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Objective(s): The present work deals with the preparation of nanobioconjugates 
based on the immobilization of cytochrome c (cyt c) on functionalized multi-
wall carbon nanotubes (f-MWCNTs). The effect of the nanosupport and the 
immobilization procedure on the biochemical and structural characteristics of 
the immobilized protein was investigated.
Methods: The MWCNTs were functionalized to provide alkyl chains with different 
length and terminal functional groups on their surface. The immobilization of cyt 
c was achieved through physical adsorption and covalent binding. Cyt-c-based 
nanoconjugates were characterized in terms of peroxidase activity and stability 
of protein, while UV-visible spectroscopy was used to investigate the structural 
characteristics of the immobilized protein.
Results: The loading of cyt c on f-MWCNTs was effectively achieved, with 
immobilization yields reaching up to 77%. The peroxidase activity of cyt c was 
higher in the case of non covalent immobilization compared to that of covalent 
procedure. Immobilized cyt c exhibited higher thermal stability than the native 
protein after 24 h incubation at 40oC, while it preserved up to 100% of its initial 
activity after incubation in the presence of a denaturing agent such as H2O2. No 
significant changes in the heme microenvironment of cyt c were observed in the 
presence of f-MWCNTs.
Conclusions: This study has demonstrated that f-MWCNTs are effective supports 
for the immobilization of cyt c, providing a universally applicable platform for the 
development of bionanoconjugates with potential use in a wide variety of fields 
in nanobiocatalysis, biosensing and nanomedicine.
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INTRODUCTION
Nanomedicine, a rapidly growing research field 

of medicine that applies tools of nanotechnology, 
involves the use of nanoscale materials for 
diagnosis, delivery and sensing [1]. Carbon-based 
nanomaterials have a great potential for biological 
and nanomedicine applications due to their surface 
characteristics and good biocompatibility [2,3]. 
Among these nanomaterials, carbon nanotubes 
(CNTs) have been widely used in pharmacy and 

medicine due to their high surface area that facilitates 
the conjugation with a variety of therapeutic and 
diagnostic agents, such as genes, antibodies, drugs 
and proteins [4]. CNTs are allotropes of carbon, 
synthesized in cylindrical tubes with nanometer 
scale in diameter and several millimeters in length. 
They exhibit excellent mechanical, structural and 
electrical properties which render from their small 
size [5]. These characteristics, along with their high 
surface area, make them potential vehicles for drug 
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delivery into cells directly, as well as excellent supports 
for the loading of other biomolecules with biological 
function in cells, such as proteins and enzymes [4].

Cytochrome c (cyt c) is a small globule heme 
protein (~ 12000 Da) found in the inner membrane 
of mitochondria. It belongs to the cytochrome family 
containing heme c and participates in electron 
transport chain, where it carries electrons from 
cytochrome c reductase (complex III) to cytochrome 
c oxidase (complex IV) [6]. Moreover, cyt c is a key 
protein to the initialization of cell apoptosis, as well as 
a radical scavenger that removes unpaired electrons 
from superoxide, and thus regenerating molecular 
oxygen [7]. The structure, simplicity and availability 
of this redox protein make it an ideal model for 
understanding the physical electron transfer of 
proteins, as well as the conformational transitions in 
an atomic level. Cyt c is among the best characterized 
proteins due to its spectroscopic characteristics, 
and presents high peroxidase activity in vitro. These 
characteristics make cyt c an ideal protein for an 
extensive use in nanomedicine and biocatalysis, 
providing a better understanding of the molecular 
mechanisms in vivo [8]. Many research groups have 
investigated the biochemical properties of cyt c, as 
well as its interactions with various physical and 
chemical molecules which could lead to functional 
and structural changes of the protein [9,10]. Moreover, 
the conjugation of cyt c with biological molecules or 
synthesized supports, such as nanomaterials, offers 
the possibility to tailor the catalytic characteristics of 
the protein [11,12].

In the present study, cyt c from equine heart has 
been immobilized on functionalized multi-wall 
carbon nanotubes (f-MWCNTs). The aim of this work 
has been to investigate the use of these nanomaterials 
as supports for the immobilization of a key protein 
in living cells. The effect of f-MWCNTs on the 
biochemical characteristics of cyt c, such as activity, 
stability and structure was studied. The results have 
shown that f-MWCNTs exhibit high ability to form 
stable conjugations with cyt c, protecting the protein 
from denaturating conditions, such as temperature 
and the presence of H2O2. The presence of these 
nanomaterials also maintains the conformational 
state of the heme pocket of cyt c.

MATERIALS AND METHODS
Materials 

Cytochrome c (cyt c) from equine heart was 
purchased from Sigma-Aldrich (>98%, St. Louis, 
MO) and used without further purification. 

Guaiacol (2-Methoxyphenol) was purchased 
from Sigma-Aldrich (St. Louis, MO). Hydrogen 
peroxide (30% w/v, H2O2) was obtained from 
Fluka. N-Hydroxysuccinimide (NHS), 1-ethyl-3-(3-
dimethylpropyl) carbodiimide (EDC) and HEPES 
were obtained from Sigma. Glutaraldehyde solution 
25% for electron Microscopy was purchased from 
Merck (KGaA Darmstadt, Germany). Multi-wall 
carbon nanotubes (95 % pure, MWCNTs) were 
purchased from Aldrich. All other solvents and 
reagents were of HPLC or analytical grade. 

Functionalization of MWCNTs
Functionalized MWCNTs were prepared after 

the oxidation of the nanomaterials according to 
previous works. [13,14]. Aminoundecanoic acid, 
hexamethylenediamine and dodecylamine were 
used for the addition of terminal carboxyl, amine 
and alkyl groups, respectively.

Non covalent immobilization of cyt c
In a typical procedure, 3 mg of f-MWCNTs were 

added in 5.7 mL of phosphate buffer (50 mM, pH 
7.0) and sonicated for 30min. Then 1 mL of cyt c 
in phosphate buffer solution (containing 3 mg of 
cyt c) was added and the mixture was incubated 
under stirring for 1 h at 30oC. The f-MWCNTs-cyt 
c conjugates were separated by centrifugation at 
6,000 rpm and washed three times with phosphate 
buffer solution to remove loosely bound protein. 
The immobilized cyt c was dried over silica gel and 
was stored at 4oC until used.

Covalent immobilization of cyt c using glutaraldehyde 
as cross-linker

3 mg of amine-functionalized MWCNTs were 
added in 5.7 mL of phosphate buffer (50 mM, pH 
7.0) and sonicated for 30 min, in the presence of 110 
μL Tween-20. After the dispersion of nanomaterials, 
1.76 mL of glutaraldehyde was added and the 
mixture was incubated under stirring for 1 h at 
30oC. The modified nanomaterials were separated 
by centrifugation at 6,000 rpm and washed three 
times with phosphate buffer solution to remove 
extra glutaraldehyde. Then 6 mL of phosphate buffer 
solution containing cyt c (3 mg of cyt c) were added 
and the mixture was treated as described for non 
covalent procedure. 

Covalent immobilization of cyt c via diimide-
activated amidation

3 mg of carboxyl-functionalized MWCNTs were 
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added in 5 mL HPLC water and sonicated for 30 
min. Then 1 mL of HEPES buffer solution (50 mM, 
pH 7.0) and 2.3 mL of a 50 mg ml-1 NHS aqueous 
solution were added to the above suspension and 
mixed. Under fast stirring, 1.2 mL of a 10 mg mL-1 
EDC aqueous solution were added quickly and 
the mixture was incubated for 30 min at 30oC. 
The activated nanomaterials were separated by 
centrifugation at 6,000 rpm and washed three times 
with HEPES buffer solution to remove extra EDC. 
The ester-nanomaterials were re-dispersed in 9 mL 
HEPES buffer solution for 30 min. Then, 1 mL of 
protein solution in HEPES buffer (containing 3 mg 
cyt c) was added and the mixture was treated as 
described for non covalent procedure.

Determination of immobilization yield
The amount of immobilized cyt c was determined 

by determining the protein concentration in the 
supernatant after the immobilization procedure 
according to the Bradford method [15]. 

FTIR measurements
FTIR spectra were measured with a FTIR-8400 

infrared spectrometer (Shimadzu, Tokyo, Japan) 
equipped with a deuterated triglycine sulphate 
(DTGS) detector. A total of 64 scans were averaged 
for each sample with 2 cm-1 resolution, using KBr 
pellets containing ca. 2 wt% sample.

Determination of free and immobilized cyt c 
peroxidase activity 

0.5 mg of free or immobilized cyt c was dispersed 
in 0.5 mL phosphate buffer (50 mM, pH 7.0) to give 
a final concentration of 1 mg mL-1. The peroxidase 
activity of immobilized cyt c was determined using the 
chromogenic substrate guaiacol, as shown in Scheme 
1. Hydrogen peroxide was added to give a final assay 
mixture (containing 25 μg mL-1 free or immobilized 
cyt c, 25 mM guaiacol and 10 mM hydrogen 

peroxide). The activity of cyt c was monitored by 
measuring the increase of the absorbance at 470 nm, 
due to guaiacol oxidation, at 40οC.

The effect of temperature was studied by 
measuring the activity of both free and immobilized 
cyt c at different temperatures (ranging from 30 to 
75oC).

Stability of free and immobilized cyt c
The stability of immobilized cyt c was 

investigated and compared to that of the native 
protein. Phosphate buffer (50 mM, pH 7.0) 
was pre-incubated at 40oC in the presence of 
guaiacol (25 mM) or H2O2 (10 mM), and a 
predetermined amount of cyt c was added to 
give a final concentration of 25 μg mL-1. Samples 
were withdrawn at regular time intervals in order 
to measure the remaining activity of cyt c. All 
experiments were repeated at least 3 times. 

UV–Visible measurements
The conformational changes around the heme 

microenvironment of cyt c in the presence of 
f-MWCNTs were determined by recording the 
protein spectrum at the Soret region. . UV–Vis 
spectra (300–700 nm) of cyt c (25 μg mL-1) in 
phosphate buffer solution (50 mM, pH 7.0), 
containing various f-MWCNTs at different 
concentrations (5-25 μg mL-1) were recorded at 
room temperature using a UV-1601 Shimadzu 
spectrophotometer (Tokyo, Japan). 

RESULTS AND DISCUSSION
Immobilization of cyt c on f-MWCNTs

In the present work we have investigated the 
immobilization of cyt c on various f-MWCNTs. The 
immobilization procedure was carried out under 
constant experimental conditions (pH 7.0, 30 oC). 
At this pH, cyt c exhibits high peroxidase activity, 
while the net charge of the protein is positive, since 

Scheme 1. Oxidation of guaiacol by cyt c in the presence of H2O2.
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its isoelectric point (pI) is 10.5 [13]. 
The immobilization of cyt c onto f-MWCNTs was 

accomplished via two different methods: physical 
adsorption and covalent binding. The physical 
adsorption of proteins on f-MWCNTs is governed 
by weak forces such as van der Waals forces, π-π 
stacking interactions, hydrophobic and electrostatic 
interactions [2,3,16]. Covalent immobilization was 
achieved on two different kinds of functionalized 
carbon nanotubes; those with terminal carboxyl 
groups and those with terminal amine groups. In 
the first case, during the immobilization procedure, 
the carboxyl-functionalized CNTs firstly reacted 
with EDC to form an amine-reactive O-acilysouria 
intermediate which subsequently reacted with 
an amine group on the surface of the protein 
to produce a stable amine bond [16]. NHS was 
added for the stabilization of the O-acilysouria 
intermediate by converting it to a semi-stable 
amine-reactive NHS ester, thus enhancing a more 
efficient coupling with the protein [17].  Finally, the 
activated CNTs reacted with the protein. In the case 
of immobilization on amino-functionalized CNTs, 
the nanomaterials were firstly activated with the 
cross-linker glutaraldehyde. In a following step, the 
free terminal aldehyde groups were cross-linked to 
amine groups on the enzyme surface through the 
formation of a Shiff ’s base [2].

The immobilization efficiency for both covalent 
and non covalent procedure is presented in Table 
1. In all cases, a protein to nanomaterial weight 
ratio 1:1 was used. The immobilization yield 
was calculated from the difference in the protein 
concentration in the aqueous phase before and 
after the immobilization procedure. As it can 
be seen, cyt c was successfully immobilized 
on f-MWCNTs regardless the immobilization 
procedure, with immobilization yields reaching 
up to 77%. The successful immobilization of 
cyt c was also confirmed by FTIR spectroscopy 
(Supplementary Material, Fig. S1). Efficient 
immobilization of cyt c on other multi-wall CNTs 

and semi-conductive single-wall CNTs has been 
previously reported [18,19]. Immobilization yields 
were higher in the case of physical adsorption than 
in covalent binding, which could be attributed 
to the limited number of free functional groups 
on the surface of f-MWCNTs that are available 
for covalent attachment with protein molecules 
[20]. The π-π stacking interactions between the 
sidewalls of CNTs and the aromatic amino acids 
of cyt c in physical adsorption could also explain 
the high immobilization yields observed. In the 
case of physical adsorption, higher immobilization 
yields were observed when more hydrophobic 
nanomaterials, such as CNT-C10-COOH and CNT-
C11-CH3, were used as supports. The increase of 
the hydrophobicity of the nanomaterial (due to 
the increase of the alkyl chain length) resulted in 
a more efficient immobilization, suggesting that 
the main forces during physical adsorption are 
the hydrophobic interactions developed between 
the protein molecule and the nanomaterials. In 
the case of covalent immobilization, cyt c seemed 
to be more effectively immobilized on carboxyl-
functionalized CNTs, indicating that the terminal 
functional group of nanomaterials also affects the 
immobilization procedure. 

The peroxidase activity of immobilized cyt 
c was determined by the oxidation of guaiacol 
in the presence of H2O2. As seen from Table 1, 
the immobilization procedure followed, as well 
as the chemical characteristics of f-MWCNTs, 
affected the activity of immobilized cyt c. The 
peroxidase activity of cyt c was higher in the case 
of non covalent immobilization compared to that 
in covalent procedure, indicating that covalent 
binding may cause conformational changes during 
the protein grafting, leading to lower catalytic 
activity [21]. Both in non covalent and covalent 
immobilization, the activity of cyt c increased with 
the addition of an alkyl chain on the nanomaterial‘s 
surface. The presence of longer alkyl chains could 
increase the distance between the nanomaterial’s Tables 

 
Table 1. Peroxidase activity and immobilization yield (%) of cyt c on f-MWCNTs, calculated as the ratio of 
protein immobilized on nanomaterials to the initial protein quantity used (standard deviation was less than 2% in 
all cases). 
 
 
Nanomaterial  

Immobilization yield (%) Activity (μM/min mg) 
Non covalent 

immobilization 
Covalent 

immobilization 
Non covalent 

immobilization 
Covalent 

immobilization 
CNT-COOH 30 32 6.80 5.90 
CNT-C10-COOH 71 60 13.5 9.80 
CNT-C6-NH2 59 25 15.4 14.3 
CNT-C11-CH3 77 - 15.0 - 
 

Table 1. Peroxidase activity and immobilization yield (%) of cyt c on f-MWCNTs, calculated as the ratio of protein 
immobilized on nanomaterials to the initial protein quantity used (standard deviation was less than 2% in all cases).
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surface and the protein, especially in covalent 
immobilization, avoiding any substrate diffusion 
limitations, and thus enhancing the catalytic 
activity of the protein. Similar results have been 
reported by our group, when cyt c was immobilized 
on graphene oxide derivatives functionalized with 
different alkyl chains and terminal groups [11]. 
It is interesting to note that, although CNT-C6-
NH2 exhibited the lowest efficiency as a support 
for covalent immobilization, the immobilized cyt 
c on this nanomaterial demonstrated the highest 
catalytic activity among the other f-MWCNTs 
studied, indicating that the specific binding of cyt 
c on CNT-C6NH2 may result in conformational 
changes in the protein molecule that lead to an 
enhanced peroxidase activity. 

The effect of temperature on the peroxidase 
activity of free and immobilized cyt c was further 
investigated at various temperatures ranging from 
30 to 75oC (Fig. 1). As seen from Fig. 1, even though 
no shift of the optimum temperature was observed 
(70oC for both protein forms), the immobilized cyt c 
exhibited higher relative activity in the temperature 
range investigated. This is in accordance to the 
results previously reported for iso-cytochrome c 
immobilized on silica nanostructured supports 
[22]. The optimum temperature was not modified 
by the enzyme adsorption into the nanomaterials, 
but the relative activity of the immobilized 
protein was higher compared to that of the native 
form. Similar results have been also reported 

for immobilized lipase on amino-functionalized 
multi-wall CNTs [23]. 

Stability of cyt c
The thermal stability of free and immobilized cyt 

c was investigated after incubation in buffer solution 
at 40oC, in the presence of guaiacol. The remaining 
peroxidase activity was estimated by monitoring 
the guaiacol oxidation after H2O2 addition. As seen 
in Fig. 2a and 2b, in most cases studied, the stability 
of the immobilized cyt c was significantly higher 
than that of the free protein, which is in accordance 
to the result reported by our group concerning the 
stabilizing effect of various f-MWCNTs on free cyt 
c [13]. A similar stabilization effect was observed 
when functionalized CNTs were used as supports for 
the immobilization of lipase and chloroperoxidase 
[14,22]. The covalently immobilized cyt c (Fig. 
2b) was in most cases more stable than the non-
covalently immobilized protein (Fig. 2a), which 
is in agreement to the common aspect that the 
covalent immobilization procedure leads to more 
stable enzyme-nanomaterial conjugations than the 
physical absorption [25].

To further investigate the stabilizing effect 
of f-MWCNTs as immobilization supports, the 
stability of immobilized cyt c against H2O2, an 
oxidizing agent that deactivates peroxidases, 
was investigated. The immobilized protein was 
incubated at 40oC for 30 min and the remaining 
peroxidase activity was monitored using guaiacol 

Fig. 1. Effect of temperature on the catalytic activity of free and non covalently 
immobilized cyt c. As 100% indicated the highest activity exhibited each time, 

either by free or immobilized cyt c.
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as a substrate. As seen in Fig. 3, the remaining 
activity of immobilized cyt c reached up to 100% 
after 30 min incubation with H2O2, while the free 
protein retained only 19% of its initial activity, 
indicating that the immobilization procedure 
increases the stability of the protein. Recent 
reports underline the use of functionalized 
carbon-based nanomaterials as immobilization 
supports, offering a more suitable environment for 
cyt c to maintain its functionality [11]. Comparing 
the two immobilization methods, the covalently 
immobilized cyt c appeared more stable than the 
non-covalently, an effect that could render from the 

formation of a stronger bond between the protein 
and the nanomaterial, leading to a reduction in 
the protein structure mobility [26]. This trend 
is in agreement with the findings reported for 
immobilized lipase on amino-functionalized 
CNTs [23]. It is interesting to note that in the 
case of non covalent immobilization, the stability 
of cyt c increased as the hydrophobicity of the 
nanomaterial increased. As seen in Fig. 3, when 
CNT-C10-COOH and CNT-C11-CH3 were used as 
immobilization supports, cyt c retained up to 93% 
of its initial activity, while in the case of CNT-C6-
NH2 and CNT-COOH, it retained up to 46%. The 

Fig. 2. Stability of free and (a) non covalently and (b) covalently immobilized cyt c on f-MWCNTs, after incubation at 40oC with 
guaiacol. As 100% is indicated the peroxidase activity of cyt c at t = 0 min.

Fig. 3. Stability of free and immobilized cyt c on f-MWCNTs in buffer, after 
incubation for 30 min with H2O2. As 100% is indicated the peroxidase activity 

of cyt c at t = 0 min. The line refers to the residual activity of free cyt c.
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increase of the alkyl chain of the functionalized 
CNTs seems to create a more hydrophobic 
environment around the protein, leading to the 
limited diffusion of the hydrophilic H2O2, and 
thus resulting to a lower denaturation effect [11].

Conformational studies of cyt c
The effect of f-MWCNTs on the conformational 

state of cyt c was investigated by monitoring the 
absorbance in the Soret region (300-700 nm). 
Optical absorption spectroscopy is used to monitor 
changes in the ligation and spin state of the heme 
iron and hence in the tertiary structure around the 
heme iron [27].  As seen in Fig. 4, cyt c showed two 
intense absorption peaks in the visible region: the 
Soret band at 409 nm and a weaker, broad band at 
527 nm, which arise from electronic transitions of 
the porphyrin chromophore and are characteristic 
of the low-spin six-coordinated ferric heme [28]. 

The presence of f-MWCNTs did not remarkably 
affect the spectrum of cyt c, as indicated in Fig. 

4 (B-D). The increased concentrations of the 
nanomaterials resulted in slight decrease in the 
absorbance of the Soret band, in most cases, while 
no shift of the maximum absorbance was observed, 
indicating that CNTs help cyt c to preserve its 
tertiary structure, as previously reported after 
its immobilization on single-wall CNTs and 
fullerene-TiO2 gels [29,30]. In the case of CNT-
COOH, the changes in cyt c spectrum were 
more pronounced (Fig. 4A). The presence of this 
nanomaterial resulted to a sharp reduction in the 
absorption peak of the Soret band of the protein, 
which was dependent on the concentration of the 
nanomaterial. When CNT-COOH was added to a 
concentration of 25 μg mL-1, a significant decrease 
of the absorbance in the Soret peak was observed, 
which could be correlated to the changes in the 
microenvironment of the heme of cyt c, that lead 
to the leach of the Fe(III) ions, as already observed 
with mesoporous silica nanoparticles [31]. It seems 
that the non-functionalized CNT-COOH develops 

Fig. 4. Absorption spectra of cyt c in the presence of different concentrations of f-MWCNTs.
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strong interactions with the protein, altering its 
conformational state, while the presence of longer 
alkyl chains on the CNTs protects cyt c from 
structural disruption around the heme moiety. 

CONCLUSIONS
Functionalized multi-wall carbon nanotubes 

were effectively used as supports for the 
immobilization of cyt c. The immobilization yield 
and the peroxidase activity of immobilized cyt 
c were found to depend on the immobilization 
procedure, as well as on the structural 
characteristics of the nanomaterials. The increase of 
the alkyl chain length of the nanomaterials resulted 
in higher peroxidase activity of the immobilized 
protein. Furthermore, immobilized cyt c exhibited 
higher thermal stability than native protein, while 
it preserved up to 100% of its initial activity after 
incubation in the presence of H2O2, indicating that 
these nanomaterials offer a protective environment 
for the protein against denaturating conditions. 
UV-Vis spectroscopic studies showed that the use 
of f-MWCNTS preserves the conformational state 
of the heme prosthetic group of cyt c, which is 
responsible for the peroxidase activity of the protein. 
The results indicate that these functionalized 
CNTs can be promising candidates for their use 
as immobilization platforms for many biological 
molecules and their further application in a variety 
of fields, from biosensing to nanomedicine. 
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