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Abstract. In this paper we develop an approach that synthesizes the best features of the two
main methods in the estimation of production efficiency. Specifically, our approach first allows
for statistical noise, similar to Stochastic frontier analysis , and second, it allows modeling
multiple-inputs-multiple-outputs technologies without imposing parametric assumptions on
production relationship, similar to what is done in non-parametric methods. The methodology
is based on the theory of local maximum likelihood estimation and extends recent works
of Kumbhakar et al. We will use local-spherical coordinate system to transform multi-input
multi-output data to more flexible system which we can use in our approach. We also illustrate
the performance of our approach with simulated example.
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1. Introduction

The economic function of a firm is to bid resources away from alternative uses. As a result
of such resource transfer, aggregate output may be increased or decreased. If inefficiency
exists, an increase in output can be achieved by reallocating resources to more efficient
uses. Given the seriousness of the issue (viz., the economic, political and social impli-
cations of inefficiency), it is essential that the measurement of efficiency/performance
should be theoretically valid and subject to unambiguous interpretations.

Econometric measurement of efficiency of firms goes back to [1]Aigner, Lovell and
Schmidt (1977) and [25]Meeusen and van den Broeck (1977). When analyzing the per-
formance of a firm that is observed to produce an output level y ∈ R using input
quantities x ∈ Rd

+ , one typically compares the observed output level with the max-
imum possible output that can be obtained from the production frontier (defined as
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f(x) = max y : y ∈ P (x) where P (x) describes the set of outputs that are feasible for
each input vector x ∈ Rd

+). The estimation of the production frontier is obtained from a
random sample of observed firms (Xi, Yi) : i = 1, ..., n. Then an efficiency score for a given
production plan (x, y) is derived from the distance of this point to the estimated produc-
tion frontier. The same approach can also be applied when a cost frontier is analyzed. In
the latter we seek the minimal cost achievable for a given level of output(s).

Since the publication of the seminal papers by [1]Aigner et al. (1977) and [25]Meeusen
and van den Broeck (1977), econometric estimation of parametric stochastic frontier (SF)
functions has become a standard practice in efficiency measurement studies. However,
in this approach, the estimation relies heavily on the particular choices of the functional
form of the production/cost frontier (CobbDouglas, Translog, etc.) as well as the specific
distributional assumptions on the error term (a convolution of a one-sided inefficiency
term and a two-sided noise term). Typically, these parametric models are written as

Yi = β0 + βTXi − µi + νi, i = 1, ..., n. (1)

where µi > 0 is the inefficiency term and νi ∈ R represents random noise. The esti-
mation technique is straightforward and is primarily based on the maximum likelihood
principle.Of course, in practice we cannot be confident about the validity of these para-
metric assumptions that are used to estimate the model. The parametric form of the
frontier function might be wrong due to several reasons. For example, the parametric
functional form might be wrong, the stochastic specifications of the error components
(particularly for the inefficiency component) might be wrong, among others.

An alternative to the parametric SF is the deterministic nonparametric approach where
no specific parametric assumptions are made on the model. The frontier is defined as
the upper boundary of the attainable set, say Ψ = (x, y) : x can produce y. In these
nonparametric approaches the statistical properties of envelopment estimators like DEA
and FDH ([12]Farrell, 1957; [4]Charnes et al., 1978; [10]Deprins et al., 1984), rely on the
so-called deterministic assumption, viz.,

prob((Xi, Yi) ∈ Ψ) = 1. (2)

This assumption implies that no noise is allowed in these deterministic frontier (DF)
models. The introduction of noise in a full nonparametric setup is problematic due to
identification problems (see [17]Hall and Simar, 2002). Statistical inference is now avail-
able in these nonparametric DF models (see [32]Simar and Wilson, 2000, for a recent
survey) but assumption prob((Xi, Yi) ∈ Ψ) = 1 is too strong in many practical situations
where we might expect measurement error, random shocks, etc. Recently [3]Cazals et
al. (2002), and [6]Daouia and Simar (2007) have proposed robust versions of the FDH
estimator, robust to extremes values and/or outliers since they do not envelop all the
data. But these approaches still rely heavily on the deterministic assumption, where no
noise is allowed.

In the presence of panel data, Park and Simar in a series of papers, consider the
semi-parametric estimation of SF panel models under various assumptions on the joint
distribution of the random firm effects and the regressors and on various dynamic spec-
ifications. The nonparametric part of these models concerns the distribution of the inef-
ficiency terms. However, the estimators in these panel models are based on the linearity
of the efficient frontier.

Fan et al. propose a two-step pseudo-likelihood estimator in a semi-parametric model
where the production frontier is not specified, but distributional assumptions are imposed
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on the stochastic components as in [1]Aigner et al. (1977). An average production frontier
is then estimated through standard kernel methods, the shift for the frontier is obtained
through a moment condition, as in the MOLS approach and the remaining parameters
of the stochastic components are estimated by maximizing a pseudo-likelihood function.

Our purpose in this paper is to propose a new approach to handle nonparametric
Stochastic Frontier models by introducing noise in models. We develop an approach
that synthesizes the best features of the two main methods in the estimation of pro-
duction efficiency. Specifically, our approach first allows for statistical noise, similar to
Stochastic frontier analysis (even in a more flexible way), and second, it allows modeling
multiple-inputs-multiple-outputs technologies without imposing parametric assumptions
on production relationship, similar to what is done in non-parametric methods, like Data
Envelopment Analysis (DEA), Free Disposal Hull (FDH), etc. The method is based on
the local maximum likelihood principle, which is nonparametric in the sense that the
parameters of a given local polynomial model are localized with respect to the covariates
of the model. Localizing can be viewed as a way of non-parametrically encompassing a
parametric anchorage model. The idea to use local likelihood method for SF models was
first suggested by Kumbhakar et al. for a particular case of the model proposed here.
The method also improves DEA/FDH estimators, by allowing them to be quite robust to
statistical noise and especially to outliers, which were the main problems of the original
DEA/FDH estimators. The procedure shows great performance for various simulated
cases and is also illustrated with simulated data.

2. Efficient frontier and efficiency scores

2.1 Economic Theory

In productivity analysis, the performance of production units is measured through effi-
ciency scores. These efficiency measures are typically given by the distance of the individ-
ual decision making units (DMU) to the technology which is defined as the frontier of the
production set. In the classical setting of productivity analysis and technical efficiency
study, we consider a set of p inputs and q outputs used in the production process. The
production set is the set of technically feasible combinations of inputs and outputs. It is
defined as

Ψ = (x, y) ∈ Rp+q
+ : x can produce y (3)

and its efficient frontier (the technology) is defined by

Ψϑ = (x, y) ∈ Ψ : (γ−1x, γy) /∈ Ψfor all γ > 1. (4)

The Farrell-Debreu input distance (see [9]Debreu, 1951, [12]Farrell, 1957) for a firm
operating at the level (x, y) is then determined by the radial distance from (x, y) to
the efficient frontier. It indicates how much all input quantities can be proportionately
reduced so that the output levels y can still be produced. Formally, the Farrell input
distance for a firm at a point (x, y) is given by

θ(x, y) = inf θ > 0 : (θx, y) ∈ Ψ. (5)
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In the same spirit, the Farrell output distance of (x; y)

λ(x, y) = supλ > 0 : (x, λy) ∈ Ψ. (6)

is the maximum feasible equi-proportionate expansion of all outputs attainable with
the input level x. Note that the [34]Shephard (1970) distances functions are the recipro-
cals of the Farrell distance functions.

The hyperbolic graph efficiency measure, proposed by [13]Färe et al. (1985), [14]Färe
and Grosskopf (2000), provides an alternative measure of the distance of a firm (x, y) to
the efficient frontier. It is given by

γ(x, y) = inf γ > 0 : (γ−1x, γy) ∈ Ψ. (7)

A use of hyperbolic path allows to avoid some of the ambiguity in choosing output or
input orientation. In this case, input and output levels are adjusted simultaneously.

All the above methods rely on multiplicative measures of the distance and so require to
deal with strictly positive inputs and outputs. This can be critical when the data contain
zero or negative values as in financial data bases with the measure of funds performances.

A natural idea suggested by several authors is to translate the data to avoid negative
values, but as pointed e.g. by [24]Lovell and Pastor (1995), if multiplicative efficiency
measures satisfy the unit invariant property they are not invariant from an affine trans-
lation of inputs or outputs, and only additive models can satisfy the translation invariant
property. As these authors note, some specific DEA estimator can satisfy translation in-
variance for inputs or outputs, but not for both. Such a restriction may strongly constraint
the choice of inputs and outputs.

Recently directional distance functions have been introduced (see [5]Chambers, Chung
and [14]Fare et al., 2000) that generalize both input and output distance functions. The
directional distance function projects the input-output vector (x, y) onto the technology
frontier in a direction given by vector (−gx, gy) where g = (−gx, gy) ∈ Rp+q

+ . It is defined
as

D(x, y; gx, gy) = supβ > 0 : (x− βgx, y + βgy) ∈ Ψ. (8)

It encompasses input or output oriented radial distance measures as special cases: it
can indeed be seen that if g = (x, 0) (resp. g = (0, y)), the input (resp. output) radial
distance introduced above can be recovered. The choice of the direction vector g is to be
done by the researcher the only restriction is that it has to be positive and in the units
chosen for the inputs and the outputs.This direction can be different for each point to
be evaluated but it can also be the same for all the points (x, y) which would be like
assuming all the firms face the same prices.

This directional distance function can indeed be viewed as an additive definition of
efficiency since to reach the frontier we subtract portions of gx from the input x and add
gy to the outputs y. So, the distance can be defined with negative inputs or outputs.
We can see that D(x, y; gx, gy) ⩾ 0 if and only if (x, y) ∈ Ψ and a point on the frontier
is characterized by D(x, y; gx, gy) = 0. It benefits from translation property and is also
independent of unit of measurement (such as radial distances). The translation property
can be written as

D(x− ηgx, y + ηgy; gx, gy) = D(x, y; gx, gy)− η, ∀η ∈ R, (9)
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and the independence of unit of measurement as

D(θ. ∗ x, λ. ∗ y; θ. ∗ gx, λ. ∗ gy) = D(x, y; gx, gy)whereθ ∈ Rp
+, andλ ∈ Rq

+, (10)

where .∗ refers to componentwise multiplication of vectors.
For presentation in follow let g = (−gx, gy) be arbitrary but fixed and let β(x, y) =

D(x, y; gx, gy) so

β(x, y) = supβ > 0 : (x− βgx, y + βgy) ∈ Ψ. (11)

A value β(x, y) = 0 means that the producer operating at the level (x, y) is efficient,
while a value β(x, y) > 0 indicates inefficiency, in the sense that it is possible to have the
directional increase in all the inputs and outputs in order to reach the efficient frontier.
For a given level of input and an output mix, the efficient level of input-output mix is
then given by:

∂(x, y) = (x, y) + β(x, y)g (12)

Note that under free disposability, the directional efficiency can also be defined as:

β(x, y) = supβ > 0 : HX,Y (x− βgx, y + βgy) > 0, (13)

where HX,Y (x, y) = Prob(X ⩽ x, Y ⩾ y) is the probability of the firm (x, y) to be
dominated (see [3]Cazals et al. 2002, [8]Daouia et al. 2013, and [30]Simar et al. 2012 for
details)

Since the attainable set Ψ is unknown, so is its frontier ∂(x, y) and the directional
efficiency score β(x, y). The best we can do is to estimate these quantities from a sample of
i.i.d. observations χn = (Xi, Yi) : i = 1, ..., n generated according to the joint probability
measure of (X, Y).

In order to make inference, we need to define the Data Generating Process (DGP), i.e.,
the statistical model providing the assumptions under which the random sample (Xi, Yi)
has been generated. Nonparametric models avoid restrictive parametric assumptions on
the various components of the DGP, in order to provide inference in a very flexible and
general framework.

2.2 Non-Noisy Models and Envelopment estimators

Most of the existing literature on nonparametric frontier has been first developed in the
framework of non-noisy frontier models, where it is assumed that Prob((Xi, Yi) ∈ Ψ = 1.
In this framework the FDH estimator has been proposed by [10]Deprins, Simar and
Tulkens (1984) when only free disposability of inputs and outputs are assumed and the
DEA estimator, initiated by [12]Farrell (1957), assumes in addition the convexity of the
attainable set.

The FDH is the most natural nonparametric estimator obtained by replacing the
unknown HX,Y (x, y) by its empirical version, the proportion of points in the sample

dominating (x,y) i.e. ĤX,Y,n(x, y) = (1/n)
∑n

i=1Υ(Xi ⩽ x, Yi ⩾ y) where Υ(., .) is the
usual indicator function. It turns out ([3]Cazals et al. 2002) that the corresponding
estimator of the attainable set is given by the free disposal hull of the sample points:

Ψ̂FDH,n = (x, y) ∈ R+p+q : Xi ⩽ x, Yi ⩾ y, forall(Xi, Yi) ∈ χ. (14)
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The DEA estimator is the convex hull of the FDH estimator, it can be written as:

Ψ̂DEA,n = (x, y) ∈ R+p+q :
Σn
i=1γiXi ⩽ x,

Σn
i=1γiYi ⩾ y,

Σn
i=1γi = 1,

γi ⩾ 0, i = 1, ..., n. (15)

The resulting estimators of the efficiency scores can be obtained by plugging the esti-
mators of Ψ.

Deterministic frontier models have the drawbacks of (i) not allowing random noise in
the DGP and, as a result, (ii) being very sensitive to extreme data points and outliers.
The latter issue is addressed by extensions of the DEA/ FDH estimators to partial orders
frontiers, as the order-m frontiers ([3]Cazals et al. 2002) and the order-α quantile frontiers
([6]Daouia and Simar 2007), and can be extended to directional efficiency approach, but
in essence, they remain non-noisy models since they do not allow for the presence of noise
in the DGP. [31]Simar and Wilson (2008) propose a survey on the properties of these
nonparametric estimators and their variations and they provide details on how to make
inference in these models.

2.3 Introducing Noise to Model

When introducing noise in the model, we are not sure that all the observations are really
in the attainable set and envelopment estimators are no more appropriate since they
would also envelop noisy data points. This complicates the analysis and the estimation
of the frontier because we have to identify inefficiency from noise when analyzing the
distance from a data point to the frontier. This family of models allowing noise are known
as stochastic frontier models and, due to the complexity of the models, the literature was
first developed in the simpler parametric setup.

The pioneering work in this framework is [1]Aigner et al. (1977), and [25]Meeusen
and van den Broek (1977). In their approaches (and all the existing variants), specific
parametric analytical forms are needed for the shape of the boundary of Ψ, and for the
probability structure of the noise and of the efficiency distributions. Typically, the models
take the (log-) linear form

Yi = β0 + β′Xi − ui + vi, i = 1, ..., n (16)

where, the inputs/outputs are usually in the log-scale and the random inefficiency term
is, for instance,ui ∼ Exp(λ) or ui ∼ N+(0, σ2

u) and the noise term is vi ∼ N(0, σ2
v).

Generally, it is supposed that v is independent of (u,X) and that also u is independent
of X. These approaches work well and have well established properties but they are
limited by all these restrictive parametric hypotheses.

Recently new attempts have been developed to try to handle noise in multivariate
nonparametric frontier models. [29]Simar (2007) offers a recent survey on the topic ex-
plaining the limitations of the different approaches proposed so far (this includes, e.g.,
[2]Atkinson and Primont 2002; [16]Gstach 1998; [23]Land et al. 1993; [26]Olesen and
Petersen 1995) and suggests, as a first attempt, a DGP allowing to introduce noise in a
fully multivariate nonparametric setup. It is noticed there, using results from [17]Hall and
Simar (2002), that a full nonparametric specification of the DGP leads to non-identifiable
models. However, if the noise is not too big in terms of noise to signal ratio, [29]Simar
(2007) proposes stochastic versions of DEA/FDH estimators that perform better than
the envelopment estimators in the presence of noise and perform as well when in fact
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there is no noise in the DGP. It appears also that these estimators are much more robust
to extreme values and outliers than the original DEA/FDH estimators. Still the approach
is limited to situations where the noise has a small size.

Recently, [22]Kumbhakar et al. (2007) have proposed a local maximum likelihood ap-
proach for nonparametric stochastic frontier models. They analyze local polynomial mod-
els which encompass a particular anchoring parametric model like. The local model is a
parametric one and so is well identified, but by localizing the polynomial approximations,
the model shares the flexibility of nonparametric models. This is a very promising ap-
proach, but so far, it was limited to one-dimensional response variable (input or output).

The idea of this paper is to extend the [22]Kumbhakar et al. (2007) ideas to a full mul-
tivariate setup by using the full multivariate DGP. This allows to handle noise in a quite
general multivariate nonparametric stochastic frontier setup. In addition, the method
provides attractive stochastic versions of the envelopment estimators that circumvents
the main weakness of these methodspresence of noise and especially outliers.

2.4 The DGP Framework

In parametric models, we have, in the log-scale, a parametric frontier model with additive
inefficiency ui and noise vi. In multivariate setups, since the efficiency measures are
radial measures, the noise can be introduced, as it is done for the inefficiency, in the
appropriate radial direction, by using local-spherical coordinates (see e.g., [19]Kneip et
al. 1998, [20]Kneip et al. 1996, and [21]Kneip et al. 2008).

We consider first the DGP, generating points inside Ψ and then we will introduce
the noise. The data (Xi, Yi) are iid random variables generated according to a density
fX,Y (x, y) having support Ψ. We can formulate the joint density in terms of the local-
spherical coordinates (ρ, η), so that (x, y) ⇔ (ρ, η), where ρ ∈ R+ is the modulus and ηi ∈
[0, 2π]p+q−2, i = 1, .., p+ q − 2. and ηp+q−1 ∈ [0, π] is the amplitude (angle) of the vector

(x,y). To be explicit, by z = (x, y) we have : ρ = ρ(z) =
√

(z21 + ...+ z2p + z21 + ..., z2q )

and ηi = arccos(zi/ρ), i = 1, ..., p + q − 2, ηp+q−1 = arccos(zp+q−1/
√

z2p+q + z2p+q−1).

in what will be flow we will transform origin to (mini xi,maxi yi) and find ρ and η for
(x, y) reference to this new origin, so from now we call this new modification of spherical
coordinate as local-spherical coordinate(this will help us for do efficiency analysis in right
direction).

The joint density fX,Y (x, y) induces a density fρ,η(ρ, η) on the local-spherical coordi-
nates and we decompose this joint density as follows

fρ,η(ρ, η) = fρ(ρ | η)fη(η), (17)

where we assume all the densities exist. For a given (ρ, η) the frontier point ∂(x, y)
has a modulus which can be described through the upper boundary of the support of
the density fρ(ρ | η):

ρ(∂(x, y)) = sup ρ ∈ R+ : fρ(ρ | η) > 0 (18)

Note that the directional efficiency using g = (mini xi,maxi yi)− (x, y) as direction is
β(x, y) = supβ : (x, y) + βg ∈ Ψ and score can be redefined as

β(x, y) = ρ(x, y)− ρ(∂(x, y)), (19)
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In a non-noisy frontier framework, in order to achieve consistency of DEA/FDH esti-
mators, we need the free disposability of Ψ assumption when FDH estimators are used
and in addition, the convexity of Ψ when DEA estimators are used. [19]Kneip et al.
(1998) and [27]Park, Simar and Weiner (2000) also introduce two additional regularity
conditions:

• The function β(x, y) is differentiable in both arguments (smoothness of the frontier);

• For all η, fρ(ρ | η) > 0 (positive density on the efficient frontier).

All what precedes defines a DGP that generates data points inside the deterministic
frontier of Ψ.

The radial-noise can now be introduced through the univariate modulus ρ, condition-
ally on angular mix η (this is the multivariate analog of the parametric stochastic model).
We suppose here that the observations are made on noisy data in the radial direction: so
we observe n i.i.d. random variables (Xi, Yi) : 1 = 1, ..., n, with local-spherical coordinates
(ρi, ηi) where

ρi = ρ(∂(Xi, Yi)) + ui + vi, (20)

whereρ(∂(Xi, Yi)) is the frontier level. It is only a function of ηi. Finally, the model
could be written as

ρi = r(ηi) + ui + vi, (21)

with ui > 0 and E(vi | ηi) = 0. Hence r(η) is an unknown function determining
the frontier level for a given angular mix η. Conditionally on η, the random elements
u and v are assumed to be independent of each other, but in our approach, we do not
need the usual homoskedastic assumption: u and v can be stochastically dependent of
η. Assumptions above implies that we consider conditional densities for u such that
fu(0 | η) > 0.

3. Local Maximum Likelihood Estimation

For a given point of interest (x, y) with local-spherical coordinates (ρ, η), the problem is
back to an univariate nonparametric stochastic frontier problem: given η, we search for
the estimation of r(η) = ρ(∂(x, y)), from a random sample (ρi, ηi), i = 1, ..., n. For the es-
timation technique, we may adapt the nonparametric approach developed in [22]Kumb-
hakar et al. (2007) to our particular setup. It is based on local polynomial maximum
likelihood estimation techniques. The idea is to choose a local polynomial approxima-
tion for the unknown function r(η) and to choose a localized parametric model for the
shape parameters of the distribution of the random convolution error ε = u + v, where
other local polynomial approximations will be used. It is known from the literature on
local maximum likelihood (see e.g. [11]Fan and Gijbels 1996) that the local parametric
specification can be viewed as an anchorage model but its localization provides models
sharing the flexibility of nonparametric models.

In summary, the nonparametric localized model can be written as

ρ = r(η) + u+ v, (22)

where (u | η) ∼| N(0, σ2
u(η) | and (v | η) ∼ N(0, σ2

v(η), u and v being independent
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conditionally on η. All functional parameters r, σ2
u, σ

2
v are unknown functions and will be

approximated by local polynomials. The procedure provides for any value of η estimates
r̂(η), σ̂2

u(η), σ̂
2
v(η) and if needed estimates of their partial derivatives with respect to the

elements of η.

3.1 local MLE in use : Local polynomial estimation

This subsection summarizes the main aspects of local maximum likelihood estimation
using local polynomial approximation for the functional parameters of a model. The
presentation of these techniques in a multiple regression framework with high order
polynomials can be notationally very complex. In order to simplify the notation, in this
section, we will use a general notation, independent of the preceding one, but we will
give the correspondence when necessary.

We consider indeed a general nonparametric stochastic frontier model which can be
viewed as a nonparametric regression of a univariate dependent variable Y on a d-
dimensional variable Z, where locally (for Z = z), the error term is the convolution
of a positive random variable u (inefficiency) with a known distribution and a real ran-
dom variable v having also a known distribution with zero mean, the parameters of these
distributions being unknown function of z. In its most general version the model could
be presented as follows.

We observe a set of i.i.d. random variables (Zi, Yi) for i = 1, ..., n with Zi ∈ Rd and Yi
where

Yi = f(Zi) + ui + vi (23)

for some unknown function f , where, conditionally on Z = z, u and v independent
and ε = u+ v has a known conditional continuous distribution G(., τ), where τ is some
k-valued unknown function. The unknown functions f and τ are called the functional
parameters of the model. In other words, the conditional density of Y given Z = z equals:

ϕ(y, f(z), τ) ≡ gε(y − f(z), τ), (24)

where gε(ε, τ) = ∂G(ε, τ)/∂ε. Our main interest here is estimation of the function f
and eventually its derivatives. We now describe the local polynomial estimation of f in
a general setting of multivariate Z.

Define l = logϕ. Then, the conditional log-likelihood equals
∑n

i l(Yi, f(Zi), τ). Let z be
a point at which one wants to estimate the values of the function f and its derivatives. A
local conditional log-likelihood is obtained by replacing f in the conditional log-likelihood
by its mth order polynomial approximation in a neighborhood of z and putting the weight
Kh(Zi − z) for each observation (Zi, Yi), where Kh(u) = h−dK(h−1u), K is a d-variate
kernel function, typically a symmetric density function defined on Rd, and h is a positive
scalar, called the bandwidth. Precisely, it is given by

Ln(θ0, θ1, ..., θr(m)−1, τ ; z) =

n∑
i

l(Yi, θ0 + θ1(Zi1 − z1) + ...+

θr(m)−1(Zid − zd)
r(m)−1, τ)Kh(Zi − z)
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where r(m)− 1 is the total number of partial derivatives up to order m. and

Zi ≡ (Zi1, ..., Zid)
T , zi ≡ (zi, ..., zid)

T .

The m-th order local polynomial estimators of f and its derivatives at z are obtained
by maximizing Ln(θ0, θ1, ..., θr(m)−1, τ ; z). For example,f̂(z) = θ̂0(z), where

(θ̂0(z), θ̂1(z), ..., θ̂r(m)−1(z), τ̂(z) = arg max
θ(0),...,θ(r(m)−1),τ

Ln(θ0, θ1, ..., θr(m)−1, τ ; z). (25)

By this introduction now we can formulate more applicable version in out context. we
first have to select the distribution for the convolution term. As is well known in local
MLE procedure, this can be viewed as selecting an anchorage parametric model for the
convolution term; the localized version will encompass this anchorage model, ensuring
much more flexibility, as shown e.g. in [22]Kumbhakar et al. (2007), in [28]Park et al.
(2008).

We will focus here on the two-parameters (k=2) distribution G(., τ) obtained from
the Normal/Half-Normal convolution case as proposed in [1]Aigner et al. (1977). To be
explicit, we choose a local normal N(0, σ2

v(z)) for the noise v and a local half-normal
N+(0, σ2

v(z)) for the inefficiency u. An alternative could be the Normal/Exponential
convolution also analyzed by [1]Aigner et al. (1977), but to save place we will not present
this case. Although theoretically valid, we also avoid one sided distributions for the
inefficiency term u that would be characterized by two free parameters (scale and shape)
as the Gamma ([15]Greene 1990) or the truncated normal ([33]Stevenson 1980). The local
version of our model showed to be flexible enough to handle many different situations.

So our nonparametric localized model can be written, as :

Y = f(Z) + u+ v (26)

where (u | Z = z) ≡ N+(0, σ2
u(z)) and (v | Z = z) ≡ N+(0, σ2

v(z)), u and v being
independent conditionally on Z. The conditional probability density function of ε = u+v
is given by

gε(ε | Z = z) =
2√

σ2
u(z) + σ2

v(z)
ϕ(

ε√
σ2
u + σ2

v

)Φ(ε

√
σ2
u(z)√

σ2
v(z)(σ

2
u(z) + σ2

v(z))
) (27)

where ϕ(.) and Φ(.) are the pdf and cdf of a standard normal variable. Note that we
keep the parametrization in terms of the functionals σ2

v and σ2
u because we could be

interested in estimating their derivatives, but any other standard parametrization could
be used.

As suggested in [22]Kumbhakar et al. (2007), in order to avoid non negativity re-
strictions on the variance functions in the local polynomial approximations, we rather
choose the following coordinate system for the shape parameters: τ(z) = (σ̂2

u, σ̂
2
v)

T where
σ̂2
u = log(σ2

u) and σ̂2
v = log(σ2

v).
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The conditional pdf of Y given Z is thus given by:

ϕ(y, f(z), τ(z)) =
2√

exp(σ̂2
u(z)) + exp(σ̂2

v(z))
×

ϕ(
(y − f(z))√

exp(σ̂2
u) + exp(σ̂2

v)
)×

Φ((y − f(z))
exp(σ̂2

u(z)/2− σ̂2
v(z)/2)√

exp(σ̂2
u(z)) + exp(σ̂2

v(z))
)

(28)

After some analytical manipulation, it is found that

l((y, f(z), τ(z))) = log(ϕ(y, f(z), τ(z))) ∝ (−1/2) log(exp(σ̂2
u(z)) + exp(σ̂2

v(z)))×

− (1/2)
(y − f(z))2

exp(σ̂2
u) + exp(σ̂2

v)
×

+ logΦ((y − f(z))
exp(σ̂2

u(z)/2− σ̂2
v(z)/2)√

exp(σ̂2
u(z)) + exp(σ̂2

v(z))
)

(29)

where the constants have been eliminated. The conditional local log-likelihood is

L(f, τ) ∝
n∑

i=1

[(−1/2) log(exp(σ̂2
u(Zi)) + exp(σ̂2

v(Zi)))]×

−(1/2)
(Yi − f(Zi))

2

exp(σ̂2
u(Zi)) + exp(σ̂2

v(Zi))
×

+ logΦ((Yi − f(Zi))
exp(σ̂2

u(Zi)/2− σ̂2
v(Zi)/2)√

exp(σ̂2
u(Zi)) + exp(σ̂2

v(Zi))
)

(30)

By considering the local polynomial approximations for the functional parameters f
(linear approximation), σ̂2

u (quadratic approximation) and σ̂2
v (quadratic approximation)

the desire model for estimation is in hand. we use that model for our calculation in what
follows (For more details see [22]Kumbhakar et al. (2007)).

3.2 Estimation of the individual efficiencies

Once the model has been estimated, the estimation of the individual efficiency score for
a particular fixed point (x, y) ⇔ (ρ, η) is easy: we have indeed under our parametrization

E(u | η) =
√

2/πσu(η), (31)

where σu(η) can be estimated by
√

σ̂2
u(η). This can be done for any value of η and a

sensitivity analysis could be performed.
When individual efficiencies are wanted for data points in the original sample, the

problem is more complicated since these data points are perturbed by noise. This is a well-
known identification problem in stochastic frontier models but we can use, as suggested
by [22]Kumbhakar et al. (2007), the [18]Jondrow et al. (1982) procedure to predict the
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individual efficiency score of a particular data point from the predicted convoluted error
ε = ρ− r(η). The procedure is as follows: again denoting η by z, it can be shown that

(u | ε, z) ∼ N+(µ∗(z), σ2∗(z)) (32)

i.e., a truncated (positive values) normal, where

µ∗(z) =
−εσ2

u(z)

σ2
u(z) + σ2

v(z)
(33)

σ2∗(z) =
σ2
u(z)σ

2
v(z)

σ2
u(z) + σ2

v(z)
, (34)

In particular, we can compute E(u | ε, z) (see [18]Jondrow et al. (1982)). So a point
predictor of the individual efficiency score for a data point (ρi, ηi) generated by the DGP,
can be obtained.

We know of course, see [32]Simar and Wilson (2010), as in the full parametric setup,
that this procedure provides point predictor with uncertain statistical properties since
they are based on the observation of one residual.

4. Stochastic Version of Envelopment estimators

Thus, the above method provides, for any (x, y), an estimate of the frontier. Of course this
estimator will not show the usual properties of usual envelopment estimator (DEA/FDH)
(e.g. free disposability and/or convexity). Our estimator r̂(η) is consistent even under
these additional assumptions, but if such properties are desired, we suggest to modify
our estimator by using the appropriate FDH or DEA program on the projections of grid
of points. The resulting estimated frontier is the free disposal hull (if FDH is used) or
the convex free disposal hull (if DEA is used) of our nonparametric estimator derived
above.

The whole procedure provides a stochastic version of the DEA/FDH frontier. It may
be summarized as follows :

• Transform all the grid points (xi, yi) into local-spherical coordinates (ρi, ηi).

• Compute for each point (xi, yi), the estimates r̂(η(i)), using the original sample χn

• Project the grid points on the estimated frontier to obtain ∂(xi, yi), where ∂(xi, yi) =
(xi, yi) + (ρi − r̂(ηi))g

• For any given fixed value of interest (x, y), run a FDH or DEA program with reference
set χ∗ = ∂(xi, yi) : i = 1, ..., nto compute an efficiency estimator.

We could also compute efficiency for (Xi, Yi), i = 1, ..., n, by running n DEA or FDH
programs for each of the data points generated by the DGP, with the reference set χ∗.
Of course, due to the presence of noise in the data some of the resulting values might
be smaller than 0. Due to the lack of information on the noise structure, we are unable
to identify in efficiency estimator, the part which is due to noise from the part due to
inefficiency.
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Figure 1. Simulated Example : true frontier in black, noisy sample data in red and estimated points in blue

4.1 Simulated Example

We used in this section simulated data set to illustrate the flexibility of our approach.
In order to evaluate the relative performances of our estimator we compute the Mean
Integrated Squared Error (MISE) between the true frontier level and the nonparametric
estimated one. This MISE is defined as follows :

MISE =

∫
Ψ
∥∂(x, y)− ∂̂(x, y)∥2f(x, y)dxdy, (35)

where ∂(x, y) is the true frontier and ∂̂(x, y) is the selected estimator of the frontier
level, f(x, y) is the density of (x, y) defined over Ψ and ∥.∥ stands for the Euclidean
norm. In practice, we will estimate this quantity for a given simulated example by its
empirical counterpart:

ˆMISE = 1/n

n∑
i=1

∥∂(x, y)− ∂̂(x, y)∥2, (36)

In what follows we will compute this ˆMISE for the DEA estimator and for their
stochastic versions.

For a simulated sample we compute the optimal bandwidth hopt for our non-parametric
stochastic estimator by using Leave-One-Out Least- Squares cross validation techniques.

We simulate a sample of size 100 according the Cobb- Douglas model:

Yi = X .5
i (37)

For this we use Xi ∼ U(0, 1), and draw the sample and calculate Yi for our sample.
After this we have data on frontier so for next step we transform sample data (Xi, Yi) to
local-spherical coordinate same as method described in above, as result we have (ρi, ηi).
Now we include some inefficiency for data in radial direction with U ∼ N+(0, σ2

u) where
σu = 0.1 and then introduce noise in radial direction by V ∼ N(0, σ2

v) where σv = 0.1.
below Figures illustrate inefficiency, noise, and their related frontiers.

Looking to Figure, we can see that DEA envelopment on noisy data for estimating
the frontier suffers from a serious drawback in this scenario, because of its deterministic
foundation, on the other hand our estimated frontier(by using DEA as envelopment
tool) share the better result, because of its stochastic nature. Translating this visual

explanation to number by some calculation we have ˆMISEDEA = 0.02589437 for DEA
frontier by noisy data and for our proposed model we have ˆMISESNFA = 0.004846924.
as expected this show the good result for proposed model. If some one interested to
evaluate the effecting of some activity (e.g. DEA or FDH estimates) this will be done by
considering new frontier as reference.(refer to Figure 1)

5. Conclusion

This paper provides one promising way to handle noise in a multivariate nonparametric
stochastic frontier setup. The approach also allows the researcher to shed lights on the
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effect of the inputs on the frontier level but also on the level of the efficiency. The
procedure can handle multi-inputs and multi-outputs situations. as expected, in the
case of the presence of noise in the DGP, the proposed model outperform the standard
envelopment models (e.g. DEA/FDH estimators). The numerical burden in model is
linked to the bandwidth selection (leave-one-out least-squares cross validation).Many of
the statistical issues are still open. The statistical theory of the local polynomial MLE
in this frontier setup has been done (see [22]Kumbhakar et al. 2007). We hope to be able
in future work to derive the full properties of our stochastic versions of the envelopment
estimators, but we know this is a serious challenge for further research, but the obtained
results certainly encourage such a research.
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