
Arch
ive

 of
 SID

ISeCure
The ISC Int'l Journal of
Information Security

January 2012, Volume 4, Number 1 (pp. 51–62)

http://www.isecure-journal.org

BotOnus: AnOnline UnsupervisedMethod for Botnet Detection�

Mosa Yahyazadeh 1 and Mahdi Abadi 1,∗
1Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: 9 November 2011

Revised: 24 January 2012

Accepted: 25 January 2012

Published Online: 30 May 2012

Keywords:
Botnet Detection, Botnet
Lifecycle, Command and Control
Channel, Online Clustering.

A B S T R A C T

Botnets are recognized as one of the most dangerous threats to the Internet

infrastructure. They are used for malicious activities such as launching

distributed denial of service attacks, sending spam, and leaking personal

information. Existing botnet detection methods produce a number of good

ideas, but they are far from complete yet, since most of them cannot detect

botnets in an early stage of their lifecycle; moreover, they depend on a

particular command and control (C&C) protocol. In this paper, we address

these issues and propose an online unsupervised method, called BotOnus,

for botnet detection that does not require a priori knowledge of botnets. It

extracts a set of flow feature vectors from the network traffic at the end of each

time period, and then groups them to some flow clusters by a novel online

fixed-width clustering algorithm. Flow clusters that have at least two members,

and their intra-cluster similarity is above a similarity threshold, are identified

as suspicious botnet clusters, and all hosts in such clusters are identified as bot

infected. We demonstrate the effectiveness of BotOnus to detect various botnets

including HTTP-, IRC-, and P2P-based botnets using a testbed network. The

results of experiments show that it can successfully detect various botnets with

an average detection rate of 94.33% and an average false alarm rate of 3.74%.

c© 2012 ISC. All rights reserved.

1 Introduction

Malware threats can mount a variety of attacks and
give the attacker the opportunity to conduct different
malicious activities. The significant increase of these
threats on the Internet has attracted renewed interest
in much of the recent research. Over the past few years,
and contrary to the old-fashioned threats, malware
attacks have evolved into better organized and more
profit-centered endeavors [1]. This introduces a new

� This article is an extended/revised version of an ISCISC’11
paper.
∗ Corresponding author.

Email addresses: m.yahyazadeh@modares.ac.ir
(M. Yahyazadeh), abadi@modares.ac.ir (M. Abadi).

ISSN: 2008-2045 c© 2012 ISC. All rights reserved.

type of threats that endangers thousands of network
infrastructures around the world. At the heart of these
threats lies a network of vulnerable hosts compromised
and remotely controlled by an attacker. These hosts
form a botnet.

The term “bot” is short for robot. A bot, also known
as zombie or drone, is a malware that runs on a host
typically unbeknownst to its owners, and carries out
commands, sent by an attacker also called the botmas-
ter. For all intents and purposes, bots are just viruses
or worms that infect hosts to allow remote command
and control by the botmaster. A botnet is a network of
hosts on which the botmaster has somehow installed
bots.

The value of a botnet to the botmaster depends on

ISeCurewww.SID.irwww.SID.irwww.SID.irISwww.SID.irISISwww.SID.irISewww.SID.ireewww.SID.ireCwww.SID.irCCwww.SID.irCurewww.SID.irureurewww.SID.irure

www.sid.ir

Arch
ive

 of
 SID

52 BotOnus: An Online Unsupervised Method for Botnet Detection — M. Yahyazadeh and M. Abadi

its size. Not only it provides the botmaster with more
processing power and Internet bandwidth for free, but
also it allows the botmaster to launch coordinated
attacks of unprecedented scale and complexity. Ac-
cording to a recent research report [2], botnets have
become one of the biggest malware threats, responsi-
ble for a large volume of malicious activities.

Most Internet users are often not aware that their
hosts have been compromised and become parts of
a botnet. Moreover, the bots which take control of
compromised hosts can evade typical antivirus scan-
ners using obfuscation techniques. Therefore, there
is a need to develop a specific method for detecting
botnets, and the best policies can be taken only if the
behavior of each stage of the botnet lifecycle is clearly
understood. Generally, the lifecycle of botnets can be
divided into three stages: formation, command and
control, and attack.

In the formation stage, the botmaster spreads his
bots via a propagation mechanism, such as exploiting
propagation, email propagation, web browser propa-
gation, and file sharing propagation [3], to compro-
mise numerous hosts and install bots on them. The
bots then try to join into the botnet via a rallying
mechanism and form a botnet which meets the needs
of the botmaster. Each bot is programmed so that
it can connect to the botmaster via a command and
control (C&C) channel, and update itself with new
instructions and codes [4] to launch new attacks. In
the command and control stage, the botmaster sends
commands via C&C channels to remotely control his
bots. Finally, in the attack stage, the bots perform dif-
ferent types of malicious activities such as launching
distributed denial of service attacks, sending spam,
leaking personal information, and defrauding pay-per-
click advertisers [5].

Various methods have been proposed for detection
of botnets, but most of them have some shortcomings,
including (1) dependence on a specific C&C proto-
col, (2) lack of detection in an early stage of the life-
cycle, (3) working offline, and (4) requiring labeled
data for training. In practice, automated botnet de-
tection in the command and control stage can be a
difficult problem, because botnets often use existing
common protocols (e.g., IRC, HTTP) for communica-
tion. Therefore, their traffic tends to resemble that of
hosts not under control of the botmaster.

To tackle these shortcomings, we propose an online
unsupervised method, calledBotOnus, to detect bot-
nets in the command and control stage. It extracts
a set of flow feature vectors from the network traffic
at the end of each time period and then groups them
to some flow clusters by an online fixed-width clus-
tering algorithm. Flow clusters that have at least two

members, and their intra-cluster similarity is above a
similarity threshold, are marked as suspicious botnet
clusters. All hosts in these clusters are identified as
bot infected. It also chooses some flow clusters to be
eliminated from the flow cluster set, based on a cluster
removal criterion.

The rest of this paper is organized as follows: Sec-
tion 2 briefly reviews some related works. An overview
of botnet C&C channels is provided in Section 3. Sec-
tion 4 presents BotOnus. Experimental results are
reported in Section 5. Finally, Section 6 sums up the
discussion and draws the conclusions.

2 RelatedWorks

In the recent years, various botnet detection methods
have been proposed that can be classified according
to two criteria: the stage of the lifecycle in which
botnets are detected and the technique of learning
involved. According to the learning technique, botnet
detection methods can be classified into two categories
[6]: supervised and unsupervised. Supervised botnet
detection methods use a labeled dataset for training,
which makes the process error-prone. By removing
the need of labeling, unsupervised botnet detection
methods facilitate online learning, and thus provide a
higher potential to identify novel botnet activities. In
this section, we discuss the different botnet detection
methods in the related literature.

Livadas et al. [7] proposed a supervised botnet de-
tection method to identify C&C traffic of IRC-based
botnets. They first use some classification techniques
like C4.5, Naive Bayes, and Bayesian network to dis-
tinguish between IRC and non-IRC traffic, and then
incorporate these techniques to distinguish between
botnet and real IRC traffic. The main drawbacks of
this method are its dependence on a particular C&C
protocol, and the need to labeled data for training.

Goebel et al. [8] proposed a method, called Rishi,
which uses n-gram analysis with a scoring function
and black/white lists to detect IRC-based botnets
based on characteristics of their C&C channels. They
first extract details of TCP packets that contain com-
mon IRC keywords (e.g., NICK) and then give packet
nicknames to a scoring function. A nickname with
a score higher than the set threshold will trigger an
alarm. Rishi is limited to only detecting IRC-based
botnets. Also, it has a relatively high false alarm rate,
due to depending on regular expressions as signatures
to automatically identify bot infected hosts. There-
fore, if innocent people accidentally use a nickname
containing suspicious strings, it will trigger a false
alarm. Moreover, in the case where bots utilize nick-
names composed out of random characters for which

ISeCure www.SID.irwww.SID.ir

www.sid.ir

Arch
ive

 of
 SID

January 2012, Volume 4, Number 1 (pp. 51–62) 53

a regular expression does not exist, it is unable to de-
tect them. Wang et al. [9] presented another method
to detect IRC-based botnets in an early stage. Based
on their observations, bots that belong to the same
botnet have nicknames, composed of a constant string
and a random string, which basically follow the same
pattern. Therefore, they defined the channel distance
criterion to calculate the similarity of nicknames in
one channel and used it to detect botnet channels in
which nicknames have the same structure. The limita-
tions of this method are similar to Rishi; however, it
can detect unknown IRC-based botnets.

Gu et al. [10] proposed an unsupervised botnet de-
tection method, called BotMiner, which is indepen-
dent of botnet C&C protocol and structure. They first
cluster similar communication traffic and similar ma-
licious traffic, and then apply cross cluster correlation
to detect hosts that share both similar communication
patterns and similar malicious activities. The main
drawbacks of this method are that it cannot detect
botnets in an early stage, and does not work online.

Castle et al. [11] presented a method to detect bot-
nets used for sending spam. They first extract the
header information from an email message and en-
hance it with information from the envelope to gener-
ate a set of synthetic headers. They then replace the
values of the synthetic headers with a limited range
of tokens to generate a normalized template represen-
tation. Finally, they group the templates to obtain
few clusters with a large number of email messages
associated with them. These clusters are identified
as suspicious botnet clusters. This method is simple
but presents some serious drawbacks. It cannot detect
botnets in an early stage, and is only able to detect
botnets that are used for spamming.

Lee et al. [12] presented a method for detecting
HTTP-based botnets using the degree of periodic
repeatability. They found that if the degree of periodic
repeatability for a client is low, it can be an HTTP bot
that repeatedly connects to a C&C server at regular
intervals to obtain new commands. This method can
achieve a high false-alarm rate in case users employ
automatic programs to connect to HTTP servers.

Choi et al. [13] proposed an online unsupervised bot-
net detection method, called BotGAD. They define a
group activity as a key feature of botnets, and present
a metric to detect botnets by monitoring group activ-
ities in DNS traffic. A botnet can evade this method
when it performs DNS queries at one stage of the bot-
net lifecycle and never performs them again. Hence,
it cannot detect botnets in an early stage and is only
able to detect botnets that perform group activities
in DNS traffic.

Xiaocong et al. [14] presented an unsupervised
method that can detect centralized botnets in an on-
line fashion. They first transform the captured net-
work traffic into multi-dimensional feature streams
and then use a data-adaptive clustering algorithm to
group feature streams with high similarities. A cor-
relation analysis is used as a similarity measure to
detect suspicious botnet clusters.

Lu et al. [6] proposed an unsupervised method for
detecting and clustering botnet communication traffic
on network application communities. They first iden-
tify the network traffic into existing known applica-
tions using a C4.5 decision tree model, and then clus-
ter the network traffic to find anomalous behavior on
a specific application community based on the n-gram
features extracted from the content of network flows.
In real world, it is very difficult to identify all network
traffic (e.g., traffic with the encrypted payload) into
known applications on the large scale networks.

3 Command and Control

Unlike other malware which work separately, a botnet
requires a form of communication infrastructure to be
used by the botmaster to send out commands to the
bots, and receive responses from them [6]. This com-
munication infrastructure is known as the command
and control (C&C) channel.

Botnets can be classified into three categories based
on the structure of their C&C channels: centralized,
distributed, and hybrid. In centralized botnets, the bot-
master usually designates a host with high bandwidth
Internet access as C&C server and then uses IRC or
HTTP protocols to communicate with his bots. This
structure is easy to construct and efficient in distribut-
ing the botmaster’s commands. In an HTTP-based
botnet, the botmaster sets up a web server to post his
commands on, and the bots of this botnet poll this
server periodically in order to obtain the most recent
commands (Figure 1). In an IRC-based botnet, the
botmaster creates a channel in an IRC server to post
commands on, and then bots subscribe to this channel
in order to obtain his commands. However, this struc-
ture presents a major weakness: the C&C server is a
single point of failure. Taking down the C&C servers
would cause all bots lose their communications with
the botmaster.

In order to avoid the weakness of having a single
point of failure, in distributed botnets, the communi-
cation infrastructure does not completely depend on
only one C&C server, and it cannot be destroyed even
by detecting a number of bots. In these botnets, the
botmaster uses various P2P protocols to communicate
with his bots (Figure 2). In a P2P-based botnet, a new

ISeCurewww.SID.irwww.SID.irwww.SID.irISwww.SID.irISISwww.SID.irISewww.SID.ireewww.SID.ireCwww.SID.irCCwww.SID.irCurewww.SID.irureurewww.SID.irure

www.sid.ir

Arch
ive

 of
 SID

54 BotOnus: An Online Unsupervised Method for Botnet Detection — M. Yahyazadeh and M. Abadi

C&C Server
(HTTP)Bot

Bot

Botmaster

What is the current

command?

What is
the current

command?

Command

Command

Figure 1. HTTP-based C&C channel

P2P Botnet
Botmaster

Figure 2. P2P-based C&C channel

bot-infected host needs an initial procedure, usually
known as bootstrap, for finding and joining the botnet.
There is two general ways for bootstrapping: using an
initial peer list or using rendezvous server hard-coded
in each bot to obtain the IP address of peer bots for
joining the botnet. Instead of connecting with one
C&C server, each bot connects with its peer bots and
acts as both client and server. Therefore, if some bots
in the botnet are detected, the botnet can still con-
tinue to operate under the control of the botmaster.
The botmaster then injects his commands to some
bots and they distribute these commands to all peer
bots connected to them. Since distributed botnets are
more resilient to defense countermeasures than cen-
tralized botnets, more botnets will move to use P2P
protocols for their communication infrastructure.

Finally, hybrid botnets combine both centralized
and distributed structures together or use a random
structure to make themselves harder to be discovered
and destroyed. For example, in Figure 3, there are
two groups of bots including servent and worker bots.
Servents (SERVer and cliENT) are bots with static
non-private IP addresses, which act as both servers
and clients, and are accessible from the global Inter-
net. They use P2P connections and relay the botmas-
ter’s commands to worker bots. Workers are bots with
dynamic or private IP addresses, which are behind
firewalls or NAT devices such that they cannot ac-
cept incoming Internet connections [1]. They always
connect to servent bots to obtain most recent com-

Botmaster
Servent Bots

Worker Bots

Figure 3. Hybrid C&C channel

mands. Hybrid botnets have more network stability
and will become more important in the future as a
larger proportion of hosts will reside behind firewalls
or use private IP addresses.

4 Online Unsupervised Botnet
Detection

In this section, we present an online unsupervised
method, called BotOnus, for detecting botnets in the
command and control stage. The aim of BotOnus
is to detect a group of compromised hosts within a
monitored network that are parts of a botnet. In the
following, we first review the problem definition and
then describe different steps of BotOnus.

4.1 Problem Definition

In order to present a general unsupervised botnet de-
tection method, we need to study the basic character-
istics of botnets. We thus start with the definition of
a botnet.

Definition 1 (Botnet). A botnet is defined as a
coordinated group of bots that are controlled via C&C
channels and perform similar malicious activities [10].

The term “coordinated group” means that multiple
(at least two) bots within a botnet receive the same
commands and perform similar activities [10]. If the
botmaster sends different commands to all bots sepa-
rately via C&C channels, these bots are not considered
as a botnet and are beyond the scope of this work.

4.2 Steps of BotOnus

BotOnus consists of four main steps: whitelist filtering,
flow stream extraction, online clustering, and botnet
detection (see Figure 4).

ISeCure www.SID.irwww.SID.ir

www.sid.ir

Arch
ive

 of
 SID

January 2012, Volume 4, Number 1 (pp. 51–62) 55

Network Traffic

Flow
Stream

Extraction

Whitelist
Filtering

Online
Clustering

Yes
No

Yes

No

Botnet Detection

Similarity
Criterion

sm

Botnet
Detected

Remove
Cluster

rc

Removal
Criterion

ü

Figure 4. Steps of BotOnus

We first capture the network traffic and then apply
whitelist filtering on it to filter out packets that are
safe. Whitelist filtering relies upon defining a set of
trusted servers (e.g., Google, Yahoo, and Facebook)
as “safe” for a given network and eliminating packets
sent to or received from these servers. The remaining
traffic is delivered to the next step. It should be noted
that whitelist filtering is not essential to the detection
rate of BotOnus but can reduce the storage space of
the captured traffic. Moreover, it can be effective in
decreasing the false-alarm rate, since if multiple hosts
in a monitored network send the same requests at the
same time to a safe server, it is highly probable that
they will be incorrectly considered as a coordinated
group of bots. At the end of each time period, the
traffic received from the previous step is processed and
a set of flow feature vectors is extracted from it. Then,
these flow feature vectors are divided into some flow
clusters by the online fixed-width clustering (OFWC)
algorithm. Finally, flow clusters that have at least two
members and their intra-cluster similarity is above
a similarity threshold τsm, are marked as suspicious

Algorithm 1 BotOnus

Input:
τsm: similarity threshold
τrc: remove threshold
σ: cluster width

1: for each time period t do
2: Extract a set S (t) of flow feature vectors from

the network traffic
3: C (t) ← ofwc(S (t) , C (t− 1) , σ)
4: for each flow cluster cj ∈ C (t) do
5: Calculate similarity criterion sm (cj)
6: if (|cj | >= 2 and sm (cj) > τsm) then
7: Identify all hosts that have at least a flow

feature vector in cj as bot infected
8: end if
9: Calculate removal criterion rc (cj)

10: if rc (cj) > τrc then
11: C (t) ← C (t)− {cj}
12: end if
13: end for
14: end for

botnet clusters and all hosts that have at least a flow
feature vector in these clusters are identified as bot
infected. Also, flow clusters with a removal criterion
above a remove threshold τrc, are eliminated from the
flow cluster set. Algorithm 1 shows the pseudo code
of BotOnus.

4.3 Online Fixed-Width Clustering

BotOnus detects botnets through network-flow anal-
ysis of their C&C communication traffic. A flow is a
set of packets that share the same source IP address,
source port, destination IP address, destination port,
and protocol. The flow is active as long as packets
that meet its specification arrive continuously. Hence,
statistical features of each active flow are continuously
changed over time and it is impossible to cluster ac-
tive flows unless we consider each of them as a flow
stream over different time periods.

Definition 2 (Flow feature vector). Let fi be a
flow. Each flow feature vector fi(tj) is a p-dimensional
feature vector extracted from fi during the time pe-
riod tj :

fi (tj) = (x1, x2, . . . , xp) , (1)

where p is the number of features. xk is the k
th feature

value of fi(tj) and can be denoted as fk
i (tj).

Definition 3 (Flow stream). The flow stream of a
flow fi, denoted as Fi, is defined as a sequence of flow
feature vectors extracted from fi during consecutive
time periods of the same length:

Fi = 〈fi (t1) , fi (t2) , fi (t3) , . . . , fi (tj) , . . . 〉 , (2)

where fi(tj) is a flow feature vector.

ISeCurewww.SID.irwww.SID.irwww.SID.irISwww.SID.irISISwww.SID.irISewww.SID.ireewww.SID.ireCwww.SID.irCCwww.SID.irCurewww.SID.irureurewww.SID.irure

www.sid.ir

Arch
ive

 of
 SID

56 BotOnus: An Online Unsupervised Method for Botnet Detection — M. Yahyazadeh and M. Abadi

Packet Arrival Time

N
et

w
or

k
F

lo
w

s

Packet��(��)��(��−1)

��−1 ��

Figure 5. Flow feature vectors at two consecutive time periods

Definition 4 (Flow set). Let Fi be the ith flow
stream. The flow set S is the infinite collection of flow
streams in the network traffic:

S = {. . . , Fi−1, Fi, Fi+1, . . . }. (3)

The set of flow feature vectors at a time period t is
denoted as S (t) ⊆ S:

S (t) = {fi (t) , fi+1 (t) , . . . , fi+n (t)} . (4)

As mentioned before, bots within a botnet receive
the same commands and perform similar activities.
Hence, they exhibit a similar traffic behavior during
close time periods. This is largely due to the fact that
bots are pre-programmed to perform the same routine
activities as coordinated by the same botmaster [15].
Therefore, we can use a clustering technique to group
bots in the same clusters.

We use a distance function to calculate the similarity
between two flow feature vectors.

Definition 5 (Flow distance). Let fi(t) and fj(t)
be two flow feature vectors at a time period t. The
distance of fi(t) from fj(t) is defined as the average
of differences between their corresponding features:

d (fi (t) , fj (t)) =

∑p
k=1 δ

k
i,j∆(fk

i (t), f
k
j (t))∑p

k=1 δ
k
i,j

, (5)

where δki,j is an indicator and is defined as

δki,j =

{
0 if fk

i (t) or fk
j (t) is missed,

1 otherwise.
(6)

∆(fk
i (t), f

k
j (t)) is the difference between the kth fea-

ture value of fi (t) and fj (t). If the kth feature is a
categorical feature, the difference ∆(fk

i (t), f
k
j (t)) is

calculated as

∆(fk
i (t), f

k
j (t)) =

{
0 if fk

i (t) = fk
j (t),

1 otherwise.
(7)

Otherwise, it is calculated as

∆(fk
i (t), f

k
j (t)) =

|fk
i (t)− fk

j (t) |
fk
max (t− 1)− fk

min (t− 1)
, (8)

where fk
min (t− 1) and fk

max (t− 1) are the minimum
and maximum of the kth feature values of flow feature

vectors at the previous time period t− 1, respectively.
The main purpose of using them is to normalize feature
values when we are calculating the distance of two
flow feature vectors.

Definition 6 (Flow cluster). A flow cluster is a set
of flow feature vectors such that the distance of each
one from the cluster centroid is less than a fix width
σ. Each flow cluster cj is defined as a pair (µj , βj),
where µj is the centroid and βj is the birth date of cj .

The set of flow clusters at a time period t is denoted
as C(t). For each flow cluster cj ∈ C(t), the centroid
µj is represented as a p-dimensional feature vector.
Let ckj be the set of kth feature values of flow feature
vectors in cj :

ckj = {fk
i (t)|fi(t) ∈ cj}. (9)

Each feature value µk
j ∈ µj is calculated as the average

of ckj if it is numerical, otherwise it is set to a value

with the highest frequency in ckj .

Our proposed online fixed-width clustering (OFWC)
is similar to fixed-width clustering (FWC), in which it
forms a set of clusters of a fixed-width σ, but the main
difference is that data samples arrive continuously
over time. Let S(t) be a set of flow feature vectors at
the current time period t andC(t−1) be the set of flow
clusters at the previous time period t− 1. OFWC first
receives S(t) and C(t− 1) as input. It then updates
flow feature vectors in each flow cluster cj ∈ C(t− 1)
with their new values in S(t). If the flow distance of
a flow feature vector fi(t) ∈ cj from the centroid µj

is less than σ, then µj is updated. Otherwise, fi(t)
is removed from cj and added to the nearest flow
cluster cl ∈ C(t− 1) whose flow distance is less than
σ. Algorithm 2 shows the pseudo code of OFWC.

4.4 Intra-cluster Similarity

OFWC partitions a set of botnet and non-botnet flow
feature vectors into flow clusters such that the botnet
flow feature vectors are in the same flow clusters.
What makes the most difference between botnet flow
clusters and other flow clusters is the closeness of flow
feature vectors within them (See Figure 6).

The bots belonging to the same botnet are pre-

ISeCure www.SID.irwww.SID.ir

www.sid.ir

Arch
ive

 of
 SID

January 2012, Volume 4, Number 1 (pp. 51–62) 57

Algorithm 2 OFWC

Input:
S (t): set of flow feature vectors
C (t− 1): set of flow clusters
σ: cluster width

Output:
C (t): set of flow clusters

1: for k = 1 → p do
2: Calculate fk

min (t− 1) and fk
max (t− 1)

3: end for
4: for each flow feature vector fi (t) ∈ S (t) do
5: if fi (t− 1) ∈ cj for some cj ∈ C (t− 1) then
6: if d (fi (t) , µj) < σ then
7: cj ← (cj − {fi (t− 1)}) ∪ fi (t)
8: Update centroid µj

9: else
10: cj ← cj − {fi (t− 1)}
11: Update centroid µj

12: end if
13: end if
14: if fi (t) /∈ cj for all cj ∈ C (t− 1) then
15: Find the nearest flow cluster cl ∈ C (t− 1)

to fi (t)
16: if d (fi (t) , µl) < σ then
17: cl ← cl ∪ {fi (t)}
18: Update centroid µl

19: else
20: Make a new flow cluster ck with centroid

µk

21: C (t− 1) ← C (t− 1) ∪ {ck}
22: µk ← {fi (t)}
23: βk ← t
24: end if
25: end if
26: end for
27: C (t) ← C (t− 1)
28: return C (t)

programmed to respond to different commands from
the botmaster. Hence, they behave almost determin-
istically on the given commands. This implies botnet
flow feature vectors within the same flow cluster are
very similar to each other and there is a high proximity
between them. In order to detect botnet flow clusters,
BotOnus uses the intra-cluster similarity criterion.

Definition 7 (Intra-cluster similarity criterion).
Let cj be a flow cluster with the centroid µj . Intra-
cluster similarity criterion of cj is calculated as

sm (cj) = e
−

dj
1 + oj , (10)

where dj is the average distance of all flow feature
vectors in cj from µj and called the average intra-
cluster distance:

jc


Botnet flow feature vectors
Non-botnet flow feature vectors

)(tS

j

Botnet flow
cluster

Non-botnet flow
clusters

Figure 6. Botnet and non-botnet flow clusters

dj =
1

m

m∑
i=1

d (fi (t) , µj) , (11)

and oj is the lifetime of cj :

oj = t− βj , (12)

where t and βj are the current time period and the
birth date of cj , respectively.

4.5 Cluster Removal

As long as new flow streams are arriving into the
network over different time periods, the increase in
the number of flow clusters appears to take place. This
makes a significant increase in the amount of storage
space and calculation time. To address this problem,
at the end of each time period, BotOnus eliminates
flow clusters that their removal criterion is above a
remove threshold.

Definition 8 (Cluster removal criterion). Let dj
be the average intra-cluster distance and oj be the
lifetime of the flow cluster cj . The cluster removal
criterion of cj is calculated as

rc (cj) = dj × oj . (13)

Since botnet flow streams are generated in a short
period of time and there is a high similarity between
them, it is not reasonable to maintain flow clusters
with the low intra-cluster similarity for a long time.
Hence, parameters dj and oj in the cluster removal
criterion cause flow clusters with the high intra-cluster
distance and lifetime to be good candidates for elimi-
nation from the flow cluster set.

5 Experimental Results

To evaluate the performance of BotOnus, we used a
testbed network consisting of five bot-infected hosts
and connected it to the campus network (Figure 7).
In addition to campus network traffic, we produced

ISeCurewww.SID.irwww.SID.irwww.SID.irISwww.SID.irISISwww.SID.irISewww.SID.ireewww.SID.ireCwww.SID.irCCwww.SID.irCurewww.SID.irureurewww.SID.irure

www.sid.ir

Arch
ive

 of
 SID

58 BotOnus: An Online Unsupervised Method for Botnet Detection — M. Yahyazadeh and M. Abadi

Botmaster

5×Bot

BotOnus

Internet

Campus
Network

Figure 7. The testbed network used in the experiments

different network packets using a network traffic gen-
erator tool to ensure the existence of various types
of network traffic. It was run throughout the exper-
iments. The packets in our testbed network demon-
strated wide diversity in popular protocols such as
HTTP, FTP, SSH, DNS, and SNMP, and collabora-
tive applications such as IM, P2P, and IRC. They were
organized into bidirectional flow records by Argus [16].
It is a flow monitoring tool that inspects each packet
and groups together those within the same connection
into a flow record. BotOnus was run on a Linux server
with an Intel Core 2 Quad 2.83 GHz CPU and 8 GB
RAM. The system was run with average CPU and
RAM utilization of 32% and 14%, respectively.

Since BotOnus is a four-stepmethod, in the whitelist
filtering step, we created a whitelist of the top 100most
popular websites (as reported by Alexa [17]) to filter
out packets that are safe. However, as we discussed
previously, this step is not essential for BotOnus and
mainly aims to improve its efficiency. In the flow
stream extraction step, at the end of each time period,
we extracted a set of flow feature vectors from the
network traffic. Each flow feature vector consisted of
values of six different features: destination IP address,
destination port, protocol, total bytes, total packets,
and flow status. The value of the flow status can be
one of three values: initiated, ongoing, or completed.
The bots were launched during the fifth time period.

We used two measures of detection rate (DR) and
false alarm rate (FAR) to evaluate the performance of
BotOnus to detect various botnets including HTTP-,
IRC-, and P2P-based botnets using the described
testbed network:

DR =
TP

TP + FN
, (14)

FAR =
FP

FP + TN
, (15)

where TP is the number of bot infected hosts that
are correctly identified and FN is the number of bot
infected hosts incorrectly identified as uninfected. FP
is the number of uninfected hosts incorrectly identified
as bot infected and TN is the number of hosts that
are correctly identified as uninfected.

Table 1. Parameter settings

Parameter Value

Length of time period 5(s)

Cluster width (σ) 0.5

Similarity threshold (τsm) 0.95

Remove threshold (τrc) 10

Number of runs 30

Average number of hosts 68

Number of infected hosts 5

Table 2. Average detection and false alarm rates of BotOnus
for various botnets

Botnet
Average

Detection Rate
Average False
Alarm Rate

HTTP-based 0.95 0.041

IRC-based 0.96 0.033

P2P-based 0.91 0.037

We used TRiAD [18] as an HTTP-based botnet,
RBot [19] as an IRC-based botnet, and Immonia [19]
as a P2P-based botnet.

In our experiments, the length of time period was
set to 5(s), the cluster width to σ = 0.5, and the
similarity and remove thresholds to τsm = 0.95 and
τrc = 10, respectively. We repeated each experiment
30 times and reported the average results. Table 1
shows the parameter settings.

Table 2 shows the average detection and false alarm
rates of BotOnus for each type of botnets.

We performed experiments to analyze the effect of
different settings of parameters on the performance of
BotOnus. Figure 8 shows the effect of the parameter
σ on the average number of flow clusters during the
online clustering step in the experiments for detecting
various botnets. As shown, a decrease in σ would lead
to an increase in the number of flow clusters at each
time period; thus, it incurs a significant additional
amount of calculation time in subsequent steps.

As mentioned before, BotOnus is based on the in-
tuition that since bots in the same botnet run the
same program code, they have similar communica-
tion patterns and generate similar flow feature vec-
tors. Therefore, there is a high proximity between flow
feature vectors in each botnet flow cluster. Figure 9
demonstrates the intra-cluster distance of flow feature
vectors of the IRC-based botnet.

ISeCure www.SID.irwww.SID.ir

www.sid.ir

Arch
ive

 of
 SID

January 2012, Volume 4, Number 1 (pp. 51–62) 59

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 N
um

be
r

of
 F

lo
w

 C
lu

st
er

s

Time Period

0.4 =σ
0.5 =σ
0.6 =σ
0.7 =σ

(a)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 N
um

be
r

of
 F

lo
w

 C
lu

st
er

s

Time Period

0.4 =σ
0.5 =σ
0.6 =σ
0.7 =σ

(b)

Figure 8. Effect of σ on the average number of flow clusters in the experiments for detecting (a) IRC-based botnet, and (b)
P2P-based botnet

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5 10 15 20 25 30 35 40 45 50

In
tr

a-
C

lu
st

er
 D

is
ta

nc
e

Time Period

Figure 9. Intra-cluster distances of flow feature vectors of the

IRC-based botnet

Figure 10 shows the average detection and false
alarm rates of BotOnus for different values of the
parameter σ, ranging from 0.7 to 0.4. As demonstrated
before, there is a high proximity between flow feature
vectors within a botnet flow cluster. Therefore, with
an increase in σ, non-botnet flow feature vectors may
be added to botnet flow clusters and reduce their intra-
cluster similarity. As a result, this leads to a decrease
in the detection and false alarm rates. According to
Figure 8 and Figure 10, we can make a trade-off
between the number of flow clusters, detection rate
and false alarm rate by choosing σ = 0.5.

Figure 11 compares the average detection and false

alarm rates of BotOnus for different values of the pa-
rameter τsm, ranging from 0.8 to 0.98. As can be seen,
with an increase in τsm, the false alarm rate decreases,
but the detection rate remains almost unchanged un-
til τsm = 0.98. This is because for a low value of τsm,
some non-botnet flow clusters may be incorrectly iden-
tified as botnet flow clusters. Also, by choosing τsm
closely near to 1, the detection rate decreases, because
flow feature vectors in a botnet flow cluster may not
be exactly the same and thus it cannot satisfy the
high value of τsm.

Figure 12 shows the effect of different values of the
parameter τrc on the average number of flow clusters
during the online clustering step, where τrc = ∞ shows
BotOnus without cluster removal criterion. As the
figure shows, maintaining old flow clusters with the
high average intra-cluster distance leads to an increase
in the number of flow clusters dramatically, and thus it
incurs a significant additional amount of storage space
and calculation time in subsequent steps. The selected
value of τrc depends on the degree of synchronization
in group activities of bots. In other words, if τrc is
set to a low value and bots in the same botnet do
not communicate with the botmaster at the relatively
same time, a new formed botnet flow cluster may be
removed before it includes flow feature vectors of all
bots. On the other hand, selecting an appropriate value
of τrc gives an opportunity to botnet flow clusters with
insufficient flow feature vectors to remain in the flow
cluster set and to increase their intra-cluster similarity
during subsequent time periods.

ISeCurewww.SID.irwww.SID.irwww.SID.irISwww.SID.irISISwww.SID.irISewww.SID.ireewww.SID.ireCwww.SID.irCCwww.SID.irCurewww.SID.irureurewww.SID.irure

www.sid.ir

Arch
ive

 of
 SID

60 BotOnus: An Online Unsupervised Method for Botnet Detection — M. Yahyazadeh and M. Abadi

0

10

20

30

40

50

60

70

80

90

100

σ = 0.7 σ = 0.6 σ = 0.5 σ = 0.4

A
ve

ra
ge

 D
et

ec
tio

n
 R

at
e

(%
)

HTTP-Based Botnet
IRC-Based Botnet
P2P-Based Botnet

(a) Detection Rate

0

5

10

15

20

25

30

35

40

45

50

σ = 0.7 σ = 0.6 σ = 0.5 σ = 0.4

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e
(%

)

HTTP-Based Botnet
IRC-Based Botnet
P2P-Based Botnet

(b) False Alarm Rate

Figure 10. Performance of BotOnus for different values of σ

6 Conclusion and Discussion

Botnet detection is a relatively novel and a very chal-
lenging research area. In the recent years, several
botnet detection methods have been proposed, but
most of them have some shortcomings, such as de-
pending on a specific C&C protocol, lack of detection
in an early stage of the lifecycle, working offline, and
requiring labeled data for training. In this paper, we
addressed these issues by proposing an unsupervised
method, called BotOnus, that can be used for online
botnet detection at the command and control stage.
It is based on the fact that since bots in the same
botnet are preprogrammed by the botmaster and run
the same binaries, they are most likely to have the
same communication pattern. The aim of BotOnus
is to identify a group of bot-infected hosts within a
monitored network that are parts of a same botnet.

We discussed different steps of BotOnus in detail,
including whitelist filtering, flow stream extraction,
online clustering, and botnet detection. At the end
of each time period, BotOnus first extracts a set of
flow feature vectors from the network traffic and then
groups them to some flow clusters by the OFWC algo-
rithm. Flow clusters that have at least two members
and their intra-cluster similarity is above a similarity
threshold, are identified as suspicious botnet clusters
and all hosts in these clusters are identified as bot
infected. It also chooses some flow clusters to be elim-
inated from the flow cluster set based on a cluster
removal criterion. We evaluated the performance of
BotOnus to detect various botnets including HTTP-,
IRC-, and P2P-based botnets using a testbed network
and investigated the impact of different parameters on

Table 3. Comparison of BotOnus with other methods

Detection
Method

U
n
k
n
o
w
n

B
o
tn

e
ts

L
o
w

D
e
p
e
n
d
e
n
c
y

C
o
m

m
a
n
d

E
n
c
r
y
p
te

d

O
n
li
n
e

D
e
te

c
ti
o
n

E
a
r
ly

S
ta

g
e

D
e
te

c
ti
o
n

Livadas [7] No No Yes No Yes

Rishi [8] No No No Yes Yes

BotMiner [10] Yes Yes Yes No No

Castle [11] No Yes No No No

Lee [12] No No Yes Yes Yes

Xiaocong [14] Yes No Yes Yes Yes

BotSniffer [15] No No No Yes No

BotProbe [20] Yes No Yes Yes Yes

BotOnus Yes Yes Yes Yes Yes

its performance. The experiment results have shown
that BotOnus can efficiently detect botnets with a
high detection rate and an acceptable low false-alarm
rate.

It is not easy to conduct a fair comparison among
various botnet detection methods due to differences
between testbed networks, volume of traffic, bot bi-
naries used in the experiments, and lack of common
datasets. Therefore, instead of doing a performance
comparison between BotOnus and other existing bot-
net detection methods, we compare them in terms of
some significant characteristics. In Table 3, we give a
general comparison between BotOnus and other well-

ISeCure www.SID.irwww.SID.ir

www.sid.ir

Arch
ive

 of
 SID

January 2012, Volume 4, Number 1 (pp. 51–62) 61

0

10

20

30

40

50

60

70

80

90

100

0.8 0.9 0.95 0.98

A
ve

ra
ge

 D
et

ec
tio

n
 R

at
e

(%
)

(a) Detection Rate

0

5

10

15

20

25

30

35

40

45

50

0.8 0.9 0.95 0.98

A
ve

ra
ge

 F
al

se
 A

la
rm

 R
at

e
(%

)

HTTP-Based Botnet
IRC-Based Botnet
P2P-Based Botnet

(b) False Alarm Rate

Figure 11. Performance of BotOnus for different values of τsm

0

40

80

120

160

200

240

280

320

360

400

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 N
um

be
r

of
 F

lo
w

 C
lu

st
er

s

Time Period

 ∞ =rc
30 =rc
10 =rc
5 =rc

rc

rc

rc

rc

Figure 12. Effect of τrc on the average number of flow clusters

known botnet detection methods including Livadas
[7], Rishi [8], BotMiner [10], Castle [11], Lee [12], Xi-
aocong [14], BotSniffer [15], and BotProbe [20] previ-
ously reported in the literature.

There are some techniques, such as encrypting the
C&C traffic, by which the botmaster may attempt
to evade detection. Hence, detection methods, which
employ network packet payload analysis will be inef-
fective. To accommodate encryption, BotOnus uses
flow feature vectors extracted from packet headers. It
is also able to detect unknown botnets, since it uses
an unsupervised technique driven by intrinsic charac-
teristics of botnets such as group activities, without a
priori knowledge of them.

We found that BotOnus has a low dependency on

a specific botnet C&C protocol and can successfully
detect botnets with a high detection rate and an
acceptable low false alarm rate.

We are interested in further development of
BotOnus toward a comprehensive tool for tracking
botnet malicious activities, in conjunction with moni-
toring of botnet communications, to further reduce
the false-alarm rate.

Acknowledgment

This work was supported in part by the Iran Telecom-
munication Research Center (ITRC) under contract
90-01-04.

References

[1] P. Wang, S. Sparks, and C. Zou, “An Advanced
Hybrid Peer-to-Peer Botnet”, IEEE Transac-
tions on Dependable and Secure Computing,
7(2):113–127, 2010.

[2] Damballa Top 10 Botnet Threat Report –
2010, http://www.damballa.com/downloads/
r_pubs/Damballa_2010_Top_10_Botnets_

Report.pdf

[3] X. Li, H. Duan, W. Liu, and J. Wu, “Under-
standing the Construction Mechanism of Bot-
nets”, in Proceedings of the 6th International
Conference on Ubiquitous Intelligence and Com-
puting, Brisbane, Australia, July 2009.

[4] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis,
“A Multifaceted Approach to Understanding the
Botnet Phenomenon”, in Proceedings of the 6th

ACM SIGCOMM Conference on Internet Mea-

ISeCurewww.SID.irwww.SID.irwww.SID.irISwww.SID.irISISwww.SID.irISewww.SID.ireewww.SID.ireCwww.SID.irCCwww.SID.irCurewww.SID.irureurewww.SID.irure

http://www.damballa.com/downloads/r_pubs/Damballa_2010_Top_10_Botnets_Report.pdf
http://www.damballa.com/downloads/r_pubs/Damballa_2010_Top_10_Botnets_Report.pdf
http://www.damballa.com/downloads/r_pubs/Damballa_2010_Top_10_Botnets_Report.pdf
www.sid.ir

Arch
ive

 of
 SID

62 BotOnus: An Online Unsupervised Method for Botnet Detection — M. Yahyazadeh and M. Abadi

surement, Rio de Janeriro, Brazil, October 2006.
[5] B. Jansen,“Click Fraud”, Computer, 40(7):85–

86, 2007.
[6] W. Lu, G. Rammidi, and A. Ghorbani, “Clus-

tering Botnet Communication Traffic Based on
N-gram Feature Selection”, Computer Commu-
nications, 34(3):502–514, 2011.

[7] C. Livadas, R. Walsh, D. Lapsley, and W.
Strayer, “Using Machine Learning Techniques
to Identify Botnet Traffic”, in Proceedings of the
31st Annual IEEE Conference on Local Com-
puter Networks, Florida, USA, November 2006.

[8] J. Goebel and T. Holz, “Rishi: Identify Bot Con-
taminated Hosts by IRC Nickname Evaluation”,
in Proceedings of 1st Workshop on Hot Topics in
Understanding Botnets, Cambridge, MA, USA,
April 2007.

[9] W. Wang, B. Fang, Z. Zhang, and C. Li, “A
Novel Approach to Detect IRC-Based Botnets”,
in Proceedings of the International Conference
onNetworks Security,Wireless Communications
and Trusted Computing, Wuhan, Hubei, China,
April 2009.

[10] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Bot-
Miner: Clustering Analysis of Network Traffic
for Protocol- and Structure-Independent Botnet
Detection”, in Proceedings of the 17th USENIX
Security Symposium, San Jose, CA, USA, July
2008.

[11] I. Castle and E. Buckley, “The Automatic Dis-
covery, Identification and Measurement of Bot-
nets”, in Proceedings of the 2nd International
Conference on Emerging Security Information,
Systems and Technologies, Cap Esterel, France,
August 2008.

[12] J. Lee, H. Jeong, J. Park, M. Kim, and B. Noh,
“The Activity Analysis of Malicious HTTP-
Based Botnets Using Degree of Periodic Re-
peatability”, in Proceedings of the Interna-
tional Conference on Security Technology, Sanya,
Hainan Island, China, December 2008.

[13] H. Choi, H. Lee, and H. Kim, “BotGAD: De-
tecting Botnets by Capturing Group Activities
in Network Traffic”, in Proceedings of the 4th

International ICST Conference on Communica-
tion System Software and Middleware, Dublin,
Ireland, June 2009.

[14] Y. Xiaocong, D. Xiaomei, Y. Ge, Q. Yuhai, and
Y. Dejun, “Data-Adaptive Clustering Analysis
for Online Botnet Detection”, in Proceedings
of the 3th IEEE International Joint Conference
on Computational Science and Optimization,
Anhui, China, May 2010.

[15] G. Gu, J. Zhang, and W. Lee, “BotSniffer: De-
tecting Botnet Command and Control Channels
in Network Traffic”, in Proceedings of the 15th

Annual Network and Distributed System Secu-
rity Symposium, San Diego, CA, USA, February
2008.

[16] Argus—Auditing Network Activity, http://
www.qosient.com/argus

[17] Alexa—The Web Information Company,
http://www.alexa.com

[18] X1machine—Internet security and pro-
gramming related blog, http://x1machine.

blogspot.com

[19] Hack Forums, http://www.hackforums.net
[20] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, and

W. Lee, “Active Botnet Probing to Identify Ob-
scure Command and Control Channels”, in Pro-
ceedings of the 25th Annual Computer Security
Applications Conference, Honolulu, HI, USA,
December 2009.

Mosa Yahyazadeh is an M.Sc.
student of computer engineering
at Tarbiat Modares University.
His main research interests are
network security, botnet detection
and analysis, web security, intru-
sion detection, and anomaly detec-
tion. Currently, he works on his

thesis on C&C protocol- and structure-independent
botnet detection.

Mahdi Abadi received his B.Sc.
and M.Sc. degrees in computer
engineering from Ferdowsi Uni-
versity of Mashhad in 1998 and
Tarbiat Modares University in
2001, respectively. He also received
the Ph.D. degree from Tarbiat
Modares University in 2008, where
he worked on the network vulner-

ability analysis. Since 2009, he has been an assistant
professor in the Faculty of Electrical and Computer
Engineering at Tarbiat Modares University. His main
research interests are network security, intrusion
detection and prevention, malware detection and
analysis, evolutionary algorithms, and data mining.

ISeCure www.SID.irwww.SID.ir

http://www.qosient.com/argus
http://www.qosient.com/argus
http://www.alexa.com
http://x1machine.blogspot.com
http://x1machine.blogspot.com
http://www.hackforums.net
www.sid.ir

