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Dear Editor,
Inhibitors of the DNA damage response (DDR) offer

an exciting opportunity to identify targeted cancer ther-
apies (1). In addition to enhancing the effectiveness of
DNA-damaging chemotherapies and ionizing radiation
(IR) treatment, DDR inhibitors have potentials for single-
agent activity in specific tumor genetic backgrounds based
on the principle of synthetic lethality (2). This was first
represented by inhibitors of poly (ADPribose) polymerase
(PARP) in BRCA mutated gynecological related cancers (3,
4).

Synthetic lethality is a relatively pervasive characteris-
tic of cancers that harbors genomic instability. In some
cases, tumor cell defects in the repair of damaged DNA con-
tribute to this phenotype. Defects that drive genomic in-
stability also impart vulnerabilities that may make tumor
cells sensitive to particular DNA synthesis targeting drugs
(5). The idea of exploiting synthetic lethality to target can-
cer was first highlighted by Hartwell and colleagues (6)
and Kaelin (2). The synthetic lethal principle provided a
conceptual basis for targeting tumors with a known tumor
suppressor defect: If genes and proteins could be identi-
fied that were synthetically lethal with specific tumor sup-
pressor gene defects, then in principle, targets could be
identified that would likely elicit tumor-cell-specific death
without deleterious effects on normal cells, which do not
harbor tumor suppressor gene loss.

Hypothesis-driven studies revealed that loss of func-
tion of BRCA1 or BRCA2 results in an exquisite sensitiv-
ity to chemical inhibition of the poly(ADP-ribose) poly-
merase, particularly (PARP)-1 (2, 7). The logic for this syn-
thetic lethal interactions stems from the fact that BRCA1
and BRCA2 are tumor suppressor genes that are involved
in homologous recombination (HR) DNA repair of DNA

double-strand breaks (DSBs) (8). These proteins alongside
Phosphatase and tensin homolog (PTEN) encoded by PTEN
gene are among the main accessory proteins that control
DNA repair and sensitivity to genotoxic stress. PTEN is fre-
quently found to be mutated, deleted, or epigenetically si-
lenced. Recent findings have demonstrated that PTEN also
plays a critical role in DNA damage repair and DNA damage
response (9). These DSBs, which are repaired by HR in BRCA
positive cells, are presumed to accumulate in PTEN, BRCA1-
or BRCA2- deficient cells, leading to subsequent cell death.
Increased sensitivity to PARP inhibition has also been ob-
served in cells with other genetic lesions that affect HR, in-
cluding phosphatase and tensin homolog (PTEN) loss (10),
ataxia telangiectasia mutated (ATM) deficiency (11, 12), and
Aurora A overexpression (13).

Among the DNA repair mechanisms, HR is the mainly
error free, whereas the other mechanisms of DSB repairs
(i.e., nonhomologous end joining (NHEJ) and single-strand
annealing (SSA)) are almost error-prone and may endan-
ger genomic stability. PARP1, a DNA repair enzyme, is re-
sponsible for the base excision repair of DNA single-strand
breaks (14). PARP1 is an abundant nuclear enzyme that syn-
thesizes poly (ADP-ribose) polymer when activated by DNA
nicks or breaks. Activation of PARP1 has important effects
on a variety of cellular processes, including base excision
repair (BER), double-strand breaks (DSB) and other repair
mechanisms (15). The role of PARP1 in the DNA damage re-
sponse gained many interests in the development of PARP
inhibitors as potential chemosensitizers for the treatment
of cancers (16).

The mechanism for the single-agent activity of PARP
inhibitors has been linked to the role of this crucial en-
zyme in the repair of DNA single-strand (SSBs) and DSBs
(17-19). The majority of DSBs in cancer cells DNA would be
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repaired by the homologous recombination repair (HRR)
pathway (20), in which BRCA1 and BRCA2 genes play cru-
cial roles (21). Tumors with HRR-defective backgrounds
(e.g. because of BRCA or PTEN deficiency) will benefit error-
prone DNA repair pathways (22), leading to extensive ge-
nomic instability and succeeding cell death in tumor cells.
Studies also showed PARP1 is implicated in the modulation
of some nuclear processes, including NHEJ (23). In addi-
tion, there is a hypothesis that the simultaneous loss of
HR and PARP1 could result in NHEJ pathway blockage. Con-
sequently, PARP inhibition in HR-deficient cells might in-
crease the genomic instability resulting from this error-
prone pathway.

A number of PARP inhibitors have been reported to
have synthetic lethal activity in BRCA-deficient patients.
These include BMN 673 (Biomarin) (24), niraparib (25), ru-
caparib (26), veliparib (27), and AZD2461 (28). In addi-
tion, the efficacy of some PARP inhibitors has been identi-
fied in non-BRCA-mutation-linked cancers, including spo-
radic castration-resistant prostate cancer and non-small-
cell lung cancer. Given that up to 80% of endometrial can-
cers and 50% of prostate cancers lack PTEN expression, we
suggest that PARP inhibitors may be therapeutically useful
for a subset of other cancers.
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