Diabetes and Treatment

The animals were divided to the following groups; con-
trol (C), diabetic (D), diabetic tempol treatment (D + T), and
control group receiving tempol (C + T). The model of type
I diabetes was induced by a single dose of intraperitoneal
(IP) injection of 60 mg/kg of streptozotocin (32-34). The
control rats received IP injections of physiological saline.
Blood samples were taken from the tail vein, and glucose
levels were determined using a strip-operated blood glu-
cose sensor (Accuchek; Roche, Mannheim, Germany). One
week after streptozotocin injection, the rats with blood
glucose levels exceeding 250 mg/dL were considered dia-
betic. Tempol (30 mg/kg; Sigma) was administered to D + T
and C + T groups by the gavage process, every day for two
months. The control and non-treated diabetes groups re-
ceived physiological saline with the same volume.

At the end of the treatment period, the rats were anaes-
thetized with ketamine (100 mg/kg) and blood samples
were collected by cardiac puncture. Next, glucose, high-
density lipoprotein (HDL), low-density lipoprotein (LDL),
cholesterol and triglyceride were measured by their spe-
cific kits (Biolabo, France). The HbA1c was assessed by its
specific kit (Bionik, Iran) and the turbidimetry method.
The concentration of very low density-lipoprotein (VLDL)
was calculated as TG/5. Also, the coronary risk index was
calculated (34-36).

3.3. Statistical Analysis

One-way analysis of variance (ANOVA) was used to de-
termine the statistical significant differences between ex-
perimental groups, which were followed by Tukey’s post
hoc test. P values of <0.05 were considered statistically sig-
nificant. All data were represented as mean ± standard er-
ror of the mean (SEM).

4. Results

Figure 1 shows the glucose levels of rat groups, after di-
abetes induction. One-way ANOVA proved that there were
significant differences between the groups after induction
of diabetes (P < 0.01). Tukey’s post hoc test revealed that
blood glucose levels of diabetic induction groups were sig-
nificantly higher than non-diabetic groups (Figure 1A, P <
0.01). Moreover, one-way ANOVA showed that there were
significant differences among the experimental groups of
rats after tempol treatment. Tukey’s post hoc test revealed
that tempol-treated rats had a significant decrease in their
plasma glucose compared to untreated diabetic rats at the
end of the experiment (Figure 1B, P < 0.01).

Figure 2 shows the LDL, VLDL, cholesterol and triglyc-
eride levels in plasma. One-way ANOVA demonstrated that
there is a significant difference between the groups in the
level of LDL, VLDL, cholesterol and triglyceride in serum
plasma. There was a significant increase in the level of LDL
in plasma of non-treated diabetic rats in comparison with
other groups (P < 0.05; Figure 2A). Also, non-treated dia-
betic rats had a significant increase in their plasma levels
of LDL, VLDL, cholesterol and triglyceride in comparison
with other groups (P < 0.01; Figure 2B - D, respectively). The
diabetic rats that received tempol exhibited significantly
lower LDL, VLDL, cholesterol and triglyceride compared to
the non-treated diabetic group.

Figure 3 shows the HDL level in plasma of the rat
groups. One-way ANOVA suggested that there was a signif-
icant difference between the groups. The level of plasma
HDL in non-treated diabetic rats was significantly lower
than other experimental groups (P < 0.01).

Figure 4 illustrates the Hb A1c and coronary risk factor
in the experimental groups. One-way ANOVA approves that
there was a significant difference between the groups (P <
0.05). Tukey’s post hoc test revealed that Hb A1c and the
coronary risk factor in the streptozotocin (STZ)-receiving
rats were significantly higher than non-diabetic groups (P
< 0.01; Figure 4A and B, respectively). The STZ-induced di-
abetic rats were administrated tempol and showed lower
Hb A1c and coronary risk factor when compared to the non-
treated diabetic rats (P < 0.05).
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Figure 1. Blood Glucose Levels in Experimental Groups
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A, Blood glucose levels after induction of diabetes; B, Blood glucose levels after in-
duction of diabetes at the end of the study. C, control group; C + T, control group
receiving tempol; D, diabetic group; D + T, diabetic group that received tempol. ** : (P
< 0.01) as compared with the control. ** : (P < 0.01), ##: (P < 0.01) and $$: (P < 0.01)
as compared with the control, control group receiving tempol or diabetic group,
respectively. The values represent means ± standard error of the mean (SEM) (n =
10 per group). Each symbol on a column compares the mentioned group with the
specified group.

5. Discussion

The present findings demonstrated that administra-
tion of tempol for 60 days, improved the blood lipid pro-
files and hyperglycemia in diabetic rats.

Tempol treated diabetic rats had lower glucose and
percentage of HbA1C levels than the diabetic rats. The
HbA1c is evaluated in long-term control of diabetes. Gly-
cated hemoglobin reflects the previous two to three
months of glycemic control (37). These results confirm pre-
vious studies that tempol has hypoglycemic properties (25,
38, 39). Our results are similar to a previous study that
demonstrated oral tempol treatment of diabetic mice dur-
ing eight weeks, reduced plasma glucose (40). Ten weeks
of oral tempol administration to rats, that were fed high
fat diets, decreased plasma glucose (41), and improved in-
sulin sensitivity in obese diabetic rats (42). Reactive oxygen
species (ROS) are involved in many of the complications of

diabetes (43, 44), and generation of ROS is prevented with
tempol in pancreatic islet cells (45) and in diabetic mice
(40).

Tempol acts by several mechanisms such as by alle-
viation effects on insulin resistance (46), enhancing in-
sulin secretion from rat cultured pancreatic islet cells (38),
and increasing the membrane abundance of the glucose
transporter-1 and enhanced glucose uptake (47). Oxygen-
derived free radicals are easily produced in diabetic disease
and have important roles in the development of diabetic
complications (5-8, 44, 48). Tempol is a superoxide dismu-
tase mimetic and efficient scavenger of free radicals (49).

In diabetes, alleviated blood lipid profile is due to in-
creased absorption of cholesterol from the intestine by
a carrier of cholesterol acetyltransferase (50, 51). Plasma
cholesterol, triglycerides are raised and hyperlipidemia is
distinguishable in diabetes (16, 17). Lack of insulin raises
free fatty acid mobilization from adipose tissue, which is
followed by production of cholesterol rich LDL particles
and dyslipidemia (16, 52). On the other hand, production
of oxygen free radicals increases in hypercholesterolemia
(53).

Antioxidants are a normal defense mechanism of the
cell and are involved in the termination of the lipid peroxi-
dation process (4). Tempol decrease VLDL and total choles-
terol and increase HDL (40, 54). Antioxidants protected
the polyunsaturated fatty acids (a major component of cell
membranes) from oxygen free radical attack in diabetes
(55) and end the peroxidation events (4).

Another finding of the present study demonstrated
that tempol has advantages for coronary risk factor. In-
creased reactive oxygen species cause oxidative myocar-
dial injury and diabetic cardiomyopathy (56, 57). Evi-
dence has demonstrated specific cardiomyopathy associ-
ated with diabetes such as cardiomyopathy, cardiac dys-
function and cardiovascular disease in humans and rats
(58-61). The beneficial effect of tempol was shown on blood
pressure (62), cardiac fibrosis (63) and amelioration car-
diac dysfunction in diabetic rats (31). The potential antiox-
idant role of tempol was shown in decreasing reactive oxy-
gen species and amelioration of cardiac dysfunction (31).

In conclusion, this study confirmed that tempol im-
proved blood lipid profiles, hyperglycemia and coronary
risk factor in the diabetic rats. It could prevent the devel-
opment of diabetic complications. In order to more pre-
cisely determine the mechanism of the present findings,
measurement of oxidative stress indexes is recommended
for the future studies.

Avicenna J Med Biochem. 2016; 4(1):e31043. 3

Archive of SID

www.SID.ir

http://avicennajb.com/
http://www.sid.ir


Shahidi S et al.

Figure 2. The Lipid Profile in Experimental Groups
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Effect of 60 days of treatment on A, LDL level in serum; B, VLDL level in serum; C, cholesterol level in serum; D, Triglyceride level in serum. Groups are C (control group), C +
T (control group thar recieved temporal), D (diabetic group), D + T (diabetic group that recieved temporal). Groups are C (control group), C + T (control group thar recieved
temporal), D (diabetic group),D + T(diabetic group that recieved temporal). * : (P < 0.05), and ** : (P < 0.01) as compared with non-treated diabetic group. The values represent
the mean ± SEM (n = 10 per group).

Figure 3. High-Density Lipoprotein Levels at the End of the Study
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pared with non-treated diabetic group. The values represent mean ± SEM (n = 10
per group).
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Figure 4. HbA1c and Coronary Risk Index in the Experimental Groups
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