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Abstract

Nowadays, nanotubes are used widely as container agents to transport bioactive peptides, proteins, nucleic acids,
and drugs, and used to deliver their cargos to cells and organs in human bodies. In this work, the possibility of the
formation of stable composite between carbon nanotubes and skin anti-cancer drugs has been investigated. The
nanotube used in this study includes 60 C atoms of (6,6) type. Density functional theory-based methods (B3LYP/6-
31G) show that the composites between drugs (aminolevulinic acid and tretinoin) and nanotube are more stable
than the single agents. The difference in the hybridization of C and O atoms can cause to a difference between
bond lengths, angles, and charges. The natural bond orbital calculations indicate that some donor atoms (lone pair
of oxygen or nitrogen atoms) can transfer electron to acceptor atoms (σ * or π * in carbon nanotube) and the
occupancy of the oxygen lone pair with increasing p orbital share of the lone pair electrons of oxygen decreases.
Then, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the
HOMO-LUMO bandgap, and the electronic chemical potential (μ) for the lowest energy derived to estimate the
structural stability of the composites have been investigated. Results show that nanotube-tretinoin is more stable
than nanotube - aminolevulinic acid.
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Background
Skin cancer is the most common form of human cancer.
It is estimated that over one million new cases occur
annually. The annual rates of all forms of skin cancer
are increasing each year, representing a growing public
concern. As a result, many drugs have been developed
to treat skin cancer. The available anti-cancer drugs have
distinct mechanisms of action which may vary in their
effect on different types of normal and cancer cells. In
addition, there are very few demonstrable biochemical
differences between cancerous cells and normal cells.
For this reason, the effectiveness of many anti-cancer
drugs is limited by their toxicity to normal rapidly
growing cells in the intestinal and bone marrow areas.
A final problem is that cancerous cells which are initially
suppressed using a specific drug may develop a resistance
to that drug. For this reason, cancer treatments may
consist of using several drugs in combination for varying

lengths of time [1-3]. The anti-cancer drugs that were
selected in this work are tretinoin and aminolevulinic acid.
Tretinoin, or all-trans-retinoic acid, is a naturally

occurring derivative of vitamin A (retinol). Retinoids
such as tretinoin are important regulators of cell
reproduction, proliferation, and differentiation and are
used to treat acne and photodamaged skin and to manage
keratinization disorders such as ichthyosis and keratosis
follicularis.
Topical administration of tretinoin has proved to be

effective in treating the clinical signs of photodamaged
skin. Tretinoin, a natural vitamin A metabolite, is an
anti-cancer drug used in the treatment of acute
promyelocytic leukemia. It is more commonly used to
treat skin disorders such as acne, warts, hyperpigmentation,
and reactions to sunlight [4-6]. The other drug is
aminolevulinic acid (4-oxopentanoic acid) which is to be
used in photodynamic therapy to treat a skin condition
called actinic keratosis [7].
The interesting properties of nanotubes have caused

researchers and companies to consider using them in
several fields, because carbon nanotubes have the highest

* Correspondence: marhesabi@gmail.com
1Department of Chemistry, Faculty of Science, Islamic Azad University, Rasht
Branch, Rasht 41476, Iran
Full list of author information is available at the end of the article

© 2013 Hesabi and Hesabi; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Hesabi and Hesabi Journal Of Nanostructure in Chemistry 2013, 3:22
http://www.jnanochem.com/content/3/1/22

www.SID.ir

mailto:marhesabi@gmail.com
http://creativecommons.org/licenses/by/2.0
www.SID.ir


Arc
hive

 of
 S

ID

strength to weight ratio of any known material [8,9]. The
highly regular atomic structure of carbon nanotubes
(CNTs) and the large degree of the structure purity make
it accessible to accurate computer modeling by a variety
of theoretical techniques. CNTs have emerged as a
new alternative and efficient tool for transporting and
translocating therapeutic molecules [10,11]. It is well
recognized that the transport and bioavailability of
drugs are significant factors in improving their distri-
bution, therapeutics, selectivity, and in ameliorating
their toxic effects [12-14]. Single-wall carbon
nanotubes (SWNTs) with very high specific surface
areas can be easily derivatized with biomolecules ei-
ther through chemical attachment, adsorption, or en-
capsulation. Such bioconjugates on SWNTs have the
ability to deliver bioactive molecules across cell mem-
branes and even into the cell nuclei [15,16]. Scientists
have shown that nanotubes can release drugs in cells
without damaging the healthy cells of the tissue. The
advantages of using a carbon nanotube-assisted drug
delivery system include efficient targeting and amplifi-
cation of tumor targeting due to an enhanced perme-
ability and retention effect of the carbon nanotube
which can be efficiently loaded with the drug. The
use of a non-toxic drug which is activated to its cyto-
toxic form in the tumor cells helps preserve the non-
targeted normal tissue of the patient, thereby poten-
tially reducing the side effects resulting from the ther-
apy [17-19].
In this present work, the interactions between carbon

nanotubes and the composites of these drugs with nano-
tube (1, nanotube - aminolevulinic acid; 2, nanotube -

tretinoin) based on the density functional theory (DFT)
methods and natural bond orbital (NBO) analysis have
been investigated.
DFT, in particular, the exchange-correlation B3LYP

hybrid density functional, is widely used in molecular
modeling studies to predict structure, spectroscopic
parameters, and energy changes of small-, middle-, and
large-size molecules [20,21].
Finally, the lowering highest occupied molecular

orbital-lowest unoccupied molecular orbital (HOMO-
LUMO) energy gaps have also been discussed.

Results and discussion
The hybrid values, Mulliken charges, bond lengths, and
angles are shown in Table 1.
The results show that by increasing the p orbital

share in the hybridization, the bond length increases.
So, this hybrid can affect the bond angle, too. The
Mulliken charges for the oxygen atoms in each
compound are presented. The charge on the N in
nanotube - tretinoin is smaller than that of nanotube -
aminolevulinic acid. Therefore, the interaction in
nanotube - tretinoin is stronger than that of nanotube
- aminolevulinic acid that causes large negative charge
on it (Table 2).
From the optimized structures, the relative and

formation energies, the HOMO-LUMO bandgap as
differences between the HOMO and LUMO, and the
electronic chemical potential (μ) as half of the energy
of the HOMO and LUMO have been found as a mea-
sure of the structural stability properties. Table 2

Table 1 Calculated parameters at B3LYP/6-31G level

Agent C O C-O bond
length/ _A

C-C-O bond
angle

C Mulliken
charge

O Mulliken
chargeHybrid Hybrid

Nanotube - aminolevulinic acid SP3.45 SP1.97 1.420 114.17 0.2255 −0.5810

Nanotube - tretinoin SP3.36 SP1.99 1.412 114.37 0.2379 −0.5937

SP, s orbital/p orbital.

Table 2 Obtained parameters for two composites at B3LYP/6-31G level

Agent Energy/kcal mol−1 ΔE/kcal mol−1 HOMO LUMO HOMO-LUMO gap μ

(ev) (ev) (ev) (ev)

Nanotube 582,302.6915 - −3.65 −2.07 1.58 −2.86

Aminolevulinic acid 1,726,959.5211 - −4.99 −0.83 5.82 −2.91

Tretinoin 1,442,730.5983 - −4.36 −1.89 2.47 −3.13

Nanotube - aminolevulinic acid 284,228.5235 −2,025,033.6892 −3.69 −2.10 1.59 −2.90

Nanotube - tretinoin 0 −2,025,033.2898 −3.57 −2.04 1.53 −2.81
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signifying that such functionalization is of favorable sta-
bility. These parameters indicate that nanotube - tretin-
oin is more stable than nanotube - aminolevulinic acid
and both of them are more stable than the single agents.
Energy data show that the electron correlation in-
creases the relative energy of less stable composite.
The nanotube - tretinoin has the lowest HOMO-
LUMO bandgaps; therefore, they confirm the stability
of this compound.
As can be observed in Table 3, the composites be-

tween drugs and nanotube are more stable than other
drugs.
The delocalization of electron density between the

filled Lewis-type NBOs and empty anti-bonding non-
Lewis NBOs leads to the loss of occupancy from the

localized NBOs of the idealized Lewis structure into the
empty non-Lewis orbitals. For each donor NBO and
acceptor NBO, the stabilization energy is presented as
the second-order perturbation interaction energy (E2)
[27,28]. The E2 energy values confirm the stability of
nanotube - tretinoin, too.
These results show that the hyperconjugation between

the lone pair orbitals of oxygen as donors and some σ *
or π * orbitals as acceptors can occur. The most important
common interaction in the nanotube -tretinoin composite
is LP(2)O → π * C37 to C43 and in the nanotube -
aminolevulinic acid composite is LP(2)O → π * C47 to C53.
Tretinoin has the highest energy and can make the
structure more stable than the other drug. Also, the
occupancy decreases with increasing thep orbital share
of the lone pair electrons of oxygen.

Conclusions
Based on the B3LYP/6-31G-optimized ground-state
geometries, the NBO analysis of composites has demon-
strated a charge transfer and effective energy interaction
between the oxygen lone pair (LPO) and the anti-bonding

Figure 2 Aminolevulinic acid.Figure 1 Nanotube (6,6).

Table 3 Calculated natural hybrids, occupancies, and the second-order perturbation energy E2 at B3LYP/6-31G level

Agent Lewis-type NBOs Non-Lewis NBOs E2/kcal mol−1 ∑E2/kcal mol−1

Type Hybrid Occupancy Type Occupancy

Nanotube - aminolevulinic acid LP(1)O SP1.95 1.95702 σ * C53 to C58 0.02860 0.89

LP(2)O SP99.99 1.76124 σ * C47 to C53 0.02860 5.47 28.49

π * C47 to C53 0.03096 22.13

Nanotube - tretinoin LP(1)O SP1.87 1.95742 σ * C35 to C37 0.02922 0.82

σ * C37 to C43 0.02229 1.32

π * C37 to C43 0.24365 5.23

LP(2)O SP99.99 1.77605 σ * C35 to C37 0.02922 0.51 29.23

σ * C37 to C43 0.02229 0.71

π * C37 to C43 0.24365 20.64

LPO, oxygen lone pair.
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IDorbitals (σ * or π *). As can be observed, the most im-
portant common interaction is LPO → π * C37 to C43 for
nanotube - tretinoin. This factor provides more stability
in this drug. Also, the NBO analysis show that by an in-
crease of thep orbital share, the occupancy of the LPO
decreases.
To justify the structural stability of composites, the

HOMO-LUMO bandgap, the electronic chemical poten-
tial (μ), the second-order perturbation energy E2, the
Mulliken charges, and the occupancy have been found
as a measure of the structural stability properties for the
purpose.
Results indicate that nanotube - tretinoin has

higher E2 and μ energies and lower HOMO-LUMO
gap and Mulliken charge. Therefore, this composite
is more stable than nanotube- aminolevulinic acid,
and both of them are more stable than the single
drug.

Methods
Computational method
All of the calculations were carried out using a per-
sonal computer which has an Intel® Pentium® dual
CPU with 2-GB RAM (Intel®, Santa Clara, CA, USA).
At first, a nanotube including 60 C atoms (6,6) is
formed using a nanotube modeler package [22]. Then,
this nanotube is optimized using GaussView [23] and
Gaussian 03 [24] softwares(Gaussian Inc., Wroclaw,
Poland) by DFT/B3LYP method and 6-31G basis set
(Figure 1). The selected drugs (aminolevulinic acid
and tretinoin) were made using GaussView and optimized
using Gaussian 03 by B3LYP functional with the basis set
6-31G (Figures 2 and 3) [25]. Then, the composites
between nanotube and drugs were formed and opti-
mized by B3LYP/6-31G method (Figures 4 and 5).
Molecule hybridizations, bond angles, Mulliken charges,
and bond lengths were calculated. The delocalization

Figure 4 Nanotube - aminolevulinic acid.

Figure 3 Tretinoin.
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of electron density between the filled lone pair of
Lewis-type NBOs and empty anti-bonding non-Lewis
NBOs was obtained by NBO analyzing at B3LYP/6-
31G level [26].
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