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Abstract 
In the present paper, a basic proof method is provided for representing the verification, Validation and 
evaluation of expert systems. The result provides an overview of the basic method for formal proof such 
as: partition larger systems into small systems prove correctness on small systems by non-recursive 
means, prove that the correctness of all subsystems implies the correctness of the entire system. 
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1. Introduction 
An expert system is correct when it is 

complete, consistent, and satisfies the 
requirements that express expert knowledge 
about how the system should behave. 

For real-world knowledge bases containing 
hundreds of rules, however, these aspects of 
correctness are hard to establish. There may be 
millions of distinct computational paths through 
an expert system, and each must be dealt with 
through testing or formal proof to establish 
correctness. 

To reduce the size of the tests and proofs, one 
useful approach for some knowledge bases is to 
partition them into two or more interrelated 
knowledge bases. In this way the VV&E 
problem can be minimized [1]. 

2. Overview the Proofs Using Partitions 

The basic method of proving each of these 
aspects of correctness is basically the same. If 
the system is small, a technique designed for 
proving correctness of small systems should be 
used. If the system is large, a technique for 
partitioning the expert system must be applied 
and the required conditions for applying the 
partition to the system as a whole should be 
proven. In addition the correctness of any 
subsystem required by the partition must be 

ensured. Once this has been accomplished this 
basic proof method should be applied recursively 
to the sub-expert systems. Once the top level 
structure of the Knowledge base has been 
validated, to show the correctness of the expert 
system, the following criteria must be 
accomplished [6]: 

• Show that the Knowledge base and 
inference engine implement the top level 
structure; 

• Prove any required relationships among 
sub-expert systems or parts of the top 
level Knowledge representation; 

• Prove any required properties of the sub-
Knowledge bases. 

2.1 A Simple Example 
To illustrate the basic proof method, 

Knowledge Base 1 will be proved correct in 
Table 1 and although this Knowledge base is 
small enough to verify by inspection. 

2.1.1 Illustrations of Knowledge Base 1 
The Knowledge Base 1 (KB1) has six rules. 

There are seven variables which can take two 
possible values. It is, therefore a seven 
dimensional, binary problem [5]. Let's focus on 
Rule 3 to understand the illustrations of KB1. 

It has two hypotheses, and one conclusion. 
The hypotheses are “Do you buy lottery 
tickets?”=”yes”, and “Do you currently own 
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stock”=”yes”. They are associated with the 
logical operator “or”. The consequent is Risk 
Tolerance”=”high”. This is illustrated in Figure 1. 
For the two variables of the hypotheses in Rule 3, 
there are two possible values: “yes” or “no”. The 
number of possible combinations of values for 
the variables is four. These four combinations 

appear in Figure 1 as four square regions defined 
by the closed boundary (defining the domain or 
the variables) and the line boundaries separating 
the possible values for each variable. Each 
square is a Hoffman region. 

 

Table 1: Knowledge Base 1 [7] 

 

If variable “Do you buy lottery tickets” is 
assigned a value “yes”, then two of the four 
regions are relevant. In Figure 1.a, they are 
shown with a hatch. The two regions 
corresponding to hypotheses “Do you currently 
own stock?”=”yes” are hatched in Figure 1.b. 

 

Fig. 1: Knowledge Base 1 [7] 
 
In two dimensions, a Hoffman region is a 

surface as shown in this example. In three 
dimensions, it would be a volume. 

 

Fig. 2: Knowledge Base 1 [7] 
 
The logical operators are “and”, “or” and 

“not”. In Figure 1.a and 1.b, the Hoffman regions 
corresponding to hypothesis of Rule 3 are 
hatched. When combined with an “and” logical 
operator, intersection of the two sets of Hoffman 
regions. This is shown in Figure 2.a.  

The intersection in this case is a unique 
Hoffman region. In Rule 3, an “or” operator 
connects the two hypotheses.  

In this case, the union two sets of Hoffman 
regions are taken, as shown in Figure 2.b. 

 

Rule 1 If “Risk tolerance” = high AND “Discretionary income exists”= yes then 
investment = stocks. 

Rule 2 If “Risk tolerance” = low OR “Discretionary income exists” = no then investment = 
“bank account”. 

Rule 3 If “Do you buy lottery tickets” = yes OR “Do you currently own stocks” = yes then 
“Risk tolerance” = high. 

Rule 4 If “Do you buy lottery tickets” = no AND “Do you currently own stocks” = no then 
“Risk tolerance”= low. 

Rule 5 If “Do you own a boa” = yes OR “Do you own a luxury car” = yes then 
“Discretionary income exists” = yes. 

Rule 6 If “Do you own a boat” = no AND “Do you own a luxury car” = no then 
“Discretionary income exists” = no. 
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Fig. 3: Knowledge Base 1 [7] 
 
Next, the region by the logical expression of 

the hypotheses is labeled with its rule. For Rule 3, 
the three Hoffman regions are labeled with a 
circled 3 as shown in Figure 3.a. Consequence 
for the Rule is linked to the label of the region of 
the hypotheses. In Figure 3.b, an arrow starts at 
the circled 3 and ends at the value “low” of the 
variable “Risk”. 

 

2.2 Step 1-Determine Knowledge Base 
Structure 

To prove the correctness of Knowledge Base 
1 (KB1), the expert Knowledge can determine 
that the system represents a 2-step process [3]: 

• Find the values of some important 
intermediate variables, such as risk 
tolerance and discretionary income; 

• Use these values to assign a type of 
investment. 

KB1 was built using this Knowledge; 
therefore, it can be partitioned into the following 
pieces: 

• A subsystem to find risk tolerance (Part 
of Step 1); 

• A subsystem to find discretionary income  
(Part of Step 1); 

• A subsystem to find type of investment 
given this Information (Part of Step 2). 

2.3 Step 2-Find Knowledge Base 
Partition 

To find each of the three subsystems of KB1, 
an iterative procedure can be followed: 

• Start with the variables that are goals for 
the subsystem, e.g., risk tolerance for the 
risk tolerance subsystem; 

• Include all the rules that set subsystem 
variables in their conclusions. For the risk 

tolerance subsystem, Rules 3 and 4 are 
included;  

• Include all variables that appeared in rules 
already in the subsystem and are not goals 
of another subsystem;  

• For the risk tolerance subsystem, include 
“Do you buy lottery tickets” and “Do you 
currently own stocks”;  

• Quit if all rules setting subsystem 
variables are in the subsystem, or else go 
to Step 2. For the risk tolerance subsystem, 
there are no more rules to be added. 

Figure 4 below shows the partitioning of 
KB1 using this method. 

 

Fig. 4: Knowledge Base 1 [3] 
 

2.4 Step 3-Completeness of expert 
systems 

2.4.1 Completeness Step 1-Completeness of 
Subsystems 

The first step in proving the completeness of 
the entire expert system is to prove the 
completeness of each subsystem. To this end it 
must be shown that for all possible inputs there is 
an output, i.e., the goal variables of the 
subsystem are set. This can be done by showing 
that the OR of the hypotheses of the rules that 
assign to a goal variable is true [7]. 

2.4.2 Completeness Step 2-Completeness of 
the entire system 

The results of subsystem completeness are 
used to establish the completeness of the entire 
system. The basic argument is to use results on 
subsystems to prove that successively larger 
subsystems are complete. At each stage of the 
proof there are some subsystems known to be 
complete; initially the subsystem that concludes 
overall goals of the expert system will be 
complete. At each stage of the proof, a 
subsystem that concludes some of the input 
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variables of the currently-proved-complete 
subsystem is added to the currently complete 
subsystem. After a number of steps equal to the 
number of subsystems, the entire system can be 
shown to be complete. 

2.5 Step 4-Consistency of the entire 
system 

The first step in proving the consistency of 
the entire expert system is to prove the 
consistency of each sub- system. To do this, the 
user must show that for all possible inputs, the 
outputs are consistent, i.e., that the AND of the 
conclusions can be satisfied. 

For example, if an expert system concludes: 
“temperature >0” and “temperature <100” 
The AND of these conclusions can be 

satisfied. However, if the system concludes: 
“temperature <0” and “temperature>100” 
The AND of these two conclusions has to be 

false. It is clear that based on the input that 
produced these two conclusions, it is not possible 
for all of the system's conclusions to be true at 
the same time and thus the system producing 
these conclusions is inconsistent. 

2.5.1 Consistency Step 1-Find the mutually 
inconsistent conclusions 

The first step in proving consistency is to 
identify those sets of mutually inconsistent 
conclusions for each of the subsystems identified 
in the “Find partitions” step above. Some sets of 
conclusions are mathematically inconsistent [2]. 
For example, if a system describes temperature, 
the set: “temperature <0”, “temperature >100” is 
mathematically inconsistent. 

Because some sets of conclusions are 
inconsistent because of domain expertise, finding 
all sets of inconsistent conclusions generally 
requires expert Knowledge. 

Note that if there are no mutually inconsistent 
conclusions in the expert system as a whole, then 
consistency is true by default, and no further 
consistency proof is necessary. 

2.5.2 Consistency Step 2-Prove consistency of 
subsystems 

If there are inconsistent conclusions in the 
Knowledge base as a whole, then the next step in 
proving consistency is to prove the subsystems 
consistent. This can be done by showing that no 
set of inputs to a subsystem can result in any of 
the sets of inconsistent conclusions. 

2.5.3 Consistency Step 3-Consistency of 
entire system 

The results of subsystem consistency are used 
to establish the consistency of the entire system. 
The basic argument is to use results on 
subsystems to prove that successively larger 
subsystems are consistent. At each stage of the 
proof, there are some subsystem known to be 
consistent; initially, this is the subsystem that 
concludes goals of the expert system as a whole. 
At each stage of the proof, a subsystem that 
concludes some of the input variables of the 
currently-proved-consistent subsystem is added 
to the currently consistent subsystem. After a 
number of steps equal to the number of 
subsystems, the entire system can be shown to be 
consistent [2]. 

2.6 Step 5-Specification satisfaction 
In order to prove that KB1 satisfies its 

specifications, the user must actually know what 
its specifications are. This is a special case of the 
general truth that in order to verify and validate, 
the user must know what a system is supposed to 
do. Specifications should be defined in the 
planning stage of an expert system project [4]. 

To illustrate the proof of specifications it will 
be assumed that KB1 is supposed to satisfy:  

A financial advisor should only recommend 
investments that an investor can afford. 

As with many other aspects of verification 
and validation, expert Knowledge must be 
brought to bear on the proof process. For KB1, 
an expert might say that anyone can afford a 
savings account. Therefore, the user only has to 
look at the conditions under which stocks are 
recommended. However, that same expert would 
probably say that just having discretionary 
income does not mean that the user can afford 
stocks; that judgment should be made on more 
than one variable. Therefore, it would be 
reasonable to conclude that KB1 does not satisfy 
the above specification. 

3. Conclusion 

This paper has argued that V&V techniques 
are an essential part of the Knowledge 
engineering process,  because they offer the only 
way to judge the success (or otherwise) of a KBS 
development project. This is equally true in the 
context of Knowledge management, where V&V 
techniques tell us whether or not the KBS can be 
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relied upon to accurately embody the Knowledge 
of the human experts that supplied it. 

However, examination of known studies on 
the effectiveness of existing KBS VV&E 
techniques has shown that the state of 
Knowledge in this area is sparse. The way to 
improve this situation would be by 
systematically gathering data from a 
representative set of KBS projects and V&V 
techniques. Without such a study, Knowledge 
engineering will remain very much an art and, by 
extension, so will the use of KBS technology in 
Knowledge management. 

It is difficult to generalize our results to all 
Knowledge based systems and, of course, further 

evaluations of other applications are necessary to 
confirm (or challenge) our conclusions. However, 
since the method we have used minimizes the 
need for experts' interpretation of the faults, we 
can reasonably conclude that if we use an 
application of similar size and complexity to 
GIBUS, we would expect to obtain similar 
results. Consequently, since our application has a 
size and a complexity which is representative of 
actual practice, we would expect that consistency 
and completeness checking, in addition to testing, 
would be an effective combination of methods to 
validate many of the Knowledge based systems 
actually under development. 
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