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Abstract Electrospinning technique was utilized to

engineer a small-diameter (id = 4 mm) tubular graft.

The tubular graft was made from biocompatible and

biodegradable polymers polycaprolactone (PCL) and

poliglecaprone with 3:1 (PCL:PGC) ratio. Enzymatic

degradation effect on the mechanical properties and

fiber morphology in the presence of lipase enzyme were

observed. Significant changes in tensile strength

(1.86–1.49 MPa) and strain (245–205 %) were noticed

after 1 month in vitro degradation. The fiber breakage

was clearly evident through scanning electron microscopy

(SEM) after 4 weeks in vitro degradation. Then, the graft

was coated with a collagenous protein matrix to impart

bioactivity. Human umbilical vein endothelial cells

(HUVECs) and aortic artery smooth muscle cells

(AoSMCs) attachment on the coated graft were observed

in static condition. Further, HUVECs were seeded on the

lumen surface of the grafts and exposed to laminar shear

stress for 12 h to understand the cell attachment. The

coated graft was aged in PBS solution (pH 7.3) at 37 �C
for 1 month to understand the coating stability.

Differential scanning calorimetry (DSC) and Fourier

transform infrared spectroscopy (FTIR) suggested the

erosion of the protein matrix from the coated graft under

in vitro condition.
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Introduction

Approximately, 800,000 coronary artery bypass graft

surgeries (CABG) are performed worldwide each year

(Dahl et al. 2011). Alarmingly, one-third of the patients

who undergo the CABG procedure do not have viable

autologous grafts (Wang et al. 2007). Further, there are 202

million people suffering from peripheral artery disease

(PAD), and particularly in the USA *8.5 million Amer-

icans aged C40 years have PAD (Go et al. 2014; Fowkes

et al. 2013). Surgeons have used non-degradable synthetic

polytetrafluoroethylene (PTFE) or Dacron medium- to

large-diameter grafts which provide 10 years of symptom-

free lifestyle; however they have extremely poor perfor-

mance due to thrombotic occlusion and intima hyperplasia

when their diameter is\6 mm (Song et al. 2011; Clowes

et al. 1985). In the pediatric population, non-degradable

prosthetic grafts are unable to match with somatic growth,

resulting in requiring a second or third surgery (Cittadella

et al. 2013). Therefore, there is a desperate need for a

small-diameter (\6 mm) vascular graft which can replace

and or repair the damaged native blood vessel, promote

regeneration of a neo tissue, and completely be bioab-

sorbed in the long run.

Researchers have tried various approaches to engineer

such an ideal vascular graft, for instance, natural scaffolds
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(collagen, elastin, fibrin), self-assembled cell sheets, syn-

thetic scaffolds, and decellularized matrix (allogenic,

xenogenic, heterogenic) (Seifu et al. 2013). However, long

fabrication time, potential transmission of disease, throm-

bus formation, hyperplasia, and immune rejections are

critical issues associated with these approaches (Seifu et al.

2013). Hence, a general movement was started to engineer

coated grafts by combining biodegradable and biocom-

patible synthetic polymers with natural proteins such as

collagen, elastin, and fibrin (Sell et al. 2009). Examples of

biodegradable synthetic polymers used in vascular tissue

engineering applications are poly(lactide acid) PLA,

polycaprolactone (PCL), polyurethanes (PU), polyglycolic

acid (PGA), and polydioxanone (PDO) (Sell et al. 2009;

Boland et al. 2005; Stitzel et al. 2001; Kidoaki et al. 2005;

Lee et al. 2008a). In this approach, a synthetic polymer will

provide mechanical integrity and natural proteins provide

biocompatibility and extracellular matrix (ECM)-mimick-

ing environment for better cell attachment and

proliferation.

To fabricate scaffolds for tissue engineering application,

researchers have explored many techniques such as solvent

casting, phase separation, fiber self-assembly, electrospin-

ning, melt molding, decellularization, gas foaming, and

laser sintering (Song et al. 2011). However, the electro-

spinning technique has gained particular interest due to its

simplicity and versatility. This method is capable of

forming nano–microscale fibers which can mimic the nat-

ural tissue ECM morphology; hence, scaffolds made from

this technique can be utilized for various biomedical ap-

plications such as drug delivery and soft/hard tissue re-

generation (Liu et al. 2013). The electrospun biodegradable

scaffolds have a porous structure to allow cell migration

and infiltration, higher surface area for better cell attach-

ment, and a tunable degradation rate which is necessary to

promote neo-tissue ingrowth (Sell et al. 2010).

A new tubular graft from biocompatible and biodegrad-

able PCL and poliglecaprone (PGC) polymers was fabri-

cated by an electrospinning technique (Patel et al. 2015).

PCL is a semicrystalline polymer which provides a slow

degradation time (*2 years); therefore, it can play a critical

role in tissue engineering application when a scaffold re-

quires a longer time to support the damage tissue and pro-

mote regeneration (Gunatillake and Adhikari 2003). PCL

has great viscoelastic properties, which provide the key

qualities for vascular tissue engineering application (Lee

et al. 2003). De Valence et al. (2012) showed a great

structural integrity for the graft made from PCL in rat ab-

dominal aorta model. Unlike PGA, PLA, and poly-lactide-

co-glycolic acid (PLGA), PCL does not undergo plastic

deformation and failure when exposed to long cyclic strain;

therefore, it can be an excellent and critical component in

vascular graft application (Lu et al. 2008). PGC in the form

of Monocryl� monofilament sutures displayed excellent

tensile properties and 20–30 % reduction in strength after

2 weeks in vivo (Bezwada et al. 1995). Complete absorp-

tion of PGC in human body between 90 and 120 days with

slight to minimal tissue reaction has been confirmed (Bez-

wada et al. 1995). Therefore, a blend of PCL and PGC can

provide the required mechanical integrity, and faster PGC

degradation can provide room for neo-tissue formation.

Various biodegradable polymers and natural polymers

were combined to engineer an ideal vascular graft in the

past. He et al. (2009) combined PLLA with PCL and

coated with collagen to create a small-diameter vascular

graft and noticed promising biocompatibility and in vivo

results. Ju et al. (2010) used PCL with collagen to fabricate

a tubular graft and showed endothelial cell (ECs) adhesion

as well as smooth muscle cell (SMCs) infiltration from the

outer surface to the lumen side. Han et al. (2010) co-

electrospun a blend of PLGA, gelatin, and elastin to create

a scaffold for vascular tissue engineering and studied EC

and SMC attachment. Pandis et al. (2010) fabricated a

hyaluronan-based scaffold and examined its in vivo per-

formance in rats. Pankajkshan et al. (2008) coated PCL

scaffold with fibrin to engineer a potential vascular graft

and observed EC lining in 15 and 30 days after cultured.

He et al. (2011) utilized PLLA and PCL with fibrinogen for

potential soft tissue engineering applications as well. In-

terestingly, Wang et al. (2009) combined PLA with silk

fibroin to generate tubular scaffolds and examined me-

chanical as well as biocompatibility with different cell lines

for potential use in blood vessel tissue engineering appli-

cation. Though extraordinary efforts have been undertaken

to solve the critical need for an ideal vascular graft, a

clinically available bio-hybrid tubular graft requires further

research. In our recent publication, we have shown that 3:1

(PCL:PGC) blend had the most desirable mechanical

properties for vascular graft application (Patel et al. 2015).

PCL breaks down by hydrolytic degradation mechanism,

and it has been studied by Pena et al. (2006). However,

there have been studies showing that the hydrolytic

degradation may be catalyzed by enzymes such as lipase

(Zeng et al. 2004; Gan et al. 1999). Lipase, an extracellular

hydrolytic enzyme which is water soluble, is able to digest

aliphatic polyesters such as PCL (Rizzarelli et al. 2004;

Tokiwa and Suzuki 1977). Researchers have incorporated

collagen, elastin, chitosan, hyaluronic acid, fibrin, and ge-

latin to create bioactive scaffold for vascular tissue engi-

neering application (McClure et al. 2009a, b; Pankajakshan

et al. 2008; Yin et al. 2013; He et al. 2005; Antunes et al.

2010; Thomas et al. 2007; Zhang et al. 2009). However, a

blood vessel is composed of three distinct layers which

have different proteins that work synergistically to provide

proper functionality (Stegemann et al. 2007). Hence, it may

be beneficial to incorporate a collagenous matrix which is
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made of different proteins such as various types of collagen

and laminin to closely mimic the structure of a blood

vessel. Hence, to make our graft’s surface bioactive for cell

adhesion, the graft was coated with a collagenous matrix

(Siegal and Singh 2010) by dip coating. Finally, AoSMCs

and HUVECs attachment was studied on the coated graft in

static condition. Further, shear stress plays a crucial role in

the long-term maintenance of blood vessel functionality

(Traub and Berk 1998). Hence, HUVECs attachment was

studied under a dynamic condition.

Materials and methods

Materials

Polycaprolactone (PCL) with inherent viscosity between 1.0

and 1.3 dL/g in CHCl3 was obtained from LACTEL Ab-

sorbable Polymers (Birmingham, AL). Poliglecaprone

(PGC) was acquired in the form of absorbable surgical su-

tures under the trade name of Monocryl� (Ethicon). The

solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) was pur-

chased from Sigma-Aldrich (St. Louis, MO) to dissolve PCL

and PGC (weight ratio PCL:PGC = 3:1) and make a ho-

mogeneous solution. Lipase (Pseudomonas fluorescens) was

purchased from Sigma-Aldrich. The protein matrix (HB)

was provided by Vivo Biosciences Inc. (Birmingham, AL).

HUVECs and AoSMCs (Lonza Group Ltd) were kindly

provided byDr. Jun’s Laboratory at passage 3. TheHUVECs

were cultured into the endothelial cell growth media (EGM-

2 Lonza Group Ltd) at 37 �C under 5 % CO2. The AoSMCs

were cultured into the smooth muscle cells growth media

(SMGM-2 Lonza Group Ltd) at 37 �C under 5 % CO2.

Fabrication of electrospun tubular graft

Tubular electrospun graft was engineered by the following

method described in our recent publication (Patel et al.

2015). Briefly, PLC and PGC were mixed at a ratio of

75:25 (wt%) and a 12 % (w/v) solution was obtained. The

electrospinning technique was utilized to produce the graft.

Then, the solution was loaded into a BD 3 mL syringe with

a 25 gauge needle (Small Parts Inc). A high-voltage power

supply (M826, Gamma High-Voltage Research, Ormond

Beach, FL) was connected to the needle. The infusion rate

(1 mL/h), voltage (15 kV), and the distance between the

needle tip and the mandrel (25 cm) were used to produce

fine nano–microscale fibers. The fibers were collected onto

a 4 mm-diameter 303 stainless steel mandrel, rotating at

400 rpm. The tubular graft was removed from the mandrel

and put in a desiccator for 24 h to remove the solvent

residuals.

In vitro enzymatic degradation

To understand the lipase enzyme effect on the mechanical

properties, thegraftwas exposed to thePBSsolutionwith lipase

concentration of 2.5 lg/mL for 4 weeks. Twice a week, the

lipase solutionwas changed. Sampleswere prepared and tested

at 2 and 4 weeks’ time periods to obtain changes inmechanical

properties due to enzymatic degradation. Tensile specimens

(n = 6) were prepared by cutting the scaffolds into rectangular

stripes (3 mm 9 10 mm) in accordance with ASTM standard

D882. A dynamic mechanical analyzer with tensile fixture

(DMA, TA instruments) was used. The samples were mounted

first on the fixture. The samples were tested uniaxially using

18 N load cell at a ramp0.1 N mm-1.All values such as elastic

modulus, percent elongation to failure, and ultimate tensile

strength were obtained from stress–strain curves generated by

the TA instrument software. Further, FE-SEM (Quanta FEG

650 from FEI, Hilsboro, OR) was utilized to understand the

morphology of the vascular graft before and after enzymatic

degradation, andgraftswere cut and sputter-coatedwithAu–Pd

to understand the surfacemorphology. To obtainmass loss (%)

data, samples [1 cm 9 1 cm (n = 6)] were aged under enzy-

matic solution at 37 �C for 4 weeks (Patel et al. 2015). At the

second and fourth week’s interval, the samples were removed

from the solution and placed under vacuum at room tem-

perature and the mass loss (%) was determined.

Protein matrix-coated tubular graft under in vitro

condition

The tubular graft was coated with a collagenous protein

matrix by dip coating. The tubular graft was soaked in the

PBS solution (pH7.3) overnight at 4 �C towet the surface for

better collagenous protein matrix absorption. Then, the

tubular graft was dip coated by soaking in the collagenous

protein matrix with higher density (3 mg/mL) on the outside

(pH 7.3) for 2 h at 4 �C. Then, the inner layer was coated

with lower density (1 mg/mL) of collagenous matrix (pH

7.3) for 2 h at 4 �C. Finally, the coated graft was placed in the
incubator at 37 �C in a humid environment for the gelation

and stabilization of the collagenous protein matrix for 2 h.

FT-IR and differential scanning calorimetric (DSC) tech-

niques were utilized to confirm the presence of the protein

matrix on the graft before and after aging in physiological

media. The Bruker alpha FTIR spectrometer was used with

ATR mode to acquire absorbance spectrum (64 scans per

sample, ranging from 4000 to 400 cm-1) for coated graft.
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Samples were tested by utilizing a DSC instrument (TA In-

struments Q100) from-75 to 250 �C at a rate of 10 �C/min.

HUVECs and AoSMCs attachment to coated graft

HUVECs and AoSMCs (Lonza Group Ltd) were kindly

provided by the Dr. Jun’s Laboratory at UAB at passage 3.

The tubular scaffolds were sterilized and preconditioned

before cell seeding by ethanol and UV sterilization. The

scaffolds were placed in 48-well plates and incubated with

100 % fetal bovine serum (FBS) (VWR international) at

37 �C for 4 h (Zhang et al. 2010). Finally, the FBS was

taken out from the well. HUVECs were seeded on the

scaffold with 6 9 105 cells/cm2 density. AoSMCs were

seeded on the scaffolds with 1 9 104 cells/cm2 density.

The morphology of the HUCECs and AoSMCs was ob-

served. The scaffolds were stained with DAPI (Sigma-

Aldrich) and rhodamine phalloidin (Sigma-Aldrich) stain-

ing to stain nucleus and actin filaments respectively. Nikon

A1 confocal camera was used to acquire all the images at

409 magnification.

HUVECs attachment under laminar shear stress

The dynamic flow chamber system was set up as shown in

Fig. 7. The circular flow chamber kit was (GlycoTech Inc)

purchased. The circular flow chamber was set up by fol-

lowing the instructions provided by the manufacturer. The

silicon rubber gasket with flow width 1.00 cm and thick-

ness 0.010 inch was used. The peristaltic pump (Fisher

ScientificTM) was used to create a constant laminar flow.

The HUVECs seeded scaffold was carefully placed into the

parallel-flow chamber. The gas exchange chamber was also

placed to have proper CO2 gas exchange. The entire system

was placed in the sterilized incubator with humid condi-

tion, 37 �C temperature, and proper supply of CO2. The

cell-seeded scaffolds were exposed to this laminar flow

condition for 12 h to understand the cell’s adhesion

strength (Savoji et al. 2014; Gigout et al. 2011). The flow

rate was set up to expose scaffolds to similar shear stress as

in the physiological condition (Malek et al. 1999; Dela Paz

and D’Amore 2009). The number of HUVECs retained on

the scaffold exposed to the laminar flow was compared

with non-exposed HUVECs-seeded scaffold.

Results and discussion

Our tubular graft engineered from 3:1 (PCL:PGC) by uti-

lizing an electrospinning technique was made of nano–

microscale fibers (diameter ranges from 0.5 to 1.0 lm). Its

chemical composition had a major amount of the PCL

component; hence, it was important for us to understand

the effect of the enzyme on the mechanical properties.

Therefore, we exposed the electrospun graft to the lipase-

containing PBS solution for 1 month to observe changes in

mechanical properties. The hydrolytic degradation of PCL

and PGC occurs due to the breakage of the ester bonds as

shown in the Fig. 1. The lipase enzyme also attacks these

ester bonds as shown in Fig. 1, to break the long polymer

chain into smaller oligomers which are soluble in water

(Rizzarelli et al. 2004).

The rate of the enzymatic degradation can be varied

depending on the polymer type, crystallinity, and mole-

cular weight (Nagata et al. 1998; Nikolic and Djonlagic

2001; Rizzarelli et al. 2004). Hence, the lipase enzymatic

degradation effect on the mechanical properties as well as

on morphology of the electrospun fibers were investigated

for the electrospun graft made from the PCL:PGC blend.

The specimens embedded in the lipase solution were taken

out at 2 and 4 weeks’ time points and exposed to tensile

tests. Tensile strength, Young’s modulus, and strain (%)

data were obtained. The tensile strength showed a statis-

tically significant (p\ 0.05) decrease from 1.86 ± 0.14 to

1.49 ± 0.08 MPa after 4 weeks. The ultimate tensile

strength even after 4 weeks was comparable to the human

coronary artery values as reported by Holzapfel et al.

(2005). As shown in Fig. 2b, no significant change in

Young’s modulus was noticed after 4 weeks. The elastic

modulus value after 4 weeks was found to be slightly

higher than that reported by Ozolanta et al. (1998), which

was around 4 MPa. On the other hand, the modulus of

elasticity was lower than that of the native femoral artery

(9–12 MPa) after 4 weeks’ degradation (Thomas et al.

2007). However, there was a significant (p\ 0.05) differ-

ence in strain (%) before and after exposure to the lipase

solution as shown in Fig. 2c. Figure 2d illustrates the mass

Fig. 1 Lipase effect on polycaprolactone and poliglecaprone

polymers
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loss (%) of the graft. The mass loss was increased sig-

nificantly (p\ 0.05) from 2 (3 ± 1 %) to 4 weeks

(7.3 ± 2.6 %). This mass loss (%) also helps to correlate

the decrease in tensile strength and stain (%) values. Fig-

ure 3a, b shows the electrospun fibers’ morphology before

and after enzymatic degradation. Figure 3b clearly indi-

cates the fiber brakeage due to the enzymatic degradation.

Zeng et al. (2004) reported similar fiber breaking of PLLA–

PCL based electrospun fibers.

ECM proteins coating on fibers of porous structure can

facilitate cell attachment, migration, and infiltration. To

incorporate the protein matrix, a simple dip-coating

method was utilized (Peng et al. 2010). Zhang et al. (2005)

also utilized the dip-coating method to increase surface

Fig. 2 Lipase degradation effect on mechanical properties of graft a tensile strength, b modulus of elasticity, c strain (%), and d mass loss (%)

Fig. 3 Lipase degradation

effect on the fibers’ morphology

a before and b after 4 weeks in

lipase solution
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biocompatibility of PCL non-woven scaffolds. Then, the

presence of the protein matrix was confirmed by the DSC

technique before and after aging in the media.

DSC scans of 3:1 (PCL:PGC)-coated scaffold are shown

in Fig. 4. The melting temperature of PCL was observed at

60.6 �C. Schindler et al. (2013) also observed a similar

melting point for the PCL component of the PCL/polyg-

lyconate blends. Further, Lee et al. (2008b) also mentioned

a similar melting temperature (61.9 �C) for the PCL elec-

trospun scaffold. The melting temperature of the PGC was

noticed at 186.8 �C for 0 days. The shoulder peak at

46.7 �C could be an indication of the collagen helix (Mu

et al. 2007). The shoulder around 46 �C started disap-

pearing after 2 weeks and was absent at 4 weeks. This

could be the indication that at 4 weeks’ time point, the

protein matrix was not present in FTIR spectrum (Fig. 5).

The presence of N–H stretching peak at (*) 3310 cm-1

for amide A indicates the presence of protein from the

protein matrix, since the non-coated graft does not have

any amide group in the chemical structure. Further, amide I

at 1651 cm-1 corresponds to the stretching vibration of the

C=O bond. In addition, amide II at 1535 cm-1 is associated

with the vibration of C–N and N–H bonds. Amide I and II

were both present in the ATR spectrum of the protein

matrix-coated graft. Jia et al. (2013) mentioned the pres-

ence of these peaks to identify the collagen component in

the electrospun polyurethane-based scaffold. However, a

clear decrease in the N–H stretching peak at 3310 cm-1 for

amide A was noticed at 2 and 4 weeks’ time points. The

decrease in the peak intensity may indicate the disappear-

ance of the protein matrix. Similarly, the peak for amide I

at 1651 cm-1 completely disappeared at 4 weeks’ time

point. Zhang et al. (2009) also noticed a similar

disappearance of the amine I peaks after 30 days due to the

in vitro degradation of the bio-hybrid scaffold. This also

indicates that the protein matrix was washed away in the

PBS solution after 4 weeks. The data here suggest that the

bonding between the protein matrix and synthetic polymer

may be weak due to the non-covalent bonding, and cova-

lent bonding may be required for a stable attachment of the

protein matrix to the vascular graft.

One of the goals of this study was to understand the cell

attachment in static and dynamic conditions. In this study,

we seeded HUVECs on the lumen surface of the coated

graft. AoSMCs were seeded on the outer layer to under-

stand their attachment on the coated graft. In a native blood

vessel, endothelial cell which are present at a lumen

Fig. 4 DSC curves of coated

graft before and after in vitro

environment exposure

Fig. 5 FTIR spectrum indicating protein matrix eroded after 4 weeks

under in vitro condition. Proteins peaks were marked by symbols

(asterisk, hash, filled oval)
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surface experience a constant shear stress force due to

blood flow which stimulates gene expression and effects

cell metabolism as well as cell morphology (Traub and

Berk 1998). Hence, the attachment of the HUVECs on our

coated scaffolds under a shear stress environment is an

important parameter to understand. As shown in Fig. 6,

four critical components (Glyco-Tech flow chamber, a

gasket, peristaltic pump, and a gas exchange chamber)

were used. In order to calculate the flow rate to apply

physiological shear stress we used Eq. 1 as mentioned

below where Q is desired flow rate, S is the target shear

stress, l is the viscosity of the flow medium, w is width of

the flow chamber, and h is the height of the flow chamber

(Bhat et al. 1998).

Q ¼ T � w � h2

ð6 � lÞ ð1Þ

Figure 6 represents the entire closed loop system set up

to understand the HUVECs attachment under the dynamic

flow condition. Equation 1 was used to calculate the flow

rate (8 mL/min) which was able to create a shear stress

comparable to the physiological environment. Savoji et al.

(2014) has also utilized similar technique to understand the

stable endothelial spreading on the electrospun scaffolds

under the shear stress. HUVECs were exposed to this shear

stress continuously for 12 h. Then, HUVECs attachment on

coated scaffold before and after exposure to laminar shear

stress was observed by utilizing confocal microscopy. The

comparison was done by qualitative analysis. Figure 7a

represents a coated graft with HUVECs which was not

exposed to a laminar flow as a control (Peng et al. 2010).

Figure 7b represents a coated graft with AoSMCs which

was in static condition. Figure 7c illustrates the HUVECs-Fig. 6 The setup of the dynamic flow chamber in the incubator

Fig. 7 Confocal images of

scaffolds seeded with

a HUVECs and b AoSMCs.

c HUVECs attachment after

exposure to shear stress for 12 h
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seeded coated graft exposed to dynamic shear stress for

12 h. There was significantly fewer amount of cells present

after laminar flow exposure compared to the control. The

reason for fewer cells on the coated graft could be the weak

non-covalent bonding between the fibers and protein ma-

trix. Due to the weak bond, the protein matrix may have

been washed out under shear stress, leading to elimination

of the majority HUVECs. Hence, the protein matrix coat-

ing stabilization via a cross-linking agent may help a better

cell attachment under shear stress environment.

Conclusion

A small-diameter graft was engineered by utilizing the

electrospinning technique. The graft was exposed to lipase

enzymatic degradation for 1 month to understand the

changes in mechanical properties. Significant changes in

tensile strength (1.86–1.49 MPa) and strain (245–205 %)

were noticed due to enzymatic degradation. The fiber

breakage was clearly evident through scanning electron

microscopy (SEM) after 4 weeks in vitro degradation.

Further, the graft was coated with collagenous proteins and

characterized by FTIR and DSC. A preliminary dynamic

condition study to understand the HUVECs attachment was

conducted. In static condition, HUVECs and AoSMCs at-

tachment were observed. Under the dynamic flow condi-

tion, HUVECs attachment was found to be significantly

lesser compared to the control (static condition). The

weaker non-covalent bond between the protein matrix and

the graft could be the reason. Further, the protein matrix

eroded completely after 4 weeks in PBS solution, which

was confirmed by DSC and FTIR. This issue will be ad-

dressed in a future study by introducing cross-linking

agents to stabilize the protein matrix on the electrospun

fibers.
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