
Arc
hive

 of
 S

ID

Journal of Information Systems and Telecommunication, No. I, Vol. 1, Jan – March 2013
* Corresponding Author

27

A Basic Proof Method for the Verification, Validation
and Evaluation of Expert Systems

1 Armin Ghasem Azar*

a.ghasemazar@iasbs.ac.ir
2 Zohreh Mohammad Alizadeh

1,2 Department of Computer and Information Sciences Institute for Advanced Studies in Basic Sciences (IASBS)
z.alizadeh@iasbs.ac.ir

Received: 06/Oct/2012 Accepted: 23/Feb/2013

Abstract
In the present paper, a basic proof method is provided for representing the verification, Validation and
evaluation of expert systems. The result provides an overview of the basic method for formal proof such
as: partition larger systems into small systems prove correctness on small systems by non-recursive
means, prove that the correctness of all subsystems implies the correctness of the entire system.

Keywords: Expert System, Partition, Non-Recursive.

1. Introduction
An expert system is correct when it is

complete, consistent, and satisfies the
requirements that express expert knowledge
about how the system should behave.

For real-world knowledge bases containing
hundreds of rules, however, these aspects of
correctness are hard to establish. There may be
millions of distinct computational paths through
an expert system, and each must be dealt with
through testing or formal proof to establish
correctness.

To reduce the size of the tests and proofs, one
useful approach for some knowledge bases is to
partition them into two or more interrelated
knowledge bases. In this way the VV&E
problem can be minimized [1].

2. Overview the Proofs Using Partitions

The basic method of proving each of these
aspects of correctness is basically the same. If
the system is small, a technique designed for
proving correctness of small systems should be
used. If the system is large, a technique for
partitioning the expert system must be applied
and the required conditions for applying the
partition to the system as a whole should be
proven. In addition the correctness of any
subsystem required by the partition must be

ensured. Once this has been accomplished this
basic proof method should be applied recursively
to the sub-expert systems. Once the top level
structure of the Knowledge base has been
validated, to show the correctness of the expert
system, the following criteria must be
accomplished [6]:

• Show that the Knowledge base and
inference engine implement the top level
structure;

• Prove any required relationships among
sub-expert systems or parts of the top
level Knowledge representation;

• Prove any required properties of the sub-
Knowledge bases.

2.1 A Simple Example
To illustrate the basic proof method,

Knowledge Base 1 will be proved correct in
Table 1 and although this Knowledge base is
small enough to verify by inspection.

2.1.1 Illustrations of Knowledge Base 1
The Knowledge Base 1 (KB1) has six rules.

There are seven variables which can take two
possible values. It is, therefore a seven
dimensional, binary problem [5]. Let's focus on
Rule 3 to understand the illustrations of KB1.

It has two hypotheses, and one conclusion.
The hypotheses are “Do you buy lottery
tickets?”=”yes”, and “Do you currently own

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

GhasemAzar & MohammadAlizadeh, A Basic Proof Method for The Verification, ……. 28

stock”=”yes”. They are associated with the
logical operator “or”. The consequent is Risk
Tolerance”=”high”. This is illustrated in Figure 1.
For the two variables of the hypotheses in Rule 3,
there are two possible values: “yes” or “no”. The
number of possible combinations of values for
the variables is four. These four combinations

appear in Figure 1 as four square regions defined
by the closed boundary (defining the domain or
the variables) and the line boundaries separating
the possible values for each variable. Each
square is a Hoffman region.

Table 1: Knowledge Base 1 [7]

If variable “Do you buy lottery tickets” is
assigned a value “yes”, then two of the four
regions are relevant. In Figure 1.a, they are
shown with a hatch. The two regions
corresponding to hypotheses “Do you currently
own stock?”=”yes” are hatched in Figure 1.b.

Fig. 1: Knowledge Base 1 [7]

In two dimensions, a Hoffman region is a

surface as shown in this example. In three
dimensions, it would be a volume.

Fig. 2: Knowledge Base 1 [7]

The logical operators are “and”, “or” and

“not”. In Figure 1.a and 1.b, the Hoffman regions
corresponding to hypothesis of Rule 3 are
hatched. When combined with an “and” logical
operator, intersection of the two sets of Hoffman
regions. This is shown in Figure 2.a.

The intersection in this case is a unique
Hoffman region. In Rule 3, an “or” operator
connects the two hypotheses.

In this case, the union two sets of Hoffman
regions are taken, as shown in Figure 2.b.

Rule 1 If “Risk tolerance” = high AND “Discretionary income exists”= yes then
investment = stocks.

Rule 2 If “Risk tolerance” = low OR “Discretionary income exists” = no then investment =
“bank account”.

Rule 3 If “Do you buy lottery tickets” = yes OR “Do you currently own stocks” = yes then
“Risk tolerance” = high.

Rule 4 If “Do you buy lottery tickets” = no AND “Do you currently own stocks” = no then
“Risk tolerance”= low.

Rule 5 If “Do you own a boa” = yes OR “Do you own a luxury car” = yes then
“Discretionary income exists” = yes.

Rule 6 If “Do you own a boat” = no AND “Do you own a luxury car” = no then
“Discretionary income exists” = no.

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Information Systems and Telecommunication, No. I, Vol. 1, Jan – March 2013 29

Fig. 3: Knowledge Base 1 [7]

Next, the region by the logical expression of

the hypotheses is labeled with its rule. For Rule 3,
the three Hoffman regions are labeled with a
circled 3 as shown in Figure 3.a. Consequence
for the Rule is linked to the label of the region of
the hypotheses. In Figure 3.b, an arrow starts at
the circled 3 and ends at the value “low” of the
variable “Risk”.

2.2 Step 1-Determine Knowledge Base
Structure

To prove the correctness of Knowledge Base
1 (KB1), the expert Knowledge can determine
that the system represents a 2-step process [3]:

• Find the values of some important
intermediate variables, such as risk
tolerance and discretionary income;

• Use these values to assign a type of
investment.

KB1 was built using this Knowledge;
therefore, it can be partitioned into the following
pieces:

• A subsystem to find risk tolerance (Part
of Step 1);

• A subsystem to find discretionary income
(Part of Step 1);

• A subsystem to find type of investment
given this Information (Part of Step 2).

2.3 Step 2-Find Knowledge Base
Partition

To find each of the three subsystems of KB1,
an iterative procedure can be followed:

• Start with the variables that are goals for
the subsystem, e.g., risk tolerance for the
risk tolerance subsystem;

• Include all the rules that set subsystem
variables in their conclusions. For the risk

tolerance subsystem, Rules 3 and 4 are
included;

• Include all variables that appeared in rules
already in the subsystem and are not goals
of another subsystem;

• For the risk tolerance subsystem, include
“Do you buy lottery tickets” and “Do you
currently own stocks”;

• Quit if all rules setting subsystem
variables are in the subsystem, or else go
to Step 2. For the risk tolerance subsystem,
there are no more rules to be added.

Figure 4 below shows the partitioning of
KB1 using this method.

Fig. 4: Knowledge Base 1 [3]

2.4 Step 3-Completeness of expert
systems

2.4.1 Completeness Step 1-Completeness of
Subsystems

The first step in proving the completeness of
the entire expert system is to prove the
completeness of each subsystem. To this end it
must be shown that for all possible inputs there is
an output, i.e., the goal variables of the
subsystem are set. This can be done by showing
that the OR of the hypotheses of the rules that
assign to a goal variable is true [7].

2.4.2 Completeness Step 2-Completeness of
the entire system

The results of subsystem completeness are
used to establish the completeness of the entire
system. The basic argument is to use results on
subsystems to prove that successively larger
subsystems are complete. At each stage of the
proof there are some subsystems known to be
complete; initially the subsystem that concludes
overall goals of the expert system will be
complete. At each stage of the proof, a
subsystem that concludes some of the input

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

GhasemAzar & MohammadAlizadeh, A Basic Proof Method for The Verification, ……. 30

variables of the currently-proved-complete
subsystem is added to the currently complete
subsystem. After a number of steps equal to the
number of subsystems, the entire system can be
shown to be complete.

2.5 Step 4-Consistency of the entire
system

The first step in proving the consistency of
the entire expert system is to prove the
consistency of each sub- system. To do this, the
user must show that for all possible inputs, the
outputs are consistent, i.e., that the AND of the
conclusions can be satisfied.

For example, if an expert system concludes:
“temperature >0” and “temperature <100”
The AND of these conclusions can be

satisfied. However, if the system concludes:
“temperature <0” and “temperature>100”
The AND of these two conclusions has to be

false. It is clear that based on the input that
produced these two conclusions, it is not possible
for all of the system's conclusions to be true at
the same time and thus the system producing
these conclusions is inconsistent.

2.5.1 Consistency Step 1-Find the mutually
inconsistent conclusions

The first step in proving consistency is to
identify those sets of mutually inconsistent
conclusions for each of the subsystems identified
in the “Find partitions” step above. Some sets of
conclusions are mathematically inconsistent [2].
For example, if a system describes temperature,
the set: “temperature <0”, “temperature >100” is
mathematically inconsistent.

Because some sets of conclusions are
inconsistent because of domain expertise, finding
all sets of inconsistent conclusions generally
requires expert Knowledge.

Note that if there are no mutually inconsistent
conclusions in the expert system as a whole, then
consistency is true by default, and no further
consistency proof is necessary.

2.5.2 Consistency Step 2-Prove consistency of
subsystems

If there are inconsistent conclusions in the
Knowledge base as a whole, then the next step in
proving consistency is to prove the subsystems
consistent. This can be done by showing that no
set of inputs to a subsystem can result in any of
the sets of inconsistent conclusions.

2.5.3 Consistency Step 3-Consistency of
entire system

The results of subsystem consistency are used
to establish the consistency of the entire system.
The basic argument is to use results on
subsystems to prove that successively larger
subsystems are consistent. At each stage of the
proof, there are some subsystem known to be
consistent; initially, this is the subsystem that
concludes goals of the expert system as a whole.
At each stage of the proof, a subsystem that
concludes some of the input variables of the
currently-proved-consistent subsystem is added
to the currently consistent subsystem. After a
number of steps equal to the number of
subsystems, the entire system can be shown to be
consistent [2].

2.6 Step 5-Specification satisfaction
In order to prove that KB1 satisfies its

specifications, the user must actually know what
its specifications are. This is a special case of the
general truth that in order to verify and validate,
the user must know what a system is supposed to
do. Specifications should be defined in the
planning stage of an expert system project [4].

To illustrate the proof of specifications it will
be assumed that KB1 is supposed to satisfy:

A financial advisor should only recommend
investments that an investor can afford.

As with many other aspects of verification
and validation, expert Knowledge must be
brought to bear on the proof process. For KB1,
an expert might say that anyone can afford a
savings account. Therefore, the user only has to
look at the conditions under which stocks are
recommended. However, that same expert would
probably say that just having discretionary
income does not mean that the user can afford
stocks; that judgment should be made on more
than one variable. Therefore, it would be
reasonable to conclude that KB1 does not satisfy
the above specification.

3. Conclusion

This paper has argued that V&V techniques
are an essential part of the Knowledge
engineering process, because they offer the only
way to judge the success (or otherwise) of a KBS
development project. This is equally true in the
context of Knowledge management, where V&V
techniques tell us whether or not the KBS can be

www.SID.ir

www.SID.ir

Arc
hive

 of
 S

ID

Journal of Information Systems and Telecommunication, No. I, Vol. 1, Jan – March 2013 31

relied upon to accurately embody the Knowledge
of the human experts that supplied it.

However, examination of known studies on
the effectiveness of existing KBS VV&E
techniques has shown that the state of
Knowledge in this area is sparse. The way to
improve this situation would be by
systematically gathering data from a
representative set of KBS projects and V&V
techniques. Without such a study, Knowledge
engineering will remain very much an art and, by
extension, so will the use of KBS technology in
Knowledge management.

It is difficult to generalize our results to all
Knowledge based systems and, of course, further

evaluations of other applications are necessary to
confirm (or challenge) our conclusions. However,
since the method we have used minimizes the
need for experts' interpretation of the faults, we
can reasonably conclude that if we use an
application of similar size and complexity to
GIBUS, we would expect to obtain similar
results. Consequently, since our application has a
size and a complexity which is representative of
actual practice, we would expect that consistency
and completeness checking, in addition to testing,
would be an effective combination of methods to
validate many of the Knowledge based systems
actually under development.

References
[1] Ayel M and Laurent J-P, two different ways of

verifying Knowledge-based systems, Validation,
Verification and Test Of Knowledge-Based
Systems, Wiley, New York, Year. 1991, pp. 63-76.

[2] Bendou A, A constraint-based test data generator,
EUROVAV-95, Saint Badolph, France, Year.
1995, pp. 19-29.

[3] Ginsberg A, Knowledge-based reduction: A new
approach to checking Knowledge bases for
inconsistency & redundancy, AAAI Vol. 88, No.
2, Year. 1988, pp. 585-589.

[4] Kirani S, Zualkernan I.A, and Tsai W.T.,
Comparative Evaluation of Expert System Testing
Methods, Computer Science Department,
University of Minnesota, Minneapolis Vol. 2,
Year. 1992, pp. 92-30.

[5] Laurent J-P, Proposals for a valid terminology in
KBS validation, ECAI-92, Wiley, New York, Vol.
2, Year. 1992, pp. 829-834.

[6] Lounis R and Ayel M, Completeness of KBS,
EUROVAV-95, Saint Badolph, France, Vol. 2,
Year. 1995, pp. 31-46.

[7] O'Leary D, Design, development and validation of
expert systems: A survey of developers, Vol. 2,
Year. 1991.

www.SID.ir

www.SID.ir

