Journal of Linear and Topological Algebra Vol. 02*, No.* 01*,* 2013*,* 25*-* 33

*G***-Frames,** *g***-orthonormal bases and** *g***-Riesz bases**

S. S. Karimizad*[∗]*

Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran

Abstract. *G*-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between *g*-frames, *g*-orthonormal bases and *g*-Riesz bases. We show that a family of bounded operators is a *g*-Bessel sequences if and only if the Gram matrix associated to its defines a bounded operator.

*⃝*c 2013 IAUCTB. All rights reserved.

Keywords: *G*-frames, *G*-Bessel sequences, *G*-orthonormal bases. **2010 AMS Subject Classification**: 42C15, 46C99, 94A12.

1. Introduction

Example 18 Archive SI S. S. Karimizad"

Department of Mathematics, Faculty of Science, Islamic Azad University,

Central Tehran Branch, Tehran, Iran

Archive of Central Tehran Branch, Tehran, Iran

Statistics of Central Let H, K be separable Hilbert spaces, let I, J and every J_i denote the countable (or finite) index sets. Let $\{W_j\}_{j\in J}$ is a sequence of closed subspaces of K and let $B(\mathcal{H}, W_j)$ denote the algebra of all bounded linear operators from H to W_j . Recall that a family $\mathcal{F} = \{f_j\}_{j \in J}$ is called a frame for \mathcal{H} if there exist constants $0 < A \leq B < \infty$ such that,

$$
A||f||^2 \leqslant \sum_{j \in J} ||^2 \leqslant B||f||^2 \quad \forall f \in \mathcal{H}.
$$
 (1)

Frames have many nice properties which make them very useful in the characterization of function spaces, signal processing and many other fields. Gabor [5], in 1946 introduced a technique for signal processing which eventually led to wavelet theory. Later in 1952, Duffin and Schaeffer [3] in the context of nonharmonic Fourier series introduced

*[∗]*Corresponding author.

E-mail addresses: s karimizad@yahoo.com.

frame theory for Hilbert spaces. In 1986, Daubechies, Grassman and Meyer [2] showed that Duffin and Schaeffers definition was an abstraction of Gabors concept. Sun in [6] introduced g-frames and g-Riesz bases in a complex Hilbert space and discussed some properties of them. We refer to [1, 4, 7] for an introduction to the frames and *g*-frames and its applications.

Definition 1.1 A family $\Lambda = {\Lambda_j \in B(H, W_j) | j \in J}$ is called a generalized frame, or simply a *g*-frame for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if there are two positive constant C and *D* such that

$$
C||f||^2 \leqslant \sum_{j \in J} \|\Lambda_j f\|^2 \leqslant D||f||^2 \quad \forall f \in \mathcal{H}.
$$
 (2)

real numbers $0 < C \leq D < \infty$ are called the lower and upper *g*-franchively. We call this family a *g*-frame for *H* with respect to *K* wheneve the publishead of A with A is $\in \mathcal{A}$. The family Λ is called a *C*-The real numbers $0 < C \leqslant D < \infty$ are called the lower and upper *g*-frame bounds, respectively. We call this family a *g*-frame for H with respect to K whenever $K = W_j$ for all $j \in J$. The family Λ is called a *C*-tight *g*-frame if $C = D$ and if $C = D = 1$, it's called a Parseval g-frame, the $\sup\{rank(\Lambda_j) : j \in J\}$ is called the multiplicity of the *g*-frame. If $||\Lambda_i|| = ||\Lambda_j|| = \lambda$ for all $i, j \in J$, then the *g*-frame is called λ -uniform. If we only have the upper bound, we call Λ a *g*-Bessel sequence for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ with *g*-Bessel bound *D*. The family Λ is called

- (i) A g-complete set for H with respect to $\{W_j\}_{j\in J}$ if $\mathcal{H} = \overline{\text{span}}\{\Lambda_j^*(W_j)\}_{j\in J}$.
- (*ii*) A *g*-orthonormal system for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, if:

$$
\langle \Lambda_i^* g, \Lambda_j^* g' \rangle = \delta_{ij} \langle g, g' \rangle \qquad \forall i, j \in J, g \in W_i, g' \in W_j.
$$

(*iii*) A *g*-orthonormal basis for H with respect to $\{W_j\}_{j\in J}$, if it is a *g*-orthonormal system for H with respect to $\{W_j\}_{j\in J}$ and $\{\Lambda_j^*(e_{ij})\}_{j\in J, i\in J_j}$ is a basis for H, where $\{e_{ij}\}_{i \in J_j}$ is an orthonormal basis for W_j for all $j \in J$.

Notation 1.2 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *g*-frame for *H* with respect to ${W_j}_{j \in J}$. The representation space associated to Λ denotes by

$$
\left(\sum_{j\in J} \oplus W_j\right)_{\ell^2} = \left\{ \{g_j\}_{j\in J} \middle| \ g_j \in W_j \text{ and } \sum_{j\in J} \|g_j\|^2 < \infty \right\}.\tag{3}
$$

which is a Hilbert space with inner product as follows:

$$
\langle g_j \rangle_{j \in J}, \{g'_k\}_{k \in J} \rangle = \sum_{j \in J} \langle g_j, g'_j \rangle \qquad \forall \{g_j\}_{j \in J}, \{g'_j\}_{j \in J} \in \big(\sum_{j \in J} \oplus W_j\big)_{\ell^2}.
$$

Moreover, if $\{e_{ij}\}_{i\in J_j}$ is an orthonormal basis for W_j for all $j\in J$, then $\{u_{ij}\}_{j\in J, i\in J_j}$ is called the standard orthonormal basis of $\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}$ where $u_{ij} = \{\delta_{kj}e_{ij}\}_{k\in J}$ and δ_{kj} is the Kronecker delta.

Definition 1.3 The synthesis operator of a *g*-frame $\Lambda = {\Lambda_j}_{j \in J}$ is defined by

$$
\Theta_{\Lambda}: \left(\sum_{j\in J} \oplus W_j\right)_{\ell^2} \longrightarrow \mathcal{H} \quad \text{with} \quad \Theta_{\Lambda}(\{g_j\}_{j\in J}) = \sum_{j\in J} \Lambda_j^* g_j \tag{4}
$$

The associated adjoint operator given by

$$
\Theta_{\Lambda}^* : \mathcal{H} \longrightarrow \left(\sum_{j \in J} \oplus W_j \right)_{\ell^2} \quad \text{with} \quad \Theta_{\Lambda}^*(f) = \{ \Lambda_j f \}_{j \in J}. \tag{5}
$$

is called the analysis operator. By composing Θ_{Λ} and Θ_{Λ}^{*} we obtain the *g*-frame operator

$$
S_{\Lambda}: \mathcal{H} \longrightarrow \mathcal{H} \quad \text{with} \quad S_{\Lambda}(f) = \Theta_{\Lambda} \Theta_{\Lambda}^*(f) = \sum_{j \in J} \Lambda_j^* \Lambda_j(f) \tag{6}
$$

which is a bounded, invertible, and positive operator. This provides the reconstruction formula

$$
f = \sum_{j \in J} \Lambda_j^* \tilde{\Lambda}_j f = \sum_{j \in J} \tilde{\Lambda}_j^* \Lambda_j f \tag{7}
$$

where $\tilde{\Lambda}_j = \Lambda_j S_{\Lambda}^{-1}$ ^{I_{Λ}^{-1}}. The family $\tilde{\Lambda} = {\{\tilde{\Lambda}_j\}_{j \in J}}$ is also a *g*-frame for *H* with respect to $\{W_j\}_{j\in J}$ with *g*-frame bounds $\frac{1}{L}$ $\frac{1}{D}$ and $\frac{1}{C}$ $\frac{1}{C}$ respectively.

The well-known relations between a frame and associated analysis and synthesis operator also holds in *g*-frames situation.

Theorem 1.4 Let $\Lambda_j \in B(H, W_j)$ for all $j \in J$. Then the following are equivalent:

- (*i*) $\Lambda = {\Lambda_j}_{j \in J}$ is a *g*-frame for *H* with respect to ${W_j}_{j \in J}$.
- (ii) The synthesis operator Θ_{Λ} is bounded, linear and onto.

(*iii*) The analysis operator Θ_{Λ}^* is injective with closed range.

Proof. This claim holds in an analogous way as in frame theory.

 $J = \sum_{j \in J} \Lambda_j \Lambda_j J = \sum_{j \in J} \Lambda_j \Lambda_j J$
 \vdots $\Lambda_j = \Lambda_j S_{\Lambda}^{-1}$. The family $\tilde{\Lambda} = \{\tilde{\Lambda}_j\}_{j \in J}$ is also a *g*-frame for *H* with
 $j \in J$ with *g*-frame bounds $\frac{1}{D}$ and $\frac{1}{C}$ respectively.
 \blacksquare and \blacksquare is A family $\Lambda = {\Lambda_j}_{j \in J}$ is called a *g*-frame sequence for H with respect to ${W_j}_{j \in J}$ if Λ is a g-frame for $\overline{\text{span}}\{\Lambda_j^*(W_j)\}_{j\in J}$ with respect to $\{W_j\}_{j\in J}$. The definition shows that if Λ is a *g*-frame for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ then Λ is *g*-complete set for \mathcal{H} with respect to $\{W_j\}_{j \in J}$. Theorem 1.4 leads to a statement about *g*-frame sequence.

Corollary 1.5 A sequence $\Lambda = {\Lambda_j}_{j \in J}$ is a *g*-frame sequence for *H* with respect to $\{W_j\}_{j\in J}$ if and only if

$$
\Theta_{\Lambda}: \left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}\longrightarrow \mathcal{H}\quad,\quad \Theta_{\Lambda}(\{g_j\}_{j\in J})=\sum_{j\in J}\Lambda_j^*g_j,
$$

is a well-defined bounded operator with closed range.

Proof. This follows immediately from Theorem 1 *.*4.

2. *G***-Frames,** *g***-orthonormal bases and** *g***-Riesz bases**

If $\Lambda = {\Lambda_j}_{j \in J}$ is a *g*-Bessel sequence for *H* with respect to ${W_j}_{j \in J}$, then the Gram matrix associated to Λ is defined by

$$
\Theta_{\Lambda}^* \Theta_{\Lambda} = \{ \langle \Lambda_j^* e_{ij}, \Lambda_n^* e_{mn} \rangle \}_{j,n \in J, i \in J_j, m \in J_n}.
$$
\n
$$
(8)
$$

Theorem 2.1 Let $\Lambda_j \in B(H, W_j)$ for all $j \in J$, then the following are equivalent:

■

- (*i*) $\Lambda = {\Lambda_j}_{j \in J}$ is g-Bessel sequence with bound *B* for *H* with respect to ${W_j}_{j \in J}$.
- (*ii*) The Gram matrix associated to Λ defines a bounded operator on $\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}$, with norm at most *B* .

Proof. (i) \Rightarrow (ii) Let $\{g_j\}_{j\in J} \in (\sum_{j\in J} \oplus W_j)_{\ell^2}$, we show that $\Theta_{\Lambda}(\{g_j\}_{j\in J})$ is welldefined. Fix $I \subseteq J$ with $|I| < \infty$, we have

$$
\left\| \sum_{i \in I} \Lambda_i^* g_i \right\|^2 = \sup_{\|f\| = 1} \left| < f, \sum_{i \in I} \Lambda_i^* g_i > \right|^2
$$
\n
$$
= \sup_{\|f\| = 1} \left| \sum_{i \in I} < \Lambda_i f, g_i > \right|^2
$$
\n
$$
\leq \sup_{\|f\| = 1} \left(\sum_{i \in I} \|\Lambda_i f\|^2 \right) \left(\sum_{i \in I} \|g_i\|^2 \right) \leq B \sum_{i \in I} \|g_i\|^2.
$$

It follows that $\sum_{j\in J} \Lambda_j^* g_j$ is weakly unconditionally Cauchy and hence unconditionally convergent in \mathcal{H} . Thus $\Theta_{\Lambda}(\{g_j\}_{j\in J})$ is well-defined. Clearly $\Theta_{\Lambda}^*\Theta_{\Lambda}$ is bounded and $\|\Theta_{\Lambda}^*\Theta_{\Lambda}\| \leq B$.
 $(ii) \Rightarrow (i)$ suppose that $\{g_j\}_{j\in J} \in \left(\sum_{j\in J} \oplus W_j\right)_{\ell^2}$, then we have

$$
\sum_{j\in J}\|\sum_{k\in J}\Lambda_j\Lambda_k^*g_k\|^2\leqslant B^2\sum_{j\in J}\|g_j\|^2.
$$

Given arbitrary $I \subseteq J$ with $|I| < \infty$, we have

$$
||f|| = 1 \sqrt{\frac{1}{i\epsilon I}} \qquad \sqrt{\frac{1}{i\epsilon I}} \qquad \frac{1}{i\epsilon I}
$$
\nshows that $\sum_{j \in J} \Lambda_j^* g_j$ is weakly unconditionally Cauchy and hence unconvergent in \mathcal{H} . Thus $\Theta_{\Lambda}(\{g_j\}_{j\in J})$ is well-defined. Clearly $\Theta_{\Lambda}^* \Theta_{\Lambda}$ is both $|\Theta_{\Lambda}^* \Theta_{\Lambda} = \emptyset$.

\n
$$
\Rightarrow (i) \text{ suppose that } \{g_j\}_{j\in J} \in \left(\sum_{j\in J} \oplus W_j\}_{\ell^2}, \text{ then we have}
$$
\n
$$
\sum_{j\in J} \|\sum_{k\in J} \Lambda_j \Lambda_k^* g_k\|^2 \leq B^2 \sum_{j\in J} ||g_j||^2
$$
\nand arbitrary $I \subseteq J$ with $|I| < \infty$, we have

\n
$$
\left\|\sum_{i\in I} \Lambda_i^* g_i\right\|^4 = \left| < \sum_{i\in I} \Lambda_i^* g_i, \sum_{k\in I} \Lambda_k^* g_k > \right|^2
$$
\n
$$
\leq |\sum_{i\in I} \{g_i\|^2\} \left(\sum_{i\in I} ||g_i||^2\right) \left(\sum_{i\in I} ||\sum_{k\in I} \Lambda_i \Lambda_k^* g_k||^2\right)
$$
\n
$$
\leq B^2 \left(\sum_{i\in I} ||g_i||^2\right)^2.
$$
\nshows that $\Theta_{\Lambda}(\{g_j\}_{j\in J}) = \sum_{j\in J} \Lambda_j^* g_j$ is convergent and $||\Theta_{\Lambda}|| \leq \sqrt{B}$. He

\nIt is not possible to obtain

It follows that $\Theta_{\Lambda}(\{g_j\}_{j\in J}) = \sum_{j\in J} \Lambda_j^* g_j$ is convergent and $||\Theta_{\Lambda}|| \leq$ *√ B*. Hence for all $f \in \mathcal{H}$ we obtain

$$
\sum_{j \in J} \|\Lambda_j f\|^2 = \|\Theta_{\Lambda}^* f\|^2 \leq B \|f\|^2.
$$

Theorem 2.2 Let $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ be g-Bessel sequences for *H* with respect to $\{W_j\}_{j\in J}, \{V_j\}_{j\in J}$ then the series $\sum_{j\in J} \Gamma_j^* \Lambda_j f$ converges unconditionally for all $f \in \mathcal{H}$.

Proof. Since $\{\Lambda_j\}_{j\in J}$ is a g-Bessel sequence for *H* with respect to $\{W_j\}_{j\in J}$, hence $\{\Lambda_j f\}_{j\in J}\in \ell^2(\mathcal{K},J)$ for all $f\in \mathcal{H}$. Fix $I\subset J$ with $|I|<\infty$, and let B be the g-Bessel

bound of $\{\Gamma_j\}_{j\in J}$. Then for all $f \in \mathcal{H}$ we have

$$
\left\| \sum_{i \in I} \Gamma_i^* \Lambda_i f \right\|^2 = \sup_{\|g\|=1} \left| < \sum_{i \in I} \Gamma_i^* \Lambda_i f, g > \right|^2
$$

$$
= \sup_{\|g\|=1} \left| \sum_{i \in I} < \Lambda_i f, \Gamma_i g > \right|^2
$$

$$
\leq \sup_{\|g\|=1} \left(\sum_{i \in I} \|\Lambda_i f\|^2 \right) \left(\sum_{i \in I} \|\Gamma_i g\|^2 \right)
$$

$$
\leq B \sum_{i \in I} \|\Lambda_i f\|^2.
$$

It follows that $\sum_{j\in J} \Gamma_j^* \Lambda_j f$ is weakly unconditionally Cauchy and hence unconditionally convergent in *H* . ■

Proposition 2.3 Let $\{\Xi_j\}_{j\in J}, \{\Xi'_j\}_{j\in J}$ be g-orthonormal bases for \mathcal{H}, \mathcal{U} with respect to ${W_j}_{j \in J}$ respectively, and let \hat{T} : $\mathcal{H} \to \mathcal{U}$ be a bounded linear operator such that $\Xi'_j T = \Xi_j$ for all $j \in J$. Then T is a unitary operator.

Proof. For each $f \in \mathcal{H}$ we have

$$
||Tf||^2 = \sum_{j \in J} ||\Xi'_j Tf||^2 = \sum_{j \in J} ||\Xi_j f||^2 = ||f||^2,
$$

which implies that T is an isometry operator. Further for every $g \in \mathcal{U}$ we compute

$$
T^*g = \sum_{j \in J} T^* \Xi_j'^* \Xi_j' g = \sum_{j \in J} \Xi_j^* \Xi_j' g.
$$

This yields

shows that
$$
\sum_{j\in J} \Gamma_j^* \Lambda_j f
$$
 is weakly unconditionally Cauchy and hence unco: Γ_j^* is a weakly unconditionally Cauchy and hence unco: Γ_j^* is a weakly unconditionally Cauchy and hence unco: Γ_j^* is a finite. Theorem 2.3 Let $\{\Xi_j\}_{j\in J}$, $\{\Xi'_j\}_{j\in J}$ be g -orthonormal bases for \mathcal{H}, \mathcal{U} with $V_j\}_{j\in J}$ respectively, and let $T: \mathcal{H} \to \mathcal{U}$ be a bounded linear operator.

\n**of.** For each $f \in \mathcal{H}$ we have $\|Tf\|^2 = \sum_{j\in J} \|\Xi'_jTf\|^2 = \sum_{j\in J} \|\Xi'_jf\|^2 = \|f\|^2,$

\n1 implies that T is an isometry operator. Further, for every $g \in \mathcal{U}$, we can

\n
$$
T^*g = \sum_{j\in J} T^* \Xi_j^* \Xi_j' g = \sum_{j\in J} \Xi_j^* \Xi_j' g.
$$

\nyields

\nyields

\n
$$
\|T^*g\|^2 = \langle \sum_{j\in J} \Xi_j^* \Xi_j' g, \sum_{k\in J} \Xi_k^* \Xi_k' g \rangle
$$

\n
$$
= \sum_{j\in J} \sum_{k\in J} \delta_{jk} \langle \Xi'_j g, \Xi'_k g \rangle
$$

\n
$$
= \sum_{j\in J} \|\Xi'_j g\|^2 = \|g\|^2.
$$

Thus T is a co-isometry, which finishes the proof.

Theorem 2.4 Let $\Xi = {\{\Xi_j\}_{j \in J}}$ be a *g*-orthonormal system for *H* with respect to ${W_j}_{j \in J}$. Then the following conditions are equivalent:

- (*i*) Ξ is a *g*-orthonormal basis for *H* with respect to $\{W_j\}_{j\in J}$.
- (iii) $f = \sum_{j \in J} \Xi_j^* \Xi_j f$ $\forall f \in \mathcal{H}$.
- (iii) $||f||^2 = \sum_{j \in J} ||\Xi_j^* \Xi_j f||^2$ $\forall f \in \mathcal{H}$.
- (iv) $||f||^2 = \sum_{j\in J} ||\Xi_j f||^2 \quad \forall f \in \mathcal{H}.$
- $(v) < f, g \geq \sum_{j=1}^{\infty} \sum_{j \in J} \langle \Xi_j f, \Xi_j g \rangle$ $\forall f, g \in \mathcal{H}$.
- (*vi*) If $\Xi_j f = 0$ for all $j \in J$ then $f = 0$.

 (vii) $\mathcal{H} = \overline{\text{span}}\left\{\Xi_j^* \Xi_j(\mathcal{H})\right\}_{j \in J}.$ $(viii)$ $\mathcal{H} = \overline{\text{span}}\{\Xi_j^*(W_j)\}_{j \in J}.$

Proof. (*i*) \Rightarrow (*ii*) By the assumptions $\{\Xi_j^* e_{ij}\}_{j\in J, i\in J_j}$ is an orthonormal basis for *H*. Therefore for all $f \in \mathcal{H}$ we have

$$
\langle \sum_{j \in J} \Xi_j^* \Xi_j f, f \rangle = \sum_{j \in J} ||\Xi_j f||^2 = \sum_{j \in J} \sum_{i \in J_j} | \langle f, \Xi_j^* e_{ij} \rangle |^2 = ||f||^2 = \langle f, f \rangle.
$$

From this (*ii*) follows.

 $(ii) \Rightarrow (iii)$ Since Ξ is a *g*-orthonormal system for *H* with respect to $\{W_j\}_{j\in J}$, hence for all $f \in \mathcal{H}$ and $j \in J$ we have $(\Xi_j^* \Xi_j)^2 f = \Xi_j^* \Xi_j f$. This yields

$$
||f||^2 = <\sum_{j\in J} \Xi_j^* \Xi_j f, f>=\sum_{j\in J} ||\Xi_j^* \Xi_j f||^2,
$$

which implies (*iii*). The implications (*iii*) \Rightarrow (*iv*) \Rightarrow (*v*) \Rightarrow (*vi*) are clear. To prove $(vi) \Rightarrow (vii)$ assume that $f \perp \overline{\text{span}} \{ \Xi_j^* \Xi_j(\mathcal{H}) \}_{j \in J}$, hence $\|\Xi_j f\|^2 = \langle f, \Xi_j^* \Xi_j f \rangle = 0$ and so $\Xi_j f = 0$ for all $j \in J$, it shows that $f = 0$ and thus *(vii)* follows. Also the implication $(vii) \Rightarrow (viii)$ is obvious. To prove $(viii) \Rightarrow (i)$ suppose that

$$
\mathcal{A} = \Big\{ f \in \mathcal{H} : \sum_{j \in J} \Xi_j^* \Xi_j f = f \Big\}.
$$

 $||f||^2 = \sum_{j \in J} \Xi_j^* \Xi_j f, f \geq \sum_{j \in J} ||\Xi_j^* \Xi_j f||^2,$
 A implies (*iii*). The implications (*iii*) \Rightarrow (*iv*) \Rightarrow (*v*) \Rightarrow (*vi*) are clear
 \Rightarrow (*vii*) assume that $f \perp \overline{\text{span}}\{\Xi_j^* \Xi_j f(t)\}_{t \in J}$, hence $||\Xi_j f||^2 \$ It is obvious that *A* is a closed subspace of *H*. It follows by assumption that for every $i, j \in J$ and $f \in \mathcal{H}$ we have $\langle \Xi_j^* \Xi_j f, \Xi_i^* \Xi_i f \rangle = \delta_{ij} \langle \Xi_j f, \Xi_i f \rangle$, which implies that $\Xi_j^* \Xi_j \Xi_i^* \Xi_i = \delta_{ij} \Xi_j^* \Xi_i$. Thus $\Xi_j^* \Xi_j f \in \mathcal{A}$. Now suppose $f \in \mathcal{A}^\perp$, then for all $j \in J$ we compute $\|\Xi_j f\|^2 = \langle \Xi_j^* \Xi_j f, f \rangle = 0$, hence $\Xi_j f = 0$. Let $j \in J$ and $g \in W_j$ then $\langle f,\Xi_j^*g\rangle = \langle \Xi_j f,g\rangle = 0.$ It follows that $f \perp \overline{\text{span}}\{\Xi_j^*(W_j)\}_{j\in J} = \mathcal{H}$ and so $f = 0$, therefore $\mathcal{H} = \mathcal{A}$. For every $f \in \mathcal{H}$ we further have

$$
f = \sum_{j \in J} \Xi_j^* \Xi_j f = \sum_{j \in J} \sum_{i \in J_j} \langle f, \Xi_j^* e_{ij} \rangle \Xi_j^* e_{ij}.
$$

From this the result follows.

Let $\{Z_j\}_{j\in J}$ be a family of closed subspaces in H , then $\{Z_j\}_{j\in J}$ is called an orthonormal fusion basis for \mathcal{H} if $\mathcal{H} = \bigoplus_{j \in J} Z_j$.

Corollary 2.5 Let $\Xi = {\{\Xi_j\}_{j \in J}}$ be a *g*-orthonormal basis for *H* with respect to $\{W_j\}_{j \in J}$, and let $V_j = \Xi_j^* \Xi_j(\mathcal{H})$ for all $j \in J$. Then $\{V_j\}_{j \in J}$ is an orthonormal fusion basis for \mathcal{H} .

Proof. This claim follows immediately from the fact that for each $i, j \in J$ we have

$$
\Xi_j^* \Xi_j \Xi_i^* \Xi_i = \delta_{ij} \Xi_j^* \Xi_i.
$$

Corollary 2.6 Let $\Xi = {\{\Xi_j\}_{j \in J}}$ be a Parseval *g*-frame of co-isometries for *H* with respect to $\{W_j\}_{j\in J}$. Then Ξ is a *g*-orthonormal basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

www.SID.ir

■

Proof. Fix $i \in J$, since Ξ is a Parseval g-frame for \mathcal{H} with respect to $\{W_j\}_{j \in J}$. Thus for every $g \in W_i$, we have

$$
\|\Xi_i^* g\|^2 = \sum_{j \in J} \|\Xi_j \Xi_i^* g\|^2 = \|\Xi_i^* g\|^2 + \sum_{\substack{j \in J \\ j \neq i}} \|\Xi_j \Xi_i^* g\|^2.
$$

Hence $\sum_{j\in J} ||\Xi_j \Xi_i^* g||^2 = 0$. So $\Xi_j \Xi_i^* g = 0$ for all $j \neq i$. This shows that $\Xi = {\{\Xi_j\}}_{j\in J}$ is $\frac{d}{dt}$ *g*-orthonormal system for *H* with respect to $\{W_j\}_{j\in J}$. Now the result follows from the Theorem 2.4. ■

Definition 2.7 Let $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ be sequences for H with respect to $\{W_j\}_{j\in J}$ and ${V_j}_{j \in J}$ respectively. Then

(*i*) $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ are said to be biorthogonal for *H* with respect to $\{W_j\}_{j \in J}$, $\{V_j\}_{j \in J}$ if

$$
\langle \Lambda_i^* g, \Gamma_j^* g' \rangle = \delta_{ij} \langle g, g' \rangle \qquad \forall i, j \in J, g \in W_i, g' \in V_j.
$$

(*ii*) $\{\Lambda_j\}_{j\in J}$ is called a g-Riesz basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if it's g-complete set for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and there exist constants $0 < A \leq B < \infty$ such that for any finite subset $I \subset J$ and $g_i \in W_i, (i \in I)$ we have

$$
A\sum_{i\in I} \|g_i\|^2 \leq \| \sum_{i\in I} \Lambda_i^* g_i \|^2 \leq B\sum_{i\in I} \|g_i\|^2. \tag{9}
$$

Theorem 2.8 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *g*-Riesz basis for *H* with respect to ${W_j}_{j \in J}$, then there exists a sequence $\Gamma = {\{\Gamma_j\}_{j \in J}}$ for \mathcal{H} with respect to ${W_j\}_{j \in J}$ such that

$$
f = \sum_{j \in J} \Gamma_j^* \Lambda_j f \quad \forall f \in \mathcal{H}.
$$
 (10)

Γ is also a *g*-Riesz basis for *H* with respect to ${W_j}_{j \in J}$ and Λ, Γ are biorthogonal for *H* with respect to ${W_j}_{j \in J}$. Moreover the series (10) converges unconditionally for all *f ∈ H* .

Archive 14 iii $\{W_j\}_{j\in J}$ are said to be biotinogonal for *R* with $\{W_j\}_{j\in J}$, $\{V_j\}_{j\in J}$ if
 $\langle \Lambda_i^s g, \Gamma_j^s g' \rangle = \delta_{ij} \langle g, g' \rangle \quad \forall i, j \in J, g \in W_i, g' \in V_j.$
 $\langle \Lambda_i^s g, \Gamma_j^s g' \rangle = \delta_{ij} \langle g, g' \rangle \quad \forall i, j \in J, g \in W_i, g' \in V_j$ **Proof.** By [6, Corollary 3.4] there is a *g*-orthonormal basis $\{\Xi_j\}_{j\in J}$ for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and a bounded invertible operator T on H such that $\Lambda = {\Lambda_j\}_{j\in J} = {\Xi_j T\}_{j\in J}$. Put $\Gamma_j = \Xi_j(T^{-1})^*$ for all $j \in J$. Obviously $\Gamma = {\{\Gamma_j\}}_{j \in J}$ is a g-Riesz basis for *H* with respect to ${W_j}_{j \in J}$ and we have

$$
\langle \Lambda_i^* g, \Gamma_j^* g' \rangle = \langle T^* \Xi_j^* g, T^{-1} \Xi_j^* g' \rangle = \delta_{ij} \langle g, g' \rangle \qquad \forall i, j \in J, g \in W_i, g' \in W_j
$$

which implies that Λ , Γ are biorthogonal for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Moreover, for all $f \in \mathcal{H}$ we observe that

$$
\sum_{j\in J} \Gamma_j^*\Lambda_j f = \sum_{j\in J} T^{-1} \Xi_j^* \Xi_j Tf = T^{-1} Tf = f.
$$

Since every *g*-Riesz basis is a *g*-Bessel sequence thus, convergent unconditionally of the above series follows by Theorem 2.2. ■

Let $\Lambda = {\Lambda_j}_{j \in J}$ and $\Gamma = {\Gamma_j}_{j \in J}$ be g-Bessel sequences for *H* with respect to $\{W_j\}_{j\in J}$, $\{V_j\}_{j\in J}$ respectively. Then Γ is called a dual *g*-frame of Λ for *H* with respect to $\{V_j\}_{j\in J}$, $\{W_j\}_{j\in J}$ if

$$
f = \sum_{j \in J} \Gamma_j^* \Lambda_j f \qquad \forall f \in \mathcal{H}.
$$

It is easy to check that Γ is a dual *g*-frame of Λ for \mathcal{H} with respect to $\{V_j\}_{j\in J}, \{W_j\}_{j\in J}$ if and only if $\Theta_{\Gamma} \Theta_{\Lambda}^* = Id_{\mathcal{H}}$, in this case Λ and Γ are also g-frames for \mathcal{H} with respect to $\{W_j\}_{j\in J}, \{V_j\}_{j\in J}$. Since $\Theta_{\Lambda}\Theta_{\Gamma}^* = Id_{\mathcal{H}}$, hence Λ is also a dual g-frame of Γ for \mathcal{H} with ${W_j}_{j \in J}$, ${V_j}_{j \in J}$.

The following example shows that the dual *g*-frame of a *g*-orthonormal basis is not unique.

Example 2.9 Fix some $n \in \mathbb{N}, 1 \leqslant j \leqslant n$ and define $W_j \subset \mathbb{C}^{n+1}$, by $W_j =$ span $\{\sum_{k=1}^{j+1}$ $i+1 \n\leq k$, where $\{e_i\}_{i=1}^{n+1}$ is the standard orthonormal basis for \mathbb{C}^{n+1} . Also define

$$
\Xi_j : \mathbb{C}^n \to W_j
$$
 with $\Xi_j(\{z_i\}_{i=1}^n) = \frac{z_j}{\sqrt{j+1}} \sum_{k=1}^{j+1} e_k$.

Then $\Xi = {\{\Xi_j\}}_{j=1}^n$ is a *g*-orthonormal basis for \mathbb{C}^n with respect to ${W_j\}}_{j=1}^n$. Therefore by Theorem 2.4, Ξ is a dual g-frame of itself for \mathbb{C}^n with respect to $\{W_j\}_{j=1}^n$. Now if for each $1 \leq j \leq n$, we define $V_j = \text{span}\{e_j\}$ and

$$
\Gamma_j: \mathbb{C}^n \to V_j
$$
 and $\Gamma_j(\{z_i\}_{i=1}^n) \equiv \sqrt{j+1}z_j e_j$.

Then for all $z \in \mathbb{C}^n$ we have $z = \sum_{j=1}^n \Gamma_j^* \Xi_j z$, that is $\Gamma = {\{\Gamma_j\}}_{j=1}^n$ is a dual g-frame of $\Xi = {\{\Xi_j\}}_{j=1}^n$ for \mathbb{C}^n with respect to ${\{V_j\}}_{j=1}^n$, ${\{W_j\}}_{j=1}^n$ respectively.

Proposition 2.10 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *g*-frame for *H* with respect to ${W_j}_{j \in J}$, then there exists a g-orthonormal basis $\{\Xi_j\}_{j\in J}$ for $\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}$ with respect to $\{W_j\}_{j\in J}$ such that $\Xi_j \Theta_{\Lambda}^* = \Lambda_j$ for all $j \in J$.

 $\begin{array}{l} \mbox{\textbf{m}} \mbox{\textbf{p}} \mbox{\textbf{h}} \mbox{\textbf$ **Proof.** For all $j \in J$ define $\Xi_j : (\sum_{j \in J} \oplus W_j)_{\ell^2} \to W_j$ by $\Xi_j(\{g_k\}_{k \in J}) = g_j$, then $\Xi_j^*g = \{\delta_{kj}\pi_{W_k}g\}_{k\in J}$ for all $g \in \mathcal{K}$, where δ_{kj} is the Kronecker delta. First of all, $\{\Xi_j\}_{j\in J}$ is a *g*-orthonormal system for H with respect to $\{W_j\}_{j\in J}$. To see this, let $g \in W_j$, $g' \in W_i$ and $i, j \in J$. Then we have

$$
\langle \Xi_j^* g, \Xi_i^* g' \rangle = \sum_{k \in J} \delta_{kj} \delta_{ki} \langle \pi_{W_k} g, \pi_{W_k} g' \rangle
$$

=
$$
\delta_{ji} \langle \pi_{W_j} g, \pi_{W_j} g' \rangle = \delta_{ji} \langle g, g' \rangle.
$$

On the other hand for any $g = \{g_k\}_{k \in J} \in \left(\sum_{j \in J} \oplus W_j\right)_{\ell^2}$ we compute

$$
\sum_{j\in J}\|\Xi_j g\|^2=\sum_{j\in J}\|g_j\|^2=\|g\|^2.
$$

By Theorem 2.4 $\{\Xi_j\}_{j\in J}$ is a *g*-orthonormal basis for $\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}$ with respect to *E*_{*j*} $\frac{1}{2}$ *j*_{*j*} $\$

Acknowledgements

The author would like to thank from the anonymous reviewers for carefully reading of the manuscript and giving useful comments, which will help to improve the paper.

References

- [1] O. Christensen, An Introduction to Frames and Riesz Bases, *Birkhauser, Boston,* (2003).
- [2] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, *J. Math. Phys.* **27**(1986), 1271-1283.
- [3] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.* **72** ,**(2)** , (1952), 341-366.
- [4] M. Fornasier, Quasi-orthogonal decompositions of structured frames, *J. Math. Anal. Appl.* **289** (2004), 180-199.
- [5] D. Gabor, Theory of communications, *J. Inst. Electr. Eg. London.* **93**(III), (1946), 429-457.
- [6] W. Sun, G-frames and G-Riesz bases, *J. Math. Anal. Appl.* (2006), **322**, 437-452.
- [7] R. Young, An Introduction to Nonharmonic Fourier Series, *Academic Press, New York*, (2001).

Archive 0