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 In this article, the second quantization method has been used to investigate some thermodynamic properties of spin-polarized metallic 
nanowire with radius 5 and 10 nm and infinite length, in the presence of magnetic field at zero temperature. The spin-polarization parameter 
corresponding to the equilibrium state of the system has been plotted as a function of density for different values of the magnetic field. We have 
concluded that for the magnetic fields less than 100 T at high densities, the system nearly becomes unpolarized. However, for higher magnetic 
fields, the system has a substantial spin-polarization, even at high densities. Finally, we have calculated the pressure and incompressibility vs. 
the density for different values of the magnetic field. 
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INTRODUCTION 

 
 In recent years, nanostructured magnetic materials, due to 
their interesting physical properties, are of special interests in 
nanophysics [1,2]. One of the low-dimensional systems is 1D 
structures. Their magnetic properties are studied since they are 
the simplest systems in structural view point [3,4]. Physically, 
stable magnetic metallic nanowires are of the most important 
nanostructures, and various techniques have been used to 
prepare and study them [5,6]. They have potential applications 
in electronics, optoelectronics and memory devices [7-10]. 
Magnetic nanowires have several applications in magnetic and 
electric nanodevices [11-14]. Therefore, they are important 
materials for data storage and information processing [15,16]. 
Jin et al. [17] showed that the magnetic coercivity for the 
applied field parallel to the nanowires is larger than that for 
the applied field perpendicular to the nanowires. Zhang et al. 
[10] investigated the magnetic properties of β-FeOOH 
nanowire arrays using a SQUID magnetometry. Also, they 
investigated the size-dependent magnetic properties. Xue et al. 
[18] studied the magnetic properties of nanowire arrays at 
room temperature using the vibrating sample magnetometer 
and Mossbauer spectrometer. Tung et al. [19] calculated the 
magnetic and electronic properties of  both  linear  and  zigzag 
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atomic chains of all 3D transition metals using the density 
functional theory with the generalized gradient approximation. 
Arantes et al. [20] investigated the electronic, structural and 
magnetic properties of Manganese doped Germanium 
nanowires using ab initio total energy density functional 
theory calculations.  
 In our previous papers, we have computed some 
thermodynamic properties of metallic nanowire in the absence 
of magnetic field [21]. In present work, we calculate the 
thermodynamic properties of a metallic nanowire using the 
degenerate electron gas model with the second quantization 
method in the presence of magnetic field. 
 
SECOND QUANTIZATION METHOD 
 
 We consider a pure homogeneous spin-polarized metallic 
nanowire composed of spin-up (+) and spin-down (−) 
electrons in a positive back ground. We denote the number 
densities of spin-up and spin-down electrons by    and   , 
respectively. We introduce the spin-polarization parameter 
  as follows, 

 

 

   




 
                                                                     (1) 

where 11   , and        is the total density of 
system. 
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Second quantization method is used to calculate the energy of 
the system [21-24]. 
 In this method, we write the one-body )ˆ( 1O  and two-body 

)ˆ( 2O operators in terms of the creation )( a and 
annihilation )(a operators, and then we determine the 
expectation value of these operators for a many-body system,  
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In the absence of magnetic field, the Hamiltonian of the 
system has the following form [21],  
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where T is the kinetic energy and V is the inter-particle 
interaction potential. 
 For a nanowire (in the cylindrical coordinates), the single-
particle wavefunction is as follows [22], 
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where R  is the radius, L is the length of nanowire, 

  is the 
spin wave function, and  rJ mnm   is the Bessel function of 
order m . Rmnmn    determined by boundary condition 

.0







R
rJ mnm   The single-particle states are specified by the 

quantum numbers m , n  and l , where l  is the wave number of 
the free motion of electrons along the axis of the nanowire.  
On the other hand, the energy levels are as follows, 
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For the electron gas model of nanowire, H is written by the 
following formula, 
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In above equation,   is convergence coefficient, where 0  
in the thermodynamic limit (  NL , ). In Eq. (7), 

bH  is 
the background Hamiltonian, and 

belH 
 is the potential 

corresponding the interaction of electrons with background, 
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In the thermodynamic limit, 

bH and 
belH 
vanish. 

Now, we rewrite the Hamiltonian in terms of a  and a  as 
follows, 
 

 10
ˆˆˆ HHH                                                                      (10) 
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In above equation 
 
 

 

   

   2
21

2
210

2 2
21

2
21

)4( zzrr

eeV
zzrr







         (13) 

 
 
Each 

ik denotes to 
iii lnm ,, .

0Ĥ is the unperturbed Hamiltonian 
that representative of a non-interacting Fermi system, and 

1Ĥ  

is considered as the perturbation term. 
Now, we calculate the matrix elements in Eq. (11) as follows, 
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                                                                                              (14) 
 
where 

21 rrr  ,  and  xK0
 is the modified  Bessel function of 

second kind. 
 We can solve above integrals numerically by Simpson 
method in Maple software. Finally, we consider the system in 
the thermodynamic limit  0 [21]. 
 Now we consider the case in which the spin-polarized 
metallic nanaowire is under the influence of a strong magnetic 
field. Taking the uniform magnetic field along the z 
direction, kBB ˆ

 , the spin-up and spin-down particles 
correspond to parallel and antiparallel spins with respect to the 
magnetic field. Therefore, the contribution of the magnetic 
energy of the metallic nanaowire is 
 

 
BME ZM 

                                                                   
(15) 

 
where

zM  is the magnetization of metallic nanowire, which is 
given by 
 

 eZ NM                                                                        (16) 

 
In the preceding equation,

T
j

e
26-107-928.47637   is the 

electron magnetic moment. Using the perturbation theory for 
the ground state energy (E), 
we have  
 

 MEEEE  )1()0(
           (17) 

 
Where 
 

 FHFE 0
)0( ˆ                                                                

(18) 

 

 FHFE 1
)1( ˆ                                                                 (19) 

 
 

)0(E  is the ground state energy of non-interacting Fermi gas 
and )1(E  is the first order energy. In above equations, F  is 

the normalized ground state wave function of the system. The 
ground state of the system is specified by the quantum 
variables lnm ,1,0   [25]. 
 
CALCULATION OF ENERGY 

 
 In this section, we calculate the energy of spin-polarized 
metallic nanowire as follows. The Fermi momentum of spin-
up particles is  

Fl , and Fermi momentum of spin-down 
particles is  

Fl . These are determined by the calculation of the 
expectation value of the number operator as fallows, 
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where  x  is the step-function. 
We can write the Fermi momentum versus the total number 
density (ρ) [26], 
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Now, we calculate the expectation value of 

0Ĥ , 
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and, we should calculate the expectation value of 

1Ĥ , 
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where, 
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In above equation, we should consider the following relations, 
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We calculate the matrix element in Eq. (23) as follows, 
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Using the above calculations, we get the following relation for 
the total energy per particle of a spin polarized metallic 
nanowire in the presence of magnetic field, 
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RESULTS AND DISCUSSION 
 
 We have calculated some thermodynamic properties of a 
metallic nanowire in the presence of magnetic field. Our 
results are as follows. 
 In Fig. 1, we have presented the ground-state energy per 
particle of spin-polarized metallic nanowire (with radius R = 
10 nm) as a function of the density for different values of the 
magnetic field. For each value of the magnetic field, it is seen 
that the energy per particle is increased monotonically as the 
density increases. 
 However, the increasing rate of energy vs. density 
increases as the magnetic field increases. This indicates that at 
higher magnetic fields, the increasing rate of the contribution 
of magnetic energy vs. density is more than that at lower 
magnetic fields. In Fig. 2, we have given the energy of 
metallic nanowire for two different values of radius at 
magnetic field B = 10 T. We can see that for each density, the 
energy increases by increasing the radius. 
 In Fig. 3, the spin-polarization parameter corresponding to 
the equilibrium state of the metallic nanowire (with radius R = 
10 nm) has been plotted as a function of the density for 
different values of the magnetic field. It is seen that at each 
magnetic field, the magnitude of spin-polarization parameter 
decreases by increasing the density. 
 Figure 3 also shows that for the magnetic fields less than 
100 T, at high densities, the system nearly becomes 
unpolarized. However, for higher magnetic fields, the system 
has a substantial spin-polarization, even at high densities. 
Figure 4 shows a comparison between the spin-polarization of 
different radius of metallic nanowire. It is seen that at low 
densities, the spin polarization has a higher value as the radius 
increases. However, at high densities the spin polarizations of 
different radius become nearly identical. 
 From the energy of spin-polarized metallic nanowire, at 
each magnetic field, we can calculate the corresponding 
kinetic pressure  kineticP  using the following relation [27], 
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Our results for the kinetic pressure of spin-polarized metallic 
nanowire (with radius R = 10 nm) vs. the density for different 
values of the magnetic field have been shown in Fig. 3. 
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Fig. 1. The ground  state energy per particle as a function of  
            density at B = 0 (solid curve), 10 (dashed curve), 100  
           (dotted  curve) and  1000 T (dash-dot curve) for  R =  

              10 nm. 
 

 
Fig. 2. The ground state energy per particle as a function of   
           density  for R = 5 (solid curve) and 10 nm (dash-dot  

              curve) at B = 10 T. 
 

 
Fig. 3. The spin-polarization parameter at the equilibrium state 
           of   system   as  a  function  of   density  at  B = 0  (solid 
           curve), 10 (dashed curve), 100 (dotted curve) and  1000 
           T (dash-dot curve) for  R = 10 nm. 

 

 
Fig. 4. The spin-polarization parameter at the equilibrium state  
           of  system  as  a  function  of  density   for  R = 5  (solid  
           curve) and 10 nm (dash-dot curve) at B = 10 T. 

 

 
Fig. 5. The pressure  at  the  equilibrium  state of system as a  
            function of density at B = 0 (solid curve), 10 (dashed  
           curve),  100 (dotted   curve)   and   1000 T  (dash-dot  

             curve) for R = 10 nm. 
 

 
Fig. 6. The pressure  at  the equilibrium state of system as a   
            function of density for R = 5 (solid curve) and 10 nm  

              (dash-dot curve) at B = 10 T. 
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Fig. 7. The incompressibility of spin-polarized metallic  
            nanowire  vs. density  at  B = 0 (solid curve), 10  
           (dashed  curve), 100 (dotted curve)  and 1000 T  

                  (dash-dot curve) for R = 10 nm. 
 

 
Fig. 8. The  incompressibility  of  spin-polarized   metallic  
            nanowire vs. density for R = 5 (solid curve) and 10  

                nm (dash-dot curve) at B = 10 T. 
 

 
 It is obvious that as the density increases, the difference 
between the pressures of spin-polarized metallic nanowire at 
different magnetic field becomes more appreciable. Figure 5 
shows that the pressures of small magnetic fields are nearly 
identical. A comparison is made between the equations of state 
of different values of metallic nanowire in Fig. 6. This 
indicates that by decreasing the radius, equation of state of 
metallic nanowire becomes stiffer.  
The incompressibility of system  T  can be computed from 
the following relation, 
 

 B
T

BP














 ),(                                                           (30) 

 
 
 In Fig. 7, we have plotted the incompressibility as a 
function of the density for the metallic nanowire (with radius 
R = 10 nm) in the presence of the magnetic field. It is seen that 
the incompressibility is increased as the density increases. 
However, the difference between the incompressibility of 
different magnetic fields is increased as the magnetic field 
increases. We have plotted the incompressibility of metallic 
nanowire for different radius at B = 10 T in Fig. 8.  It is shown 
that the incompressibility decreases by increasing the radius, 
especially at high densities. 
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