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Abstract 
The dependability of concurrent programs is usually limited by concurrency errors like deadlocks and 
data races in allocation of resources. Deadlocks are difficult to find during the program testing because 
they happen under very specific thread or process scheduling and environmental conditions. In this 
study, we extended our previous approach for online potential deadlock detection in resources allocated 
by multithread programs. Our approach is based on reasoning about deadlock possibility using the 
prediction of future behavior of threads. Due to the nondeterministic nature, future behavior of 
multithread programs, in most of cases, cannot be easily specified. Before the prediction, the behavior of 
threads should be translated into a predictable format. Time series is our choice to this conversion 
because many Statistical and Artificial Intelligence techniques can be developed to predict the future 
members of the time series. Among all the prediction techniques, artificial neural networks showed 
applicable performance and flexibility in predicting complex behavioral patterns which are the most 
usual cases in real world applications. Our model focuses on the multithread programs which use locks 
to allocate resources. The proposed model was used to deadlock prediction in resources allocated by 
multithread Java programs and the results were evaluated. 
 
Keywords: Detecting Potential Deadlocks, Time Series Prediction, Multithread Programs, Behavior 

Extraction. 
 

1. Introduction 
Multithread programs are becoming 

increasingly common. Since multi-core 
processor generation has brought more cores, 
developers must parallelize programs if they 
want to speed the program execution up. 
However, applying concurrency method causes 
some integrity and mutual exclusion issues in 
allocating resources. To resolve them, locking 
mechanism was developed. However, this 
mechanism leads to some other known problems 
like starvation and deadlock in resources 
allocated by concurrent systems. Detection of 
such errors in the program testing phase may be 
difficult since they often occur in the special 
sequence of events [1]. This is why that, these 
errors are sensitive to timings, workloads, 
compiler options and memory models. In 
addition, if a deadlock or data race in resource 
allocation emerges in the testing phase, it is 

difficult to find out its root cause; because in a 
multithread program, even if there is a deadlock 
between some threads in allocating resources at 
runtime, other threads still can run. The effects of 
such a situation can manifest itself millions of 
cycles after occurring the error. Deadlock is a 
common form of bug in software nowadays. 
Sun’s bug database showed that 6,500 bug 
reports out of 198,000 contain “deadlock” [2]. 
Main reasons of deadlock are: (1) software 
systems are often written by diverse 
programmers; therefore, it is difficult to follow a 
lock order discipline in allocating resources, (2) 
programmers often introduce deadlocks when 
they fix race conditions by adding new locks and 
(3) using third-party software such as plug-in 
because the third-party software may not follow 
the locking discipline followed by the parent 
software [3]. This is why that “deadlock 
avoidance” techniques became unusable. Such 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network 34 

techniques are simple in theory but so restrictive 
in real application.  

Therefore “detecting potential deadlocks” 
became an acceptable method to solve deadlock 
problem in resources allocation. “Potential 
deadlock detection” techniques are Online or 
Offline, which Online ones try to find the 
concurrency errors at runtime. Such approaches 
mostly use a monitor to observe the program 
execution and based on the observations, they 
decide about the error possibility. In comparison 
with offline techniques, online ones have the 
following advantages: 

1. They only visit feasible paths of program 
executions and have accurate views of the 
values [1], 

2. Because of their accurate view, they 
generate fewer false alarms. False alarm 
means a fake report of an error (in our case, 
a deadlock), 

3. They don’t need considerable programmer 
effort, 

4. These approaches are language independent 
meaning that the solution is not depended 
on features of a specific programming 
language. 

 In this paper, we demonstrate and extend a 
novel online potential deadlock detection 
approach, whose base was presented in [4]. It 
was based on the prediction of processes or 
threads behavior at runtime and dealt with 
reasoning about the deadlock possibility in the 
future. In this work, we introduce time series 
analysis approaches in configuring prediction 
parameters. Also, we include the environmental 
conditions in predicting the threads behavior to 
improve the correctness of obtained results. We 
obtained considerable improvement in detecting 
potential deadlocks in comparison with our 
previous work.  

This paper is organized as follows: Section 2 
overviews the related works and our proposed 
model is discussed in Section 3. We analyze our 
approach and evaluate its results in Section 4. 
We draw conclusions in Section 5. 

 

2. Related works 

As mentioned in the previous section, our 
approach is based on finding potential deadlocks 
in allocating resources at runtime using program 
behavior extraction and time series prediction. 

Therefore in this section, we first overview 
online approaches detecting potential deadlocks 
in resources allocated by concurrent programs. 
Afterwards, we discuss different approaches used 
time series for the prediction. 

 

2.1 Online potential deadlock detection 
Informally, in multi-threaded systems used 

shared memory, deadlocks in allocating 
resources happen when a set of threads are 
blocked forever; this is because each thread in 
the set is waiting to acquire a lock held by some 
thread [2]. Generally in a concurrent system, the 
order of acquiring and releasing locks in 
allocating and freeing resources can be described 
as a directed graph where nodes indicate locking 
resources so that an edge from node A to node B 
means the system has locked resource A and is 
waiting for resource B. There will be a deadlock 
in allocation of resources if a circle is found in 
the graph. Lock graphs and their variations have 
been used for detection of deadlocks in resources 
allocated by concurrent programs.  

GoodLock algorithm [5] is an approach to 
detect potential deadlocks in multithread 
programs. It only detects potential deadlocks 
caused through interleaving locks by just two 
threads. To overcome this limitation, some 
generalized versions of GoodLock algorithm was 
presented in [6] and [7] which detect potential 
deadlocks caused by any number of threads. 
Their approach address programs that use bloc 
and non-block structured locking. 

In [8], authors constructed an online lock 
graph and found specific paths, which named 
“not guarded SCC (strongly connected 
components)”. “Not guarded SCC” indicates one 
or more potential deadlocks because there can be 
several cycles in the SCC. They tried to exhibit 
the deadlocks using injection of noises in the 
SCCs. A noise is inserted to create a delay to 
acquire a lock; accordingly, they raised the 
probability of manifesting the real deadlocks. 
Although this approach is based on GoodLock 
algorithm, its advantage over one that presented 
in [6] and [7] is regarding different runs. The 
Goodlock looks at the scope of one process run. 
This means, when a cycle in the graph is caused 
by sequences of two different runs, Goodlock 
can’t detect.  

GoodLock algorithm also was used in 
combination with other techniques to find the 
potential deadlock at runtime such as 
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DEADLOCKFUZZER [2]. This approach 
consists of two phases. In the first phase, a 
simple variant of the Goodlock algorithm, called 
informative Goodlock, was used to discover 
cycles of potential deadlock. In the second phase, 
DEADLOCKFUZZER executed the program at 
a random schedule in order to create a real 
deadlock corresponding to a cycle which 
reported in the previous phase. In [3] “deadlock 
immunity” concept was introduced for avoiding 
occurrence of deadlocks occurred in the past. 
When a deadlock occurs for the first time, the 
deadlock information is saved in a "context" in 
order to avoid the similar contexts in future runs. 
This approach achieved “immunity” against the 
corresponding deadlocks. To avoid deadlock 
whose context has been already seen, the 
approach changed the schedule of threads. As the 
several deadlocks occur, the numbers of contexts 
increases; therefore it can avoid a wider range of 
deadlocks. However, if a deadlock does not have 
a pattern similar to one that already encountered, 
the approach cannot avoid its occurrence. 

As we mentioned in Section Introduction, all 
the online deadlock detection approaches share 
some common advantages like: language 
independency, accurate views of the values, 
fewer false alarms and programmer efforts. But 
online techniques suffer from some 
disadvantages too. The most common problem is 
imposing the heavy overhead at runtime, both in 
time or space. All the mentioned techniques try 
to extract some relevant traces before their real 
execution based on observed current execution. 
In fact, they pre-run these extracted traces to find 
out whether there is any deadlock in the trace or 
not. This phase is time consuming because of 
extracting and running relevant traces. Also, one 
of the important steps for online techniques is the 
code instrumentation. Code instrumentation 
means modifying the target code for runtime 
monitoring code behavior. This step could be 
time consuming too and for the legacy codes it is 
more difficult. Sometimes, online potential 
deadlock detection techniques may show 
deadlocks late. This leads to finding a potential 
deadlock when the rollback mechanism is 
impossible because of some preclude actions like 
I/O.  

2.2 Time series prediction approaches 
Because of weaknesses of the online potential 

deadlock detection techniques mentioned in 
previous section, we proposed a novel online 

approach which targets the increase of 
performance, decrease of instrumentation and the 
enhancement of the prediction [4]. In this 
approach, we needed to predict future members 
of the generated time series at runtime. In 
general, time series prediction techniques can be 
classified in two categories: statistical and neural 
network based techniques. The statistical 
prediction techniques such as Autoregressive 
(AR), Moving Average (MA) and combined AR 
and MA (ARIMA) [9] have several limitations, 
such as inefficiency for real world problems 
which are often complex and nonlinear. This is 
due to the fact that these techniques assume that 
a time series is generated by a linear process. 
Thus, they are called linear statistical predictors.  

The nonlinear statistical predictors such as 
predictors, “threshold”, “exponential”, 
“polynomial” and “bilinear” were proposed to 
increase of the prediction precision [9],[10]. 
However, the selection of a suitable nonlinear 
model and the computation of its parameters are 
difficult tasks for a practical problem especially 
when the time series behavior is non-
deterministic. Moreover, it has been shown that 
the capability of the nonlinear model is limited, 
because it is unable to provide a long-term 
prediction [11].  

In recent years, artificial intelligence tools 
have been extensively used for time-series based 
prediction [12, 13]. In particular, artificial neural 
networks are frequently exploited for time-series 
based prediction of systems behavior. A neural 
network is an information processing system that 
is capable of treating complex problems of 
pattern recognition, dynamic and nonlinear 
processes. In particular, it can be an efficient tool 
for prediction applications. The advantage of 
neural networks based approaches over statistical 
ones is the capability of learning and accordingly 
generalization of their knowledge [14]. Also the 
neural networks are based on training and in 
many cases their prediction results are more 
precise, even if the training set has considerable 
noise [14]. These approaches are much more 
suitable for real world problems which do not 
have specific rules.

There are some composite approaches which 
try to take the advantage of the accuracy of 
statistical models and the generality of neural 
network approaches. In [15], authors composed 
statistical model ARIMA and a feed-forward 
neural network to forecast time series. A feed 
forward network is a type of neural networks 
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where all of its connections have the same 
direction [16]. This composition could be 
efficient in predicting some well-known time 
series. However, in the case of other time series, 
finding the proper value for statistical part of the 
composition is a difficult task and wrong values 
could affect the accuracy of prediction. Also it 
has been proved that the capability of recurrent 
neural networks is equivalent to the Turing 
machine [17]. Recurrent network is a class of 
neural network where connections between the 
layers of it could be backward or forward [16]. 
Therefore recurrent networks can approximate 
any function by learning from the function inputs 
and outputs. 

3. Potential deadlock prediction 

In our previous work we proposed an online 
predictive model to detect the potential 
deadlocks in multithread programs which is the 
basis of our approach [4]. Figure 1 shows our 
proposed model architecture. This model is 
consists of four components which are 
collaborating together at runtime. In this work, 
we aim to extend the basis model, indeed we 
extend “predictor” component, to be able to 
generate much more accurate prediction. 

3.1 The basis of proposed model 
We used dependency graph in our model 

which nodes are the concurrent threads or 
processes. There is an edge from node A to node 
B if and only if thread A wants to acquire a lock 
which held by thread B and A has to wait until B 
release the lock, after that the edge will be erased. 
There is a deadlock in the system if there is a 
cycle in dependency graph. Therefore, except 
requesting or releasing the locks, other behavior 
of threads does not play any role in deadlock 
occurrence. For this reason in our proposed 
model we target only the instructions which are 
related to acquiring or releasing the locks. We 
named this type of instructions deadlock-prone 
behavior. The main difference between our 
approach and other online potential deadlock 
detection approaches which we explained in 
Section 2, is that we try to predict the future 
deadlock-prone behavior of threads at runtime 
rather than try to abstract different execution 
traces from the current execution by changing 
threads schedules or noise injection. If we could 
have an accurate view of future deadlock-prone 
behavior of threads then we can accurately result 
about the deadlock occurrence in the future [4]. 

 

Fig 1. The basis of proposed model [4] 
 
The start point of our model is the "Behavior 

extractor & Time series generator" component. 
Actually this component is composed of two 
elements:  

Two annotated Java functions: one for 
extracting deadlock-prone behavior and another 
for converting extracted behavior to univariate 

time series. Figure 2 shows these two functions: 
1- extractor & convertor () 2- this Period 
behaviors (). The first one task is catching lock () 
and unlock () at runtime and the second one task, 
is appending these instructions to the proper time 
series.  
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1. @AfterRunning( pointcut = "execution(* 
java.util.concurrent.locks.unlock(..))") 

2. @Before(pointcut = "execution(* 
java.util.concurrent.locks.lock(..))") 

3. public void extarctor&convertor 
(JoinPoint joinPoint) { 

4. String 
functionName=joinPoint.getSignature().ge
tName(); 

5. If(functionName.eguals(“lock”)){ 
6. thisPeriodBehaviors(“1”, 

Arrays.toString(joinPoint.getArgs()),this.n
ame); 

7. }
8. Else{ 
9. thisPeriodbehaviors(“2”, 

Arrays.toString(joinPoint.getArgs()),this.n
ame); 

10. }
}

Fig 2. Functions pseudo code 
 

Line 1, shows an annotation which means: 
whenever an Unlock() instruction executed, the 
extractor&convertor(…) method, should be 
executed immediately. Line 2, shows an 
annotation which means: right before the 
execution of a Lock() instruction, the 
extractor&convertor(…) method, should be 
executed. Line 3 is the method sign and line 4, is 
for obtaining the name of the event which caused 
the extractor&convertor(…) method to be 
executed. In line 5 to 10, based on the name of 
event (lock or unlock), a specific character will 
be appended to a specific time series. In this way 
all the lock() and unlock() events which are 
issued from threads at runtime, are caught and 
converted to time series. 

ApectJ compiler. The task of this compiler is 
weaving two Java functions to the target 
multithread programs in the locations which are 
specified by annotations above the method. 

We mentioned that, one of the problems in 
runtime verification approaches is source code 
instrumentation step. The instrumentation is a 
time consuming task and when the verification 
logic is complex, it could be inefficient at 
runtime, both in time and space. But our two 
Java functions which are weaved to the target 
multithread program, are easy and light weight 
thus their runtime overhead is negligible. 

As we said, there are two Java functions for 
extracting dedicated behavior and time series 
generating goals. Time series is a set of 
observations from past until present, denoted by 

s(t-i) {i= 0.. P }, where P is the number of 
observations. Time series prediction is to 
estimate future observations, let's say s (t+i) for 
{i= 1.. N}, where N is the size of prediction 
window. Also, a univariate time series refers to 
the set of values over the time of a single 
quantity.  

The next component in our model is "Online 
Lock Tracker". According to Figure 1, this 
component takes the deadlock-prone behavior 
from "Behavior extractor & Time series 
generator" component at runtime and draws a 
dependency graph. This dependency graph will 
be updated whenever a thread issues a deadlock-
prone behavior.  

The "predictor" component takes the 
generated time series from "Behavior extractor & 
Time series generator" and tries to predict the 
next members of the time series. In a multithread 
program, the order of executed instructions of a 
thread could be affected by other threads 
executions. This fact makes the concurrent 
systems nondeterministic thus it is hard to 
predict the future thread behavior. We can't 
assume any pre-defined generator for the time 
series which are representing threads behavior. 
This property makes the statistical prediction 
techniques useless for our purpose. Because the 
statistical prediction techniques, assume that a 
time series is generated by linear or nonlinear 
process, but the selection of the suitable 
nonlinear or linear model and computation of its 
parameters is a difficult task for a practical 
problem without a priori knowledge about the 
time series[10]. The prediction requirements of 
our model lead us to use artificial intelligence 
prediction techniques. Time series prediction 
techniques which are based on AI use several 
Artificial Neural Networks [10]. Based on the 
properties of time series, there are different 
network topologies and learning algorithms. The 
selection of a proper network model and 
adjustment of its parameters should be carried 
out by considering the problem requirements. 

The predictions of the “predictor” component 
are also in the form of time series. These 
predictions and current dependency graph (the 
output of “online lock tracker” component) are 
injected to the "Decision maker" component. 
This component is responsible for deciding about 
the deadlock possibility in the next period. We 
try to clarify our model using an example. 
Assume that we have four threads named 
T1,…,T4 and five locks named L1, …,L5. Also 
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assume the current dependency graph is 
something like Figure 3 (a). This graph 
represents that T1 has held L1 and L3 and wants 
to hold L2 which held by T2 thus T1 stops 
proceeding and waits until T2 releases L2. Also 
T4 has held L5 and wants to hold L3 which held 
by T1 thus T4 stops proceeding. Suppose the 
predictions of "Predictor" component are the 
following: 

“Predictor” component predictions �
T3={ will request L5}, T2={ will request L4} 

"Decision maker" takes current lock graph 
and predictions and composes them together to 
construct an abstract graph. Afterwards, decision 
maker searches the abstract graph to find a cycle. 
If so, it reports a possibility of deadlock in the 
next period. Figure 3 (b) shows the abstract 
graph of our example as a composition of 
predictions and dependency graph.  

 

Fig 3 (a). Current lock graph                                       Fig 3(b). Resulted abstract graph 
 

In our example, the abstract graph has a cycle, 
therefore the "Decision maker" component reports: 
(1) a deadlock possibility in the next period and (2) 
T1 to T4 as the threads will be involved in this 
deadlock. But, if the predictions are:  

“Predictor” component predictions �
T3={will request L5}, T2={ will request L4 and 
will release L2} 

For this case, Figure 4 shows the abstract 
graph where there is not any cycle. Therefore, 
the "Decision maker" component will not report 
any possibility of deadlock in the next period. 

 
Fig 4. Resulted another abstract graph 

 

3.2 Applying the Extensions 
In our previous work we used a recurrent 

neural network named non-linear autoregressive 
(NAR) in predictor component. A NAR network 
tries to predict the future element of a given time 

series using d last values of that series [18]. That 
is, NAR network assumes the future element of a 
series is a function of its last values (Formula 1).  

y�t� � f�y�t � 1�, y�t � 2�, … . , y�t
� d��          �1� 

The structure of NAR network has been 
shown in Figure 5. This network has d inputs, 
each for one of the last values of time series. 

 
Fig 5. Structure of a NAR network 

We named d as the delay parameter and it is 
one of the important factors which directly 
imposes the precision of predictions in a 
predictor neural network. Suppose in a time 
series each element is dependent on two last 
elements, That is y�t� � f�y�t � 1�, y�t � 2��. If 
we try to predict y�t�  using a predictor neural 
network such as NAR, the most accurate results 
will be acquired if delay � 2 . Actually in this 
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way the network considers two last elements in 
predicting the future element. In previous work 
we obtained the proper value for delay parameter 
using “try & fail” approach. That is, we gathered 
the runtime behavior of our multithread test 
program and converted them into the time series. 
Then we tried to predict the future members of 
test time series, using multiple NAR networks so 
that every network had a different value for delay 
parameter from others. After that we chose the 
delay value of a network which made the most 
precise predictions.  

In this work we improve the prediction 
precision of our “predictor” component, by 
configuring the delay parameter of network using 
a time series analysis methods. “Embedded 
dimension” is a factor which determines the 
relationships among the past and future members 
of a time series [19]. The value of the 
“Embedded dimension” for a time series 
represents the optimum number of last elements 
which every element is dependent on. Therefore 
we apply the “Embedded dimension “as the 
delay parameter in our predictor network. To 
obtain the “Embedded dimension” of a time 
series there are multiple approaches. The most 
known approach is False-Nearest-Neighbor, 
algorithm. This algorithm was firstly proposed 
by Kennel et al [20]. The calculation of the 
“Embedded dimension” allows one to extract the 
process behavior parameters from the observed 
series of events [19]. The predictor network can 
be further configured according to the obtained 
results from False-Nearest-Neighbor (FNN), in 
order to remember the required number of last 
elements in time series. 

In this work, in addition to applying 
“Embedded dimension” as the delay parameter, 
we use “Nonlinear Autoregressive with External 

input” (NARX) network instead of NAR network. 
Because in our model the major task of the 
predictor network is predicting threads behavior 
at runtime. But the behavior of threads is not 
completely separate from each other, actually the 
future behavior of each thread is affected by 
other threads past and current behavior. Thus we 
need a prediction methodology which could 
satisfy this requirement. As it is obvious, the 
NAR does not consider an external input in its 
prediction procedure. Because of this limitation 
of NAR, it may not meet our prediction 
requirements properly. We need a prediction 
method which could consider other series (that is, 
other thread’s behavior) in predicting a time 
series. 

NARX network, like NAR network, is a 
recurrent network with an external input [21]. 
The main idea of recurrent networks is providing 
a weighted feedback connection between layers 
of neurons and adding time significance to entire 
network. Therefore, recurrent neural networks 
simulate a temporal memory and are suitable for 
tasks like prediction which need a memory for 
the past events. NARX network assumes the 
future element of a given time series is a function 
of its last elements and another series last 
elements (Formula 2). 
y�t � 1� � f�y�t�, y�t � 1�, … . , y�t

� d�, x�t�, x�t � 1�, … . , x�t
� k�� �2�  

Using this external input, it is possible to 
predict a time series considering the last 
elements of the time series under prediction and 
also considering other time series last elements. 
Figure 6 shows our extended “Predictor” 
component. 
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Fig 6. The extended “Predictor” component 

 

Fig 7. The NARX networks of example 
 
To clarify the differences between the 

previous and current “Predictor” component at 
runtime, we use an example. Suppose there are 
three time series at runtime, then the "predictor" 
component will have three networks, each for 
predicting one of the series future elements. Each 
network uses some last members of target time 
series named y(t), and some last members of the 
other series named x(t), as its inputs. Therefore 
the new predictor networks have been shown in 
Figure 7, but the networks of our “previous” 
predictor component have been shown in Figure 
8. It is obvious from the Figure 7 that, in the 
“predictor” component there are three NARX 
networks, each for predicting one of the threads 

(time series) future behavior. The output of a 
NARX network is a function of its two inputs 
named x(t) and y(t), therefore each network takes 
a target time series last behavior and another 
time series which represents the last behavior of 
the other threads. Future behavior of y(t) 
predicted by its past behavior and also the past 
behavior of x(t) and the number of last behavior 
obtained by FNN algorithm. 

But in our previous work for this example, 
we there were three NAR networks and Future 
behavior of y(t) predicted by only its past 
behavior and the number of last behavior 
obtained by “try & fail ” approach. 
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Fig 8. The NAR networks of example 
 

4. Evaluation of the results 

4.1 Experiments 
Our model needs a preparation phase before 

that it could be used at runtime. This phase is 
related to configuring and training the predictor 
networks. For this reason first of all we should 
run the target multithread program for a while 
and gather the generated time series by 
"Behavior extractor & Time series generator" 
component during these test runs. We named 
these time series training phase information. 
Therefore we have to apply this information to 
train the networks and to measure the embedded 
dimension of time series using False-nearest-
neighbor algorithm. Afterwards the obtained 
embedded dimensions should be used as the 
delay parameters in the networks. After this 
phase our model is ready to be used at runtime. 
We tested our proposed model using a Java 
written multithread program which consists of 50 
threads and 10 shared locks. We will refer to the 
test multithread program as the target program in 
the remaining of this paper. We ran the target 
program 100, 500 and 1000 times. We measured 

and divided the failure rate in predicting future 
behavior of threads in four categories:  

1. Failure rate based on our previous work [4] 
(which we: (1) considered no embedded 
dimension as the delay parameter and (2) did not 
count the other threads behavior in predicting 
each thread behavior)  

2. Failure rate when we count the other 
threads behavior in predicting each thread 
behavior  

3. Failure rate when we include embedded 
dimension as the delay parameter  

4. Failure rate when we: (1) include 
embedded dimension as the delay parameter and 
(2) count the other threads behavior in predicting 
each thread behavior  

Each category was considered using different 
trains, validations and test sets. Tables 1 to 4 
show results using Markov Chain where 15%, 
20%, 30% and 40% of data were respectively 
used for testing and 85%, 80%, 70% and 60% of 
data were respectively used for validating and 
training the networks. Similarly, Tables 5 to 8 
show results using NARX model where 15%, 
20%, 30% and 40% of data were respectively 
used for testing and 85%, 80%, 70% and 60% of 
data were respectively used for validating and 
training the networks.  

 
Table 1. Failure rate using markov chain with 15% test data and 85% validation and train data 

Train Data Percentage Validation Data Percentage Test  Data PercentageFailure RateRuns
70% 15% 15% -2.16 100 
70% 15% 15% -2.3 500 
70% 15% 15% -2.5 1000
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Table 2. Failure rate using Markov Chain with 20% test data and 80% validation and train data 

Train Data Percentage Validation Data Percentage Test Data PercentageFailure RateRuns
65% 15% 20% -2.2 100 
65% 15% 20% -2.45 500 
65% 15% 20% -2.36 1000 

Table 3. Failure rate using Markov Chain with 30% test data and 70% validation and train data 

Train Data Percentage Validation Data Percentage Test  Data PercentageFailure RateRuns
55% 15% 30% -2.39 100 
55% 15% 30% -2.49 500 
55% 15% 30% -2.62 1000 

Table 4. Failure rate using Markov Chain with 40% test data and 60% validation and train data 

Train Data PercentageValidation Data Percentage Test  Data PercentageFailure RateRuns
45% 15% 40% -3.59 100 
45% 15% 40% -3.89 500 
45% 15% 40% -3.87 1000 

Table 5. Failure Rate using NARX with 15% test data and 85% validation and train data 

Failure RateTrain Data 
Percentage 

Validation Data 
Percentage 

Test Data  
Percentage 

Environment 
Conditions 

Embedding  
Dimension 

Runs 

6.119e-1 70% 15% 15% NONO100 
6.054e-1 70% 15% 15% NOYES 100 
6.043e-1 70% 15% 15% YES NO100 
5.801e-1 70% 15% 15% YES YES 100 
8.719e-1 70% 15% 15% NONO500 
4.57e-1 70% 15% 15% NOYES 500 

5.962e-1 70% 15% 15% YES NO500 
4.411e-2 70% 15% 15% YES YES 500 
8.212e-1 70% 15% 15% NONO1000 
4.008e-1 70% 15% 15% NOYES 1000 
6.009e-1 70% 15% 15% YES NO1000 
3.089e-1 70% 15% 15% YES YES 1000 

Table 6. Failure Rate using NARX with 20% test data and 80% validation and train data 

Failure RateTrain Data  
Percentage 

Validation Data 
Percentage 

Test Data  
Percentage 

Environment 
Conditions 

Embedding  
Dimension 

Runs 

6.093e-1 65% 15% 20% NONO100 
6.043e-1 65% 15% 20% NOYES 100 
6.085e-1 65% 15% 20% YES NO100 
5.221e-1 65% 15% 20% YES YES 100 
8.332e-1 65% 15% 20% NONO500 
4.431e-1 65% 15% 20% NOYES 500 
5.101e-1 65% 15% 20% YES NO500 
4.01e-2 65% 15% 20% YES YES 500 
8.77e-1 65% 15% 20% NONO1000 

3.981e-1 65% 15% 20% NOYES 1000 
6.764e-1 65% 15% 20% YES NO1000 
3.821e-1 65% 15% 20% YES YES 1000 
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Table 7. Failure Rate using NARX with 30% test data and 70% validation and train data 

Failure RateTrain Data 
Percentage 

Validation Data 
Percentage 

Test Data  
Percentage 

Environment 
 Conditions 

Embedding  
Dimension 

Runs 

7.498e-1 55% 15% 30% NONO100 
6.327e-1 55% 15% 30% NOYES 100 
6.59e-1 55% 15% 30% YES NO100 

6.481e-1 55% 15% 30% YES YES 100 
10.112e-1 55% 15% 30% NONO500 
6.001e-1 55% 15% 30% NOYES 500 
6.439e-1 55% 15% 30% YES NO500 
5.021e-1 55% 15% 30% YES YES 500 
9.114e-1 55% 15% 30% NONO1000 
5.11e-1 55% 15% 30% NOYES 1000 

7.872e-1 55% 15% 30% YES NO1000 
5.082e-1 55% 15% 30% YES YES 1000 

Table 8. Failure Rate using NARX with 40% test data and 60% validation and train data 

Average 
Failure 

Failure 
Rate 

Train Data 
Percentage

Validation Data 
Percentage 

Test Data  
Percentage

Environment
Conditions

Embedded 
Dimension

Runs

8.61E-01 13.309e-145% 15% 40% NONO100 
7.006e-1 45% 15% 40% NOYES 100 
8.12e-1 45% 15% 40% YES NO100 

6.006e-1 45% 15% 40% YES YES 100 
7.99E-01 14.589e-145% 15% 40% NONO500 

5.043e-1 45% 15% 40% NOYES 500 
8.229e-1 45% 15% 40% YES NO500 

4.1e-1 45% 15% 40% YES YES 500 
4.90E-01 12.984e-145% 15% 40% NONO1000

9.034e-2 45% 15% 40% NOYES 1000
5.002e-1 45% 15% 40% YES NO1000
7.001e-2 45% 15% 40% YES YES 1000

The 1st, 5th and 9th rows from every NARX 
table show the results of prediction based on our 
previous work. The failure rate of the rows 
which consider the extensions is much more 
accurate. Therefore we can say, importing the 
new extensions in this work, that is, embedded 
dimension as the delay parameter and 
considering each thread behavior in predicting 
other threads future behavior, made considerable 
improvement in prediction results particularly 
when the number of runs increases. We also 
showed the prediction results of NARX networks 
was much more accurate than the results 
obtained by Markov Chain, which is a statistical 
approach. As we stated, our test target program 
behaves randomly at runtime. Therefore, it was 
not possible to suppose an accurate model for 
Markov Chain prediction strategy. This is why 
that the failure rate of this strategy, as shown in 

Tables 1 to 4, are imprecise in comparison with 
the similar tables of the NARX prediction. 

The average results of every NARX table 
(Figure 9) show a comparative view of the 
results of this strategy. Every line marked with a 
(X,Y,Z) statement, which X means the test set 
percentage, Y means validation set percentage 
and Z means the training set percentage.  When 
the training set percentage is significantly lower 
than twofold test set percentage, the failure rate 
will increase. Also as the number of runs 
increases the effect of training is much more 
visible. According to the chart, the best overall 
result is in the case of (20, 15 and 65). This result 
is dedicated for our target multithread program 
and it may differ for other multithread programs. 

In [4], after training networks we ran target 
program 500 times and tried to predict the 
deadlock possibility during these runs. During 
these runs deadlock occurred 17 times. Our 
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approach reported 13 before their occurrences 
and missed 4. Also in 3 cases, it reported false 
positive, thus the precision was about 74%. In 
this work, after training the networks using 
considered extensions, we again ran test 
multithread program 500 times to see how many 
deadlocks will be reported correctly. It results 15 
deadlocks during 500 times. Our model, this time, 
reported 14 and missed just one deadlock not 
reported; also it didn’t report any false positive. 
This time, the precision was about 88%. In 
comparison with our previous work [4], the 
extensions made a clear improvement in the 
results up to 15%. 

5. Conclusion 

Online potential deadlock detection 
techniques received lots of attention in recent 
years. But these techniques often are not cost 
efficient, neither in time or space. Also they need 
extra programmer effort to instrument the code 
and in some cases the results of these techniques 
may come too late. Considering these problems 
we proposed a novel online model to predict the 
deadlock at runtime in multithread programs 
rather than discovering deadlocks by pre-running 
some execution traces to find the potential 
deadlocks. In our proposed model the main 
runtime overhead is through the predictor 
component which predicts the future behavior of 
threads using neural network. In this work we 

used the "Nonlinear Autoregressive with external 
input (NARX)" network. The learning phase of 
NARX network has the order of complexity 

)( 3nO in worst case [22]. But this complexity is 
related to offline phase of our proposed model 
and once the networks were trained, then at 
runtime the output of predictor will be generated 
with a lower order of complexity, therefore our 
model doesn‘t force considerable overhead at 
runtime. Also our model could be execute on a 
completely different core from the main program 
and because of the simplicity of instrumentation 
logic it doesn‘t interfere in the target program 
execution. 

In this work we extended our previous work 
in two ways:  

1. Using time series analysis approaches in 
configuring predictor network parameter  

2. Using NARX network instead of NAR 
network.  

The obtained results showed that the 
extensions described in this paper, made 
improvement in the prediction of potential 
deadlocks. The configuring a predictor neural 
network considering the problem specification 
and requirements resulted the more precise 
predictions. Because of this experience, in our 
future work, we are planning to configure the 
predictor networks parameters based on the static 
analysis and structure of the target multithread 
program, we hope to obtain more accurate results. 

 

Fig. 9. Average results of NARX strategy with different test, validation and train data 
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