Journal of Linear and Topological Algebra Vol. 03*, No.* 04*,* 2014*,* 205*-* 209

OD-characterization of *U*3(9) **and its group of automorphisms**

P. Nosratpour*[∗]*

Department of Mathematics, Ilam Branch, Islamic Azad University, Ilam, Iran.

Received 1 September 2014; Revised 22 November 2014; Accepted 27 December 2014.

Abstract. Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field with $9²$ elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to *L*. Since $Aut(L) \cong Z_4$ hence almost simple groups related to *L* are *L*, *L* : 2 or *L* : 4. In fact, we prove that *L*, *L* : 2 and *L* : 4 are OD-characterizable.

*⃝*c 2014 IAUCTB. All rights reserved.

Keywords: Finite simple group, OD-characterization, group of lie type.

2010 AMS Subject Classification: 20D05, 20D60, 20D06.

1. Introduction

Let *G* be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of *G*. The prime graph $\Gamma(G)$ of a finite group *G* is a simple graph with vertex set $\pi(G)$ in which two distinct vertices *p* and *q* are joined by an edge if and only if *G* has an element of order *pq*. **Example 19 Follows** P. Nosratpour
 P. Nosratpour
 P. Nosratpour
 Blamic Azad University, Ilam, Iran.
 Received 1 September 2014; Revised 22 November 2014; Accepted 27 December 2014.
 Archive of Side 2014 in thi

Definition 1.1 Let G be a finite group and $|G| = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $p_1 < p_2 < \ldots <$ p_k . For $p \in \pi(G)$, let $deg(p) = |\{q \in \pi(G)|p \sim q\}|$ be the degree of p in the graph $\Gamma(G)$, we define $D(G) = (deg(p_1), deg(p_2), \ldots, deg(p_k))$, which is called the degree pattern of *G*.

Given a finite group G , denote by $h_{OD}(G)$ the number of isomorphism classes of finite groups *S* such that $|G| = |S|$ and $D(G) = D(S)$. In terms of the function h_{OD} , groups

*∗*Corresponding author.

Online ISSN: $2345-5934$

Print ISSN: 2252-0201 [©] 2014 IAUCTB. All rights reserved.

Online ISSN: 2345-5934 *Online* ISSN: 2345-5934

E-mail address: p.nosratpour@ilam-iau.ac.ir (P. Nosratpour).

G are classified as follows:

Definition 1.2 A group *G* is called *k*-fold OD-characterizable if there exist exactly *k* non-isomorphic group *S* such that $|G| = |S|$ and $D(G) = D(S)$. Moreover, a 1-fold OD-characterizable group is simply called an OD-characterizable.

Definition 1.3 A group *G* is said to be an almost simple group if and only if $S \triangleleft G \triangleleft$ *Aut*(*S*) for some non-abelian simple group *S*.

Definition 1.4 Let *p* be a prime number. The set of all non-abelian finite simple groups *G* such that $p \in \Pi(G) \subseteq \{2, 3, 5, \ldots, p\}$ is denoted by \mathfrak{S}_p .

It is clear that the set of all non-abelian finite simple groups is the disjoint union of the finite sets \mathfrak{S}_p for all primes p.

2. Preliminaries

For any group *G*, let $\omega(G)$ be the set of orders of elements in *G*, where each possible order element occurs once in $\omega(G)$ regardless of how many elements of that order *G* has. This set is closed and partially ordered by divisibility, hence it is uniquely determined by its maximal elements. The set of maximal elements of $\omega(G)$ is denoted by $\mu(G)$. The number of connected component of $\Gamma(G)$ is denoted by $t(G)$. Let $\pi_i = \pi_i(G)$, $1 \leq i \leq t(G)$, be the *i*th connected components of $\Gamma(G)$. For a group of even order we let $2 \in \pi_1(G)$. We denote by $\pi(n)$ the set of all primes divisors of n, where *n* is a natural number. Then $|G|$ can be expressed as a product of $m_1, m_2, \ldots, m_{t(G)}$, where m_i 's are positive integers with $\pi(m_i) = \pi_i$. The numbers m_i i_i , $i \leq t(G)$, are called the order components of *G*. We write $OC(G) = \{m_1, m_2, \ldots, m_{t(G)}\}$ and call it the set of order components of *G*. The set of prime graph components of *G* is denoted by $T(G) = \{\pi_i(G) | i = 1, 2, \ldots, t(G)\}.$ **reliminaries**

group *G*, let $\omega(G)$ be the set of orders of elements in *G*, where each possit

occurs once in $\omega(G)$ regardless of how many elements of that order *G*

oseed and partially ordered by divisibility, hence

Definition 2.1 Let *n* be a natural number. We say that a finite simple group G is a *K*_{*n*}-group if $|\pi(G)| = n$.

Definition 2.2 Suppose that $K \leq G$ and $G/K \cong H$. Then we shall call *G* an extension of K by H .

3. Elementary Result

Definition 3.1 A group *G* is called a 2-Frobenius group, if there exists a normal series $1 \leq H \leq K \leq G$, such that *K* and $\frac{G}{H}$ are Frobenius groups with kernels *H* and $\frac{K}{H}$, respectively.

Lemma 3.2 [2] Let *G* be a 2-Frobenius group of even order which has a normal series $1 \leq H \leq K \leq G$, such that *K* and $\frac{G}{H}$ are Frobenius groups with kernels *H* and $\frac{K}{H}$, respectively. Then

- (a) $t(G) = 2$ and $T(G) = {\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)}.$
- (b) G/K and K/H are cyclic groups, $|G/K|$ | $|Aut(K/H)|$, and $(|G/K|, |K/H|) = 1$.
- (c) *H* is a nilpotent group and *G* is a solvable group.

The following lemmas are useful when dealing with a Frobenius group.

Lemma 3.3 [4, 6] Let *G* be a Frobenius group with complement *H* and kernel *K*. Then the following assertions hold:

- (a) *K* is a nilpotent group;
- (b) $|K| \equiv 1 \pmod{H}$;
- (c) Every subgroup of *H* of order *pq*, with *p*, *q* (not necessarily distinct)primes, is cyclic. In particular, every Sylow Subgroup of *H* of odd order is cyclic and a 2-Sylow subgroup of *H* is either cyclic or a generalized quaternion group. If *H* is a non-solvable group, then *H* has a subgroup of index at most 2 isomorphic $\text{to } Z \times SL(2, 5)$, where *Z* has cyclic Sylow *p*-subgroups and $\pi(Z) \cap \{2, 3, 5\} = \emptyset$. In particular, 15, 20 $\notin \omega(H)$. If *H* is solvable and $O(H) = 1$, then either *H* is a 2-group or *H* has a subgroup of index at most 2 isomorphic to *SL*(2*,* 3).

Lemma 3.4 [2] Let *G* be a Frobenius group of even order where *H* and *K* are Frobenius complement and Frobenius kernel of *G*, respectively. Then $t(G) = 2$ and $T(G) = {\pi(H), \pi(K)}.$

Let *G* be a finite group with disconnected prime graph. The structure of *G* is given in [7] which is stated as a lemma here.

Lemma 3.5 Let *G* be a finite group with disconnected prime graph. Then *G* satisfies one of the following conditions:

- a) $s(G) = 2$, $G = KC$ is a Frobenius group with kernel K and complement C, and the two connected components of *G* are $\Gamma(K)$ and $\Gamma(C)$. Moreover *K* is nilpotent, and here $\Gamma(K)$ is a complete graph.
- b) $s(G) = 2$ and *G* is a 2-Frobeuius group, i.e., $G = ABC$ where $A, AB \leq G$, $B \trianglelefteq BC$, and *AB*, *BC* are Frobenius groups.
- c) There exists a non-abelian simple group P such that $P \leq \overline{G} = \frac{G}{N} \leqslant Aut(P)$ for some nilpotent normal $\pi_1(G)$ -subgroup N of G and $\frac{G}{P}$ is a $\pi_1(G)$ -group. Moreover, $\Gamma(P)$ is disconnected and $s(P) \geq s(G)$.

If a group *G* satisfies condition(c) of the above lemma we may write $P = \frac{B}{N}$ $\frac{B}{N}$ *, B* \leqslant *G,* and $\frac{G}{P} = \frac{G}{B} = A$, hence in terms of group extensions $G = N \cdot P \cdot A$, where N is a nilpotent normal $\pi_1(G)$ -subgroup of *G* and *A* is a $\pi_1(G)$ -group. *A* be a finite group with disconnected prime graph. The structure of *G* is stated as a lemma here.
 A.S. Let *G* be a finite group with disconnected prime graph. Then *G* is stated as a lemma here.

A.S. Let *G* be a

Theorem 3.6 [5] The following assertions are equivalent:

- (a) *G* is a Frobenius group with kernel *K* and complement *H*.
- (b) $G = HK$ such that $K \triangleleft G$ and $H \triangleleft G$ and H act on K without fixed point.

By [1], the outer automorphism group of $U_3(9)$ is isomorphic to Z_4 , hence we have

Lemma 3.7 If *G* is an almost simple group related to $L = U_3(9)$, then *G* is isomorphic to one of the following groups: $L, L: 2$ or $L: 4$.

4. Main Results

Theorem 4.1 If *G* is a finite group such that $D(G) = D(M)$ and $|G| = |M|$, where M is an almost simple group related to $L = U_3(9)$, then the following assertions hold:

- (a) If $M = L$, then *L* is OD-characterizable.
- (b) If $M = L:2$, then $L:2$ is OD-characterizable.
- (c) If $M = L : 4$, then $L : 4$ is OD-characterizable.

Proof. We break the proof into a number of separate cases: Case 1: If $M = L$, then $G \cong L$, by [3].

Case 2: If $M = L : 2$, then $G \cong L : 2$.

If $M = L : 2$, by [1], $\mu(L : 2) = \{12, 30, 73, 80\}$ from which we deduce that $D(L:2) = (2, 2, 2, 0)$. The prime graph of $L:2$ has the following form:

Figure 1: The prime graph of $U_3(9):2$

 $\text{As } |G| = |L : 2| = 2^6 \cdot 3^6 \cdot 5^2 \cdot 73 \text{ and } D(G) = D(L : 2) = (2, 2, 2, 0), \text{ then, } \Gamma(G) = \Gamma(M) =$ ${2 \sim 3, 2 \sim 5, 3 \sim 5, 73}$. Thus *G* has a disconnected prime graph with *s*(*G*) = 2. We show that *G* is neither a Frobenius group nor 2-Frobenius group. If *G* is a Frobenius group, then by Lemma 3.5 (a), $G = KC$, with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. Note that $\Gamma(K)$ is a graph with vertex $\{73\}$ and $\Gamma(C)$ with vertices $\{2, 3, 5\}$. By Lemma 3.3 (b), $|K| |(|C|-1)$. Since $|K| = 73$ and $|C| =$ $2^6 \cdot 3^6 \cdot 5^2$, then, $73 \nmid (2^6 \cdot 3^6 \cdot 5^2 - 1)$, a contradiction. If *G* is a 2-Frobenius group, then there is a normal series $1 \triangleleft H \triangleleft K \triangleleft G$ such that *K* and G/H are Frobenius groups with kernels *H* and *K/H*. By Lemma 3.2 (a), $T(G) = {\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)}.$ Therefore, $|K/H| = 73$. Also, by Lemma 3.2 (b), $G/K \leqslant Aut(K/H) \cong Z_{72}$. Hence $|G/K|$ | $2^3 \cdot 3^2$, which implies that $\{5, 73\} \subseteq \pi(K)$, and so $5 \in \pi(H)$. Let $H_5 \in Syl_5(H)$ and $G_{73} \in Syl_{73}(G)$. Then $H_5char H \leq G$. By the nilpotency of *H*, we have $H_5 \lhd G$ and H_5 acts on G_{73} fixed point freely, since $5 \nsim 73$ in $\Gamma(G)$. Therefore, by Theorem 3.6, $H_5.G_{73}$ is a Frobenius group. So, $|G_{73}| | (|H_5| - 1)$, i.e., 73 $| (5ⁱ - 1)$, $i = 1$ or 2, a contradiction. ma 3.5 (a), $G = KC$, with Frobenius kernel K and Frobenius complement ed components $\Gamma(K)$ and $\Gamma(C)$. Note that $\Gamma(K)$ is a graph with vertices $\{2, 3, 5\}$. By Lemma 3.3 (b), $|K|$ $|(C|-1)$. Since $|K| = 73$ and π , then

By Lemma 3.5 (c), there exists a non-abelian simple group *P* such that $P \leq \overline{G}$ $G/N \leqslant Aut(P)$, for some nilpotent normal $\{2,3,5\}$ -subgroup N of G and \overline{G}/P is a *{*2*,* 3*,* 5*}*-group.

 $73 \in \pi(P)$. Since \overline{G}/P is a $\{2,3,5\}$ -group and $73 \mid |G|$, therefore, we have $73 \mid |P|$, i.e., $P \in \mathfrak{S}_{73}$, which implies that $\pi(P) \subseteq \{2, 3, 5, 73\}$. Using [8], we deduce that $P \cong U_3(9)$. We have $U_3(9) \leq G/N \leq Aut(\hat{U}_3(9))$. It follows that $|N|=2$ or $|N|=1$.

 $If |N| = 1, then G ≅ U_3(9)$: 2.

If $|N| = 2$, then $G/C_G(N) \leqslant Aut(N) = 1$, so $G = C_G(N)$ and $N \leqslant Z(G)$. Let $G_{73} \in Syl_{73}(G)$. Then *N.G*₇₃ is a subgroup of *G*, therefore, *N.G*₇₃ has an element of order 2.73, which implies that $2 \sim 73$ in $\Gamma(G)$, a contradiction.

Case 3: If $M = L : 4$, then $G \cong L : 4$.

If $M = L : 4$, by [1], $\mu(L : 4) = \{24, 30, 73, 80\}$ from which we deduce that $D(L:2) = (2, 2, 2, 0)$. The prime graph of $L:4$ has the following form:

Figure 2: The prime graph of $U_3(9):$ 4

 $\text{As } |G| = |L: 4| = 2^7 \cdot 3^6 \cdot 5^2 \cdot 73 \text{ and } D(G) = D(L: 4) = (2, 2, 2, 0), \text{ then } \Gamma(G) = \Gamma(M) =$ ${2 \sim 3, 2 \sim 5, 3 \sim 5, 73}$. Thus *G* has a disconnected prime graph with *s*(*G*) = 2. We show that *G* is neither a Frobenius group nor 2-Frobenius group. If *G* is a Frobenius group, then by Lemma 3.5(a), $G = KC$, with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. Not that $\Gamma(K)$ is a graph with vertex {73*}* and $\Gamma(C)$ with vertices $\{2, 3, 5\}$. By Lemma 3.3(b), $|K| |(|C|-1)$. Since $|K| = 73$ and $|C| =$ $2^7 \cdot 3^6 \cdot 5^2$, then $73 \nmid (2^7 \cdot 3^6 \cdot 5^2 - 1)$, a contradiction. If *G* is a 2-Frobenius group, then, there is a normal series $1 \triangleleft H \triangleleft K \triangleleft G$ such that *K* and G/H are Frobenius groups with kernels *H* and *K/H*. By Lemma 3.2(a), $T(G) = {\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)}.$ Therefore, $|K/H| = 73$. Also, by Lemma 3.2 (b), $G/K \leq Aut(K/H) \cong Z_{72}$. Hence $|G/K|$ | $2^3 \cdot 3^2$, which implies that $\{5, 73\} \subseteq \pi(K)$, and so $5 \in \pi(H)$. Let $H_5 \in Syl_5(H)$ and $G_{73} \in Syl_{73}(G)$. Then $H_5char H \leq G$. By nilpotency of *H*, we have $H_5 \lhd G$ and H_5 acts on G_{73} fixed point freely, since $5 \approx 73$ in $\Gamma(G)$. We must have $|G_{73}| | (|H_5| - 1)$, i.e., $73 | (5ⁱ - 1), i = 1 \text{ or } 2$, a contradiction.

Now by Lemma 3.5 (c), there exists a non-abelian simple group *P* such that $P \leq$ $\overline{G} = G/N \leqslant Aut(P)$, for some nilpotent normal $\{2,3,5\}$ -subgroup *N* of *G* and \overline{G}/P is a *{*2*,* 3*,* 5*}*-group.

 $73 \in \pi(P)$. Since \overline{G}/P is a $\{2,3,5\}$ -group and $73 \mid |G|$, therefore, $73 \mid |P|$, i.e., $P \in \mathfrak{S}_{73}$, which implies that $\pi(P) \subseteq \{2, 3, 5, 73\}$. Using [8], we deduce that $P \cong U_3(9)$. We have $U_3(9) \le G/N \le Aut(U_3(9))$. It follows that $|N|=1$ or 2 or 4.

If $|N| = 1$, then *G* $\cong U_3(9)$: 4.

If $|N| = 2$, then $G/C_G(N) \leqslant Aut(N) = 1$, so $G = C_G(N)$ and $N \leqslant Z(G)$. Let $G_{73} \in Syl_{73}(G)$. Then *N.G*₇₃ is a subgroup of *G*, therefore, *N.G*₇₃ has an element of order 2.73, which implies that $2 \sim 73$ in $\Gamma(G)$, a contradiction.

If $|N| = 4$, then $G/C_G(N) \leqslant Aut(N) \cong Z_2$. Thus, $|G/C_G(N)| = 1$ or 2. If $|G/C_G(N)| = 1$, then, $N \leq Z(G)$. Let $G_{73} \in Syl_{73}(G)$. Then $N.G_{73}$ is a subgroup of *G*, therefore, *N.G*₇₃ has an element of order 2.73, which implies that $2 \sim 73$ in $\Gamma(G)$, a contradiction. If $|G/C_G(N)| = 2$, then $N < C_G(N)$ and $1 \neq C_G(N)/N \leq G/N \cong L$. Therefore, from simplicity *L* we deduce that $G = C_G(N)$, a contradiction. $3 \in \pi(P)$. Since G/P is a $\{2, 3, 5\}$ -group and $73 \mid |G|$, therefore, $73 \mid |P|$, i.e., $P_1 \leq U_3(5)$, 73 . Using $|8|$, we deduce that $P \cong U_3(9)$. $\emptyset / N \leq Aut(U_3(9))$. It follows that $|N| = 1$ or 2 or 4 .
 $|N| =$

References

- [1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.
- [2] G. Y. Chen, On structure of Frobenius and 2-Frobenius group, Journal of Southwest China Normal University, 20(5), 485-487(1995).(in Chinese)
- [3] M. R. Darafsheh, A. R. Moghaddamfar, and A. R. Zokayi, A characterization of finite simple groups by degrees of vertices of their prime graphs, Algebra Colloquium, 12(3), 431-442(2005).
- D. Gorenstein, Finite Groups, New York, Harpar and Row, (1980).
- [5] B. Huppert, Endlichen Gruppen I, Springer-Verlag,(1988).
- [6] D. S. Passman, Permutation Groups, New York, Benjamin Inc., (1968).
- [7] J.S.Williams, Prime graph components of finite groups, J. Alg. 69, No.2,487-513(1981).
- [8] A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Siberian Electronic Math. Reports. 6,