Journal of Linear and Topological Algebra Vol. 02, No. 01, 2013, 51-57

Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames

M. S. Asgari^a and G. Kavian^{a,*}

^aDepartment of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, PO. Code 14168-94351, Tehran, Iran

Abstract. In this paper we study the duality of Bessel and *g*-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.

© 2013 IAUCTB. All rights reserved.

Keywords: G-frames, dual frames, dual g-frames.

2010 AMS Subject Classification: 46H20, 46H25, 46G05.

1. Introduction

Let \mathcal{H} denote a separable Hilbert space. A sequence $\{f_i\}_{i \in I}$ in \mathcal{H} is called a frame if there exist constants $0 < A \leq B < \infty$ such that

$$A\|f\|^2 \leqslant \sum_{i \in I} |\langle f, f_i \rangle|^2 \leqslant B\|f\|^2 \qquad \forall f \in \mathcal{H}.$$
 (1)

We call A and B the lower and upper frame bounds, respectively. The sequence $\{f_i\}_{i \in I}$ is a Bessel sequence if at least the upper bound in (1) is satisfied. For any frame $\{f_i\}_{i \in I}$ there exists at least one dual frame, i.e., a frame $\{g_i\}_{i \in I}$ for which $f = \sum_{i \in I} \langle f, g_i \rangle f_i$ for all $f \in \mathcal{H}$. If $\{f_i\}_{i \in I}$ is a Bessel sequence with bound B < 1, how can we find two

 \bigodot 2013 IAUCTB. All rights reserved.

^{*}Corresponding author.

E-mail addresses: msasgari@yahoo.com (M. S. Asgari), kaviangolsa@yahoo.com (G. Kavian).

sequences $\{g_i\}_{i\in I}$ and $\{p_i\}_{i\in I}$ such that $\{f_i + g_i\}_{i\in I}$ and $\{p_i\}_{i\in I}$ are dual frames, i.e., such that

$$f = \sum_{i \in I} \langle f, p_i \rangle (f_i + g_i) = \sum_{i \in I} \langle f, f_i + g_i \rangle p_i.$$
⁽²⁾

In this paper we aim at the more general results of the type in (2). For any Bessel sequence $\mathcal{F} = \{f_i\}_{i \in I}$ the synthesis operator is defined as follows:

$$T_{\mathcal{F}}: \ell^2(I) \to \mathcal{H}, \quad \text{with} \quad T_{\mathcal{F}}(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i f_i.$$

The analysis operator for \mathcal{F} is $T^*_{\mathcal{F}}$ and is given by $T^*_{\mathcal{F}}f = \{\langle f, f_i \rangle\}_{i \in I}$. The frame operator is the positive self-adjoint invertible operator $S_{\mathcal{F}} = T_{\mathcal{F}}T^*_{\mathcal{F}}$ and satisfies $S_{\mathcal{F}}f = \sum_{i \in I} \langle f, f_i \rangle f_i$. The reconstruction formulas are as follows:

$$f = \sum_{i \in I} \langle f, f_i \rangle S_{\mathcal{F}}^{-1} f_i = \sum_{i \in I} \langle f, S_{\mathcal{F}}^{-1} f_i \rangle f_i \quad \forall f \in \mathcal{H}.$$
 (3)

Frames were first introduced in 1952 by Duffin and Schaeffer [4] in the study of nonharmonic Fourier series, reintroduced in 1986 by Daubechies, Grossman and Meyer in [3]. *G*-frames for Hilbert spaces first formally were defined by Sun in [6].

Let \mathcal{H}, \mathcal{K} be two separable Hilbert spaces and $\{W_i\}_{i \in I}$ be a sequence of closed subspaces of \mathcal{K} , where I is a subset of \mathbb{Z} . Let $\mathcal{L}(\mathcal{H}, W_i)$ be the collection of all bounded linear operators from \mathcal{H} into W_i . Recall that a family of operators $\Lambda = \{\Lambda_i \in \mathcal{L}(\mathcal{H}, W_i) : i \in I\}$ is said to be a generalized frame, or simply a g-frame for \mathcal{H} with respect to $\{W_i\}_{i \in I}$ if there exist constants $0 < C \leq D < \infty$ such that

$$C\|f\|^2 \leqslant \sum_{i \in I} \|\Lambda_i f\|^2 \leqslant D\|f\|^2 \qquad \forall f \in \mathcal{H}.$$
(4)

The constants C and D are called g-frame bounds and $\sup_{i \in I} \Lambda_i$ is called the multiplicity of the g-frame. We call Λ a tight g-frame if C = D and it is a Parseval g-frame if C = D = 1. If the right-hand side of (4) holds, then Λ is said a g-Bessel sequence for \mathcal{H} with respect to $\{W_i\}_{i \in I}$. The representation space associated with a g-Bessel sequence $\Lambda = \{\Lambda_i\}_{i \in I}$ is defined by

$$\left(\sum_{i\in I} \oplus W_i\right)_{\ell^2} = \left\{\{g_i\}_{i\in I} | g_i \in W_i \text{ and } \sum_{i\in I} \|g_i\|^2 < \infty\right\}.$$
(5)

The synthesis operator of Λ given by

$$T_{\Lambda}: \left(\sum_{i \in I} \oplus W_i\right)_{\ell^2} \to \mathcal{H} \qquad T_{\Lambda}(\{g_i\}_{i \in I}) = \sum_{i \in I} \Lambda_i^* g_i.$$

The adjoint operator of T_{Λ} , which is called the analysis operator also obtain as follows

$$T^*_{\Lambda} : \mathcal{H} \to \left(\sum_{i \in I} \oplus W_i\right)_{\ell^2} \qquad T^*_{\Lambda}f = \{\Lambda_i f\}_{i \in I}.$$

By composing T_{Λ} with its adjoint T^*_{Λ} , we obtain the *g*-frame operator

$$S_{\Lambda}: \mathcal{H} \to \mathcal{H}$$
 $S_{\Lambda}f = T_{\Lambda}T_{\Lambda}^{*}f = \sum_{i \in I} \Lambda_{i}^{*}\Lambda_{i}f,$

which is a bounded, self-adjoint, positive and invertible operator and $CI_{\mathcal{H}} \leq S_{\Lambda} \leq DI_{\mathcal{H}}$. The canonical dual *g*-frame for $\{\Lambda_i\}_{i \in I}$ is defined by $\{\tilde{\Lambda}_i\}_{i \in I}$ where $\tilde{\Lambda}_i = \Lambda_i S_{\Lambda}^{-1}$, which is also a *g*-frame for \mathcal{H} with *g*-frame bounds $\frac{1}{D}$ and $\frac{1}{C}$, respectively. The reconstruction formulas are also as follows:

$$f = \sum_{i \in I} \Lambda_i^* \widetilde{\Lambda}_i f = \sum_{i \in I} \widetilde{\Lambda}_i^* \Lambda_i f \qquad \forall f \in \mathcal{H}.$$

For more details about the theory and applications of frames we refer the readers to [1, 5], about g-frames to [5, 6].

For using of the reconstruction formulas we need to invert the g-frame operator, which can be complicated. In the following similar to frame algorithm we use a g-frame algorithm to obtain approximations of linear operator $U \in B(\mathcal{H}, \mathcal{K})$.

Theorem 1.1 Let $\Lambda = {\Lambda_i}_{i \in I}$ be a *g*-frame with *g*-frame bounds C, D. For every $U \in B(\mathcal{H}, \mathcal{K})$, we define the sequence ${U_n}_{n \in \mathbb{N}}$ by

$$U_{n} = \begin{cases} 0 & n = 0\\ U_{n-1} + \frac{2}{C+D}(U - U_{n-1})S_{\Lambda} & n \ge 1 \end{cases}$$

Then we have $U = \lim_{n \to \infty} U_n$ with the error estimate

$$||U - U_n|| \leq \left(\frac{D - C}{D + C}\right)^n ||U||.$$

Proof. By the *g*-frame condition for each $f \in \mathcal{H}$ we have

$$-\frac{D-C}{D+C}\|f\|^2 \leqslant \langle (I_{\mathcal{H}} - \frac{2}{C+D}S_{\Lambda})f, f \rangle \leqslant \frac{D-C}{D+C}\|f\|^2.$$

Thus

$$\left\|Id_{\mathcal{H}} - \frac{2}{C+D}S_{\Lambda}\right\| \leq \frac{D-C}{D+C}.$$

Using the definition of $\{U_n\}_{n\in\mathbb{N}}$ we obtain

$$U - U_n = (U - U_0) \left(I d_{\mathcal{H}} - \frac{2}{C + D} S_{\Lambda} \right)^n.$$

Hence,

$$||U - U_n|| \leq \left(\frac{D - C}{D + C}\right)^n ||U||$$

A family of operators $\Lambda = \{\Lambda_i \in \mathcal{L}(\mathcal{H}, W_i) : i \in I\}$ is called an orthonormal *g*-basis for \mathcal{H} if it holds in the following conditions.

(1)
$$f = \sum_{i \in I} \Lambda_i^* \Lambda_i f$$
 $\forall f \in \mathcal{H}.$
(2) $\langle \Lambda_i^* g, \Lambda_j^* g' \rangle = \delta_{ij} \langle g, g' \rangle$ $\forall g, g' \in W_i, \forall i, j \in I.$

Lemma 1.2 Let $\Lambda = \{\Lambda_i \in \mathcal{L}(\mathcal{H}, W_i) : i \in I\}$ be a collection of partial isometries. Then the sequence $\{\Lambda_i\}_{i \in I}$ is a Parseval *g*-frame for \mathcal{H} , if and only if the sequence $\{\Lambda_i^*\Lambda_i\}_{i \in I}$ be an orthonormal *g*-basis for \mathcal{H} .

Proof. First note that Λ_i is a partial isometry, if and only if $\Lambda_i^* \Lambda_i$ is an orthogonal projection on \mathcal{H} . Now the claim follows from

$$\|f\|^2 = \sum_{i \in I} \|\Lambda_i f\|^2 = \sum_{i \in I} \langle \Lambda_i^* \Lambda_i f, f \rangle = \sum_{i \in I} \|\Lambda_i^* \Lambda_i f\|^2 \quad \forall f \in \mathcal{H}.$$

2. Duality of Bessel and *g*-Bessel sequences

Li and Sun in [5] expanded every Bessel sequence to a tight frame by adding some elements. In this section we show that the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame for \mathcal{H} and we prove that a Bessel sequence is an inner summand of a frame.

Let $\mathcal{F} = \{f_i\}_{i \in I}$ and $\mathcal{G} = \{g_i\}_{i \in I}$ be two Bessel sequences for \mathcal{H} with synthesis operators $T_{\mathcal{F}}$ and $T_{\mathcal{G}}$ respectively. Then we say that \mathcal{F} and \mathcal{G} are dual frames for \mathcal{H} if $T_{\mathcal{F}}T^*_{\mathcal{G}} = I_{\mathcal{H}}$ or $T_{\mathcal{G}}T^*_{\mathcal{F}} = I_{\mathcal{H}}$, i.e.,

$$f = \sum_{i \in I} \langle f, g_i \rangle f_i = \sum_{i \in I} \langle f, f_i \rangle g_i \quad \forall f \in \mathcal{H}.$$

Notation 2.1 For every countable (or finite) index set I, we define the space $\ell(I, \mathcal{H})$ by

$$\ell(I,\mathcal{H}) = \Big\{ \{f_i\}_{i \in I} : f_i \in \mathcal{H}, \text{ and } \sup_{i \in I} \|f_i\| < \infty \Big\}.$$

It is easy to check that $\ell(I, \mathcal{H})$ with the pointwise operations and norm defined by

$$\|\{f_i\}_{i\in I}\| = \sup_{i\in I} \|f_i\|,$$

is a Banach space. Let $\mathcal{B}(I, \mathcal{H})$ be the set of all Bessel sequences, $\mathcal{F}(I, \mathcal{H})$ be the collection of all frames and $\mathcal{P}(I, \mathcal{H})$ denote the set of all Parseval frames indexed by I for \mathcal{H} respectively. Then $\mathcal{B}(I, \mathcal{H})$ is a subspace of $\ell(I, \mathcal{H})$ and $\mathcal{P}(I, \mathcal{H}) \subset \mathcal{F}(I, \mathcal{H}) \subset \mathcal{B}(I, \mathcal{H}) \subset$ $\ell(I, \mathcal{H})$.

The following theorem shows that the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame for \mathcal{H} .

Theorem 2.2 Let $\mathcal{F} = \{f_i\}_{i \in I} \in \mathcal{B}(I, \mathcal{H})$ with Bessel bound B < 1. Then

$$\mathcal{F} + \mathcal{P}(I, \mathcal{H}) \subset \mathcal{F}(I, \mathcal{H}).$$

Proof. Let $\mathcal{G} = \{g_i\}_{i \in I} \in \mathcal{P}(I, \mathcal{H})$. Then for all $f \in \mathcal{H}$ we have

$$\begin{aligned} \|T_{\mathcal{F}}T_{\mathcal{G}}^*f\|^2 &= \sup_{\|g\|=1} \left| \langle T_{\mathcal{F}}T_{\mathcal{G}}^*f,g \rangle \right|^2 = \sup_{\|g\|=1} \left| \sum_{i \in I} \langle f,g_i \rangle \langle f_i,g \rangle \right|^2 \\ &\leqslant \sup_{\|g\|=1} \sum_{i \in I} |\langle f,g_i \rangle|^2 \sum_{i \in I} |\langle g,f_i \rangle|^2 \leqslant B \|f\|^2. \end{aligned}$$

Thus $||T_{\mathcal{F}}T^*_{\mathcal{G}}|| \leq \sqrt{B} < 1$, and so $I_{\mathcal{H}} + T_{\mathcal{F}}T^*_{\mathcal{G}}$ an invertible operator in $\mathcal{L}(\mathcal{H})$. If we set $\Theta = (I_{\mathcal{H}} + T_{\mathcal{F}}T^*_{\mathcal{G}})^{-1}$ and $\mathcal{U} = \mathcal{F} + \mathcal{G}$ with $\mathcal{U} = \{u_i\}_{i \in I}$. Then we compute

$$f = (I_{\mathcal{H}} + T_{\mathcal{F}}T_{\mathcal{G}}^*)\Theta f$$

= $\sum_{i \in I} \langle \Theta f, g_i \rangle f_i + \sum_{i \in I} \langle \Theta f, g_i \rangle g_i$
= $\sum_{i \in I} \langle f, \Theta^* g_i \rangle u_i,$

for all $f \in \mathcal{H}$. This shows that $\mathcal{U} \in \mathcal{F}(I, \mathcal{H})$ with frame bounds $\|\Theta\|^{-2}$ and $(1 + \sqrt{B})^2$.

The next result shows that a Bessel sequence is an inner summand of a frame.

Corollary 2.3 Let $\mathcal{F} \in \mathcal{B}(I, \mathcal{H})$ be a Bessel sequence. Then there exists a tight frame $\mathcal{G} \in \mathcal{F}(I, \mathcal{H})$ such that $\mathcal{F} + \mathcal{G} \in \mathcal{F}(I, \mathcal{H})$.

Proof. Let *B* be the Bessel bound for $\mathcal{F} = \{f_i\}_{i \in I}$, then $\{\frac{1}{\sqrt{2B}}f_i\}_{i \in I}$ is a Bessel sequence with the Bessel bound less than one. By Theorem 2.2 $\{\frac{1}{\sqrt{2B}}f_i + e_i\}_{i \in I}$ is a frame for \mathcal{H} , where $\{e_i\}_{i \in I}$ is an arbitrary Parseval frame. Define $g_i = \sqrt{2B}e_i$ for all $i \in I$, then $\mathcal{G} = \{g_i\}_{i \in I}$ is a tight frame and $\mathcal{F} + \mathcal{G} = \{\sqrt{2B}(\frac{1}{\sqrt{2B}}f_i + e_i)\}_{i \in I}$ is also a frame for \mathcal{H} .

The next theorem changes every Bessel sequence to a dual frame by summing it with any Parseval frame.

Theorem 2.4 Let $\mathcal{F} \in \mathcal{B}(I, \mathcal{H})$ with Bessel bound B < 1 and let $\mathcal{E} \in \mathcal{P}(I, \mathcal{H})$. Then there exists a $\mathcal{G} \in \mathcal{B}(I, \mathcal{H})$ such that $\mathcal{F} + \mathcal{E}$ and $\mathcal{G} + \mathcal{E}$ are dual frames.

Proof. Let $\mathcal{F} = \{f_i\}_{i \in I}$ and $\mathcal{E} = \{e_i\}_{i \in I}$. Since B < 1, hence $I_{\mathcal{H}} + T_{\mathcal{F}} T_{\mathcal{E}}^*$ is an invertible operator in $\mathcal{L}(\mathcal{H})$. If we define $\Theta = -(I_{\mathcal{H}} + T_{\mathcal{F}} T_{\mathcal{E}}^*)^{-1} T_{\mathcal{F}} T_{\mathcal{E}}^*$ and $g_i = \Theta^* e_i$ for all $i \in I$. Then $\mathcal{G} = \{g_i\}_{i \in I}$ is a Bessel sequence for \mathcal{H} and for all $f \in \mathcal{H}$ we have

$$\begin{split} f &= (I_{\mathcal{H}} + T_{\mathcal{F}} T_{\mathcal{E}}^*) \Theta f + T_{\mathcal{E}} T_{\mathcal{E}}^* f + T_{\mathcal{F}} T_{\mathcal{E}}^* f \\ &= T_{\mathcal{E}} T_{\mathcal{E}}^* \Theta f + T_{\mathcal{E}} T_{\mathcal{E}}^* f + T_{\mathcal{F}} T_{\mathcal{E}}^* \Theta f + T_{\mathcal{F}} T_{\mathcal{E}}^* f \\ &= \sum_{i \in I} \langle \Theta f, e_i \rangle e_i + \sum_{i \in I} \langle f, e_i \rangle e_i + \sum_{i \in I} \langle \Theta f, e_i \rangle f_i + \sum_{i \in I} \langle f, e_i \rangle f_i \\ &= \sum_{i \in I} \langle f, g_i + e_i \rangle (f_i + e_i), \end{split}$$

which this finishes the proof.

Corollary 2.5 Let $\mathcal{F} \in \mathcal{B}(I, \mathcal{H})$ with Bessel bound B < 1 and let $\mathcal{E} \in \mathcal{P}(I, \mathcal{H})$. Then there exists a $\mathcal{G} \in \mathcal{B}(I, \mathcal{H})$ such that $\mathcal{F} + \mathcal{E}$ and \mathcal{G} are dual frames.

Proof. Suppose that $\mathcal{F} = \{f_i\}_{i \in I}$ and $\mathcal{E} = \{e_i\}_{i \in I}$. Since $I_{\mathcal{H}} + T_{\mathcal{F}}T_{\mathcal{E}}^*$ is invertible on \mathcal{H} . Thus if we set $\Theta = (I_{\mathcal{H}} + T_{\mathcal{F}}T_{\mathcal{E}}^*)^{-1}$ and $g_i = \Theta^* e_i$ for all $i \in I$. Then for all $f \in \mathcal{H}$ we have

$$f = (I_{\mathcal{H}} + T_{\mathcal{F}}T_{\mathcal{E}}^*)\Theta f = T_{\mathcal{E}}T_{\mathcal{E}}^*\Theta f + T_{\mathcal{F}}T_{\mathcal{E}}^*\Theta f$$
$$= \sum_{i\in I} \langle \Theta f, e_i \rangle e_i + \sum_{i\in I} \langle \Theta f, e_i \rangle f_i = \sum_{i\in I} \langle f, g_i \rangle (f_i + e_i)$$

From this completes the proof.

Corollary 2.6 For every $\mathcal{F} \in \mathcal{B}(I, \mathcal{H})$ there exist $\mathcal{G} \in \mathcal{B}(I, \mathcal{H})$ and a tight frame $\mathcal{U} \in \mathcal{F}(I, \mathcal{H})$ such that $\mathcal{F} + \mathcal{U}$ and \mathcal{G} are dual frames for \mathcal{H} .

Proof. Let *B* be the Bessel bound of $\mathcal{F} = \{f_i\}_{i \in I}$ and let $\{e_i\}_{i \in I}$ denote any Parseval frame for \mathcal{H} . By Theorem 2.4 there exists a Bessel sequence $\{v_i\}_{i \in I}$ for \mathcal{H} such that $\{\frac{1}{\sqrt{2B}}f_i + e_i\}_{i \in I}$ and $\{v_i + e_i\}_{i \in I}$ are dual frames for \mathcal{H} . Put $\mathcal{G} = \{g_i\}_{i \in I}, \mathcal{U} = \{u_i\}_{i \in I}$ with $g_i = \frac{1}{\sqrt{2B}}v_i + \frac{1}{\sqrt{2B}}e_i$ and $u_i = \sqrt{2B}e_i$ for all $i \in I$. Then for all $f \in \mathcal{H}$ we have

$$\sum_{i \in I} \langle f, g_i \rangle (f_i + u_i) = \sum_{i \in I} \langle f, \frac{1}{\sqrt{2B}} v_i + \frac{1}{\sqrt{2B}} e_i \rangle (f_i + \sqrt{2B} e_i)$$
$$= \sum_{i \in I} \langle f, v_i + e_i \rangle (\frac{1}{\sqrt{2B}} f_i + e_i) = f.$$

From this the claim follows immediately.

In the following theorem we show that every Bessel sequence can be expanded to a dual frame by adding it to a Parseval frame. Another form of this result can be found in [5] Corollary 3.2.

Theorem 2.7 Let $\mathcal{F} = \{f_i\}_{i \in I}$ be a Bessel sequence with Bessel bound B and $\mathcal{E} = \{e_i\}_{i \in I}$ be a Parseval frame for \mathcal{H} . Then for all $\alpha > B$, there exists a Bessel sequence $\{g_i\}_{i \in I}$ for \mathcal{H} such that $\{f_i, e_i\}_{i \in I}$ and $\{\frac{1}{\alpha}f_i, g_i\}_{i \in I}$ are dual frames for \mathcal{H} .

Proof. Since $\alpha > B$, hence $\Theta = I_{\mathcal{H}} - \frac{1}{\alpha}T_{\mathcal{F}}T_{\mathcal{F}}^*$ is a linear bounded and positive operator on \mathcal{H} . Thus if we define $g_i = \Theta^* e_i$ for all $i \in I$. Then $\{g_i\}_{i \in I}$ is a Bessel sequence for \mathcal{H} and for all $f \in \mathcal{H}$ we have

$$\sum_{i \in I} \langle f, \frac{1}{\alpha} f_i \rangle f_i + \sum_{i \in I} \langle f, g_i \rangle e_i = \sum_{i \in I} \langle f, \frac{1}{\alpha} f_i \rangle f_i + \sum_{i \in I} \langle \Theta f, e_i \rangle e_i$$
$$= \frac{1}{\alpha} T_{\mathcal{F}} T_{\mathcal{F}}^* f + \Theta f = f$$

which this finishes the proof.

Let $\Lambda = {\Lambda_i}_{i \in I}$ and $\Gamma = {\Gamma_i}_{i \in I}$ be g-Bessel sequences for \mathcal{H} with synthesis operators T_{Λ} and T_{Λ} respectively. Then we say that Λ and Γ are dual g-frames for \mathcal{H} if $T_{\Lambda}T_{\Gamma}^* = I_{\mathcal{H}}$ or $T_{\Gamma}T_{\Lambda}^* = I_{\mathcal{H}}$. In the following we show that any pair of g-Bessel sequences can be extended to pair of dual g-frames. This result, generalizes a result of Christensen, Oh Kim and Young Kim [2] to the situation of g-frames.

www.SID.ir

Theorem 2.8 Let $\Lambda = {\Lambda_i}_{i \in I}$ and $\Gamma = {\Gamma_i}_{i \in I}$ be two *g*-Bessel sequences for \mathcal{H} with respect to ${W_i}_{i \in I}$. Then there exist *g*-Bessel sequences ${\{\Xi_j\}}_{j \in J}$ and ${\{\Omega_j\}}_{j \in J}$ for \mathcal{H} with respect to ${\{V_j\}}_{j \in J}$, such that ${\{\Lambda_i\}}_{i \in I} \cup {\{\Xi_j\}}_{j \in J}$ and ${\{\Gamma_i\}}_{i \in I} \cup {\{\Omega_j\}}_{j \in J}$ form a pair of dual *g*-frames for \mathcal{H} with respect to ${\{W_i\}}_{i \in I} \cup {\{W_i\}}_{i \in I} \cup {\{V_j\}}_{j \in J}$.

Proof. Assume that $\{\Phi_j\}_{j\in J}$ and $\{\Psi_j\}_{j\in J}$ are any pair of dual *g*-frames for \mathcal{H} respect to $\{V_j\}_{j\in J}$ and let $\Theta = I_{\mathcal{H}} - T_{\Gamma}T^*_{\Lambda}$. Then for any $f \in \mathcal{H}$ we have

$$f = \Theta f + T_{\Gamma} T_{\Lambda}^* f = \sum_{j \in J} \Psi_j^* \Phi_j \Theta f + \sum_{i \in I} \Gamma_i^* \Lambda_i f.$$

If we set $\Xi_j = \Phi_j \Theta$ and $\Omega_j = \Psi_j$ for all $j \in J$. Then $\{\Lambda_i\}_{i \in I} \cup \{\Xi_j\}_{j \in J}$ and $\{\Gamma_i\}_{i \in I} \cup \{\Omega_j\}_{j \in J}$ are dual g-frames for \mathcal{H} with respect to $\{W_i\}_{i \in I} \cup \{V_j\}_{j \in J}$.

The following corollaries are generalizations of the above results to the *g*-frames situation. We leave the proofs to interested readers.

Corollary 2.9 Let $\Lambda = {\Lambda_i}_{i \in I}$ be a *g*-Bessel sequence for \mathcal{H} with respect to ${W_i}_{i \in I}$ with *g*-Bessel bound B < 1. Then there exists *g*-Bessel sequence ${\Gamma_i}_{i \in I}$ for \mathcal{H} with respect to ${W_i}_{i \in I}$, such that ${\Xi_i + \Lambda_i}_{i \in I}$ and ${\Xi_i + \Gamma_i}_{i \in I}$ are dual *g*-frames for \mathcal{H} with respect to ${W_i}_{i \in I}$, where ${\Xi_i}_{i \in I}$ is a Parseval *g*-frame for \mathcal{H} with respect to ${W_i}_{i \in I}$.

Corollary 2.10 For every g-Bessel sequence $\Lambda = {\Lambda_i}_{i \in I}$ with Bessel bound B < 1 and each Parseval g-frame $\Xi = {\Xi_i}_{i \in I}$ for \mathcal{H} with respect to ${W_i}_{i \in I}$, there exists g-Bessel sequence ${\Gamma_i}_{i \in I}$ for \mathcal{H} with respect to ${W_i}_{i \in I}$ such that ${\Lambda_i + \Xi_i}_{i \in I}$ and ${\Gamma_i}_{i \in I}$ are dual g-frames for \mathcal{H} with respect to ${W_i}_{i \in I}$.

Corollary 2.11 For every g-Bessel sequence $\{\Lambda_i\}_{i \in I}$ for \mathcal{H} with respect to $\{W_i\}_{i \in I}$ there exist g-Bessel sequence $\{\Gamma_i\}_{i \in I}$ and a tight g-frame $\{\Xi_i\}_{i \in I}$ for \mathcal{H} with respect to $\{W_i\}_{i \in I}$ such that $\{\Lambda_i + \Xi_i\}_{i \in I}$ and $\{\Gamma_i\}_{i \in I}$ are dual g-frames for \mathcal{H} with respect to $\{W_i\}_{i \in I}$.

3. Conclusions

In this paper, using of g-frame algorithm we obtain an approximation of a bounded linear operator $U(\mathcal{H}, \mathcal{K})$. We also show that the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame for \mathcal{H} and we prove that a Bessel sequence is an inner summand of a frame. The important result of this paper changing every Bessel sequence to a dual frame by summing it with any Parseval frame.

References

- [1] O. Christensen, An Introduction to Frames and Riesz Bases. Birkhauser, Boston (2003)
- O. Christensions, H. O. Kim, R. Y. Kim, Extensions of Bessel sequences to dual pairs of frames. Appl. Comput. Harmon. Anal. 34, (2013), 224-233.
- [3] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27, (1986), 1271-1283.
- [4] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series. *Trans. Amer. Math. Soc.* **72**, **(2)**, (1952), 341-366.
- [5] D. F. Li, W. Sun, Expansion of frames to tight frames. Acta Math. Sin. (Engl. Ser.) 25 (2), (2009), 287292.
- [6] W. Sun, G-frames and G-Riesz bases. J. Math. Anal. Appl. 322, (2006), 437-452.