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A B S T R A C T

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of

mobile nodes constructed dynamically without the use of any fixed network

infrastructure. Due to inherent characteristics of these networks, malicious

nodes can easily disrupt the routing process. A traditional approach to detect

such malicious network activities is to build a profile of the normal network

traffic, and then identify an activity as suspicious if it deviates from this profile.

As the topology of a MANET constantly changes over time, the simple use

of a static profile is not efficient. In this paper, we present a dynamic hybrid

approach based on the artificial bee colony (ABC) and negative selection (NS)

algorithms, called BeeID, for intrusion detection in AODV-based MANETs.

The approach consists of three phases: training, detection, and updating. In the

training phase, a niching artificial bee colony algorithm, called NicheNABC,

runs a negative selection algorithm multiple times to generate a set of mature

negative detectors to cover the nonself space. In the detection phase, mature

negative detectors are used to discriminate between normal and malicious

network activities. In the updating phase, the set of mature negative detectors

is updated by one of two methods of partial updating or total updating. We

use the Monte Carlo integration to estimate the amount of the nonself space

covered by negative detectors and to determine when the total updating should

be done. We demonstrate the effectiveness of BeeID for detecting several

types of routing attacks on AODV-based MANETs simulated using the NS2

simulator. The experimental results show that BeeID can achieve a better

tradeoff between detection rate and false-alarm rate as compared to other

dynamic approaches previously reported in the literature.
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1 Introduction

Mobile ad hoc networks (MANETs) are self-organized
networks of wireless mobile nodes that communicate
with each other without the use of any fixed network
infrastructure or centralized administration [1]. Every
mobile node runs a common routing protocol such
as AODV and acts both as a terminal and a router,
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forwarding packets from one node to another. Ad hoc
on-demand distance vector (AODV) [2] is a reactive
routing protocol that tries to minimize the require-
ments of broadcast during a route discovery process.

MANETs can be described as open networks with
highly dynamic and constantly changing topology. Any
mobile node with the proper hardware and enough
knowledge of routing protocols is able to connect to
them. These networks are suitable for applications in
which no fixed network infrastructure exists, such as
military battlefield, emergency rescue, and vehicular
communications [3].

Due to inherent characteristics of MANETs, It is
difficult to guarantee the correct execution of a routing
protocol by all nodes. A malicious node can easily
listen to the network traffic and launch attacks on
other nodes with the purpose of disrupting the normal
operation of the network or stealing the information.
Many different types of attacks against these networks
have been identified including Flooding, Blackhole,
Neighbor, Rushing, and Wormhole attacks [4].

The intrusion detection (ID) techniques proposed
for MANETs can be grouped into two classes:
signature-based detection and anomaly detection. A
signature-based detection technique compares current
network behavior with known attack signatures and
detects an attack if there is a match. An anomaly
detection technique builds a model of normal network
behavior and then considers any deviation from this
model as anomaly. The advantage of anomaly detec-
tion techniques is that they do not require known
attack signatures and can thus detect new attacks [5].

In this paper, we use the negative selection mech-
anism of biological immune system for intrusion de-
tection in AODV-based MANETs. It is based on the
principles of self/nonself discrimination [6, 7] in the
biological immune system, and models the matura-
tion process of T cells in thymus without the partic-
ipation of nonself cells and eliminates T cells that
react against self cells [8]. In other words, it uses only
self cells for learning and generates a set of detectors
for detecting nonself cells [9]. Previous works have
used different techniques for generating detectors [10–
13]. In this work, we extend the artificial bee colony
(ABC) algorithm [14] for this purpose. It is a new
swarm intelligence algorithm inspired by the behavior
of honey bees when searching for food sources. Many
extensions have been proposed to improve its perfor-
mance [15, 16].

Mobility of nodes in a MANET causes the network
topology to change constantly over time. Hence, a
malicious node can easily disrupt the routing process
by injecting false routes into the network. A traditional

approach to detect such malicious network activities
is to build a profile of the normal network traffic and
then identify an activity as suspicious if it deviates
from this profile. As the network topology dynamically
changes over time, the simple use of a static profile is
not efficient.

In this paper, we present a dynamic hybrid approach
based on the ABC and NS algorithms, called BeeID,
for intrusion detection in AODV-based MANETs. In
this approach, every node first collects a set of fea-
ture vectors of its own normal network traffic. Each
feature vector is represented by a hypersphere with
fixed radius in the feature space. The node then ap-
plies the NicheNABC algorithm to generate a set of
mature negative detectors to cover the nonself space.
The amount of the coverage is estimated using the
Monte Carlo integration, a probabilistic and sampling
method useful for estimating complex integrals. The
negative detectors, represented by hyperspheres with
variable radii, are used to detect malicious network ac-
tivities. The node eventually updates mature negative
detectors by one of two methods of partial updating
or total updating.

The remainder of this paper is organized as follows:
Section 2 reviews related works. Section 3 provides
a brief overview of ABC and AODV. Section 4 for-
mally introduces the problem of intrusion detection in
MANETs and Section 5 presents BeeID. Section 6 re-
ports experimental results and finally Section 7 draws
some conclusions.

2 RelatedWorks

Gonzalez et al. [17] proposed a real-valued negative
selection (RNS) algorithm with constant-sized detec-
tors and used the Monte Carlo integration to calculate
the number of detectors needed to cover the nonself
space. Simulated annealing was employed to optimize
the distribution of detectors in the nonself space.

Ji et al. [11] presented a real-valued negative selec-
tion algorithm with variable-sized detectors, called
V-detector. A naive method was used to automati-
cally calculate the estimated coverage of the nonself
space when the detector set is generated. They further
improved the coverage estimation by the hypothesis
testing, and demonstrated that it has a higher detec-
tion rate than the naive method, but generates more
detectors to cover the nonself space.

The security techniques proposed for MANETs can
be grouped into two classes: prevention and detection.
Prevention techniques, such as secure and authenti-
cated routing protocols [18, 19], are usually considered
as the first line of defense against attacks. However,
these techniques do not provide a complete solution
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for all attacks. Detection techniques can come into
play when prevention techniques have failed.

Dasgupta et al. [12] proposed a technique inspired
by the negative selection algorithm for intrusion de-
tection in wired networks. It uses a niching genetic al-
gorithm (NGA) to generate a set of detectors to cover
the nonself space. The detectors are represented in the
form of rules. The condition part of each rule defines
a hyperrectangle in the feature space. A hypersphere
is defined around each self sample. The raw fitness of
a rule is calculated based on the volume of its hyper-
rectangle and the number of self samples covered by it.
Ostaszewski et al. [20] presented another technique for
network intrusion detection in which both detectors
and self samples are represented by hyperrectangles.

Balachandran et al. [21] proposed a behavior-based
anomaly detection technique inspired by the biolog-
ical immune system to detect malicious nodes in
DSR-based MANETs. They generate the detector set
through a structured genetic algorithm (sGA) that is
suitable for encoding of multi-shape detectors. Sarafi-
janovic et al. [22] used an artificial immune system
based on negative selection, danger theory, and clonal
selection for detecting malicious nodes.

In some real-valued negative selection algorithms,
the variability of self samples would result in the
holes on the boundary between the self and nonself
spaces. Hence, nonself samples in these regions cannot
be detected. Wang et al. [13] proposed an improved
detector generation algorithm based on evolutionary
search to generate a specific type of detectors, called
boundary detectors. These detectors cover the holes
on the boundary and have an opportunity to detect
nonself samples hidden in the self space.

Hang et al. [23] presented an approach of apply-
ing both positive and negative selection algorithms
for anomaly detection. They consider the problem of
anomaly detection as a problem of supervised learn-
ing from imbalanced data sets and use re-sampling
strategies to balance data sets. The approach first
learns the patterns of normal samples based on a co-
evolutionary genetic algorithm, which is inspired from
the positive selection algorithm, and then generates
synthetic anomalous samples based on the negative
selection algorithm. Both data sets are used for learn-
ing a classifier. The main limitation of this approach
is that it imposes a significant overhead for updating
the boundary between normal and anomalous samples
and therefore is not appropriate for dynamic anomaly
detection.

Nakayama et al. [24] proposed a dynamic anomaly
detection approach, called WPCA, for AODV-based
MANETs that allows the profile of normal network

behavior to be updated at particular time intervals.
It uses the principal component analysis (PCA) to
calculate the first principle component of normal sam-
ples, which can be used as a profile of normal network
behavior. The projection distance of new samples to
this principle component is used for detecting routing
attacks. The global covariance of normal samples is
used to update the profile at consecutive time inter-
vals. The main drawback of this approach is that the
global covariance is calculated inaccurately.

Alikhany et al. [5] proposed a dynamic clustering-
based approach, called DCAD, for anomaly detection
in AODV-based MANETs. It uses a weighted fixed-
width clustering algorithm to build a profile of normal
network behavior and to detect routing attacks. It
also uses a forgetting equation to periodically update
the profile. The experimental results have shown that
DCAD has a high false-alarm rate.

3 Background Knowledge

3.1 Artificial Bee Colony

The artificial bee colony (ABC) algorithm [14] is a new
swarm intelligence algorithm inspired by the behavior
of honey bees. Since it was proposed by Karaboga [25],
many extensions have been made to improve it [15, 16].
Karaboga et al. [16] compared the performance of
ABC with that of some other popular metaheuris-
tic optimization algorithms, such as particle swarm
optimization (PSO), genetic algorithms (GAs), and
differential evolution (DE). The results showed that it
has a comparable performance with other algorithms.

The colony of artificial bees consists of three groups
of bees: employed, onlooker, and scout. The number of
employed and onlooker bees is identical, and is equal
to the number of food sources. Each employed bee
is assigned to one of food sources, and in each cycle
it finds a new food source in the neighborhood of its
current food source. If the new food source has more
nectar, the employed bee will replace the current food
source with it. There is only one scout bee in the
colony. The employed bee whose food source has been
abandoned becomes a scout bee, and carries out a
random search to find a new food source [14]. After
all employed bees complete the search process, they
share the information about the nectar amount and
the position of food sources with onlooker bees by
doing the waggle dance. Each onlooker bee watches
the dance and selects a food source based on its nectar
amount. The position of each food source represents
a possible solution in the optimization problem and
its nectar amount corresponds to the fitness of the
solution [16].
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3.2 An Overview of AODV Protocol

Different routing protocols for MANETs have been
proposed in the literature, which can be classified into
two types: table driven and on-demand routing proto-
cols [26]. In on-demand routing protocols, routes are
created only when required. Some of these protocols
are DSR [27], AODV [2], and TORA [28].

AODV [2], which is based on DSDV [26] and DSR,
tries to minimize the requirements of broadcast during
a route discovery process when a source node wants
to send data to a destination node. The source node
broadcasts a route request (RREQ) packet to its neigh-
bors and then sets a timer to wait for a reply. A route
reply (RREP) packet is sent back to the source node
by the destination node or any intermediate node that
has a fresh route to the destination node. Every node
in the route between the source and destination nodes
processes the RREQ packet to create a reverse route
in its routing table for forwarding RREP packets to
the source node [5].

3.3 Typical Routing Attacks on AODV
Protocol

Routing attacks on AODV are classified into four
classes: (1) Route disruption, (2) Route invasion, (3)
Node isolation, and (4) Resource consumption. In the
following, we shortly describe some of typical routing
attacks on AODV [4, 24].

1. Flooding Attack : A malicious node sends a huge
number of RREQ packets in an attempt to con-
sume the network resources. The source IP ad-
dress is forged to a randomly selected node and
the broadcast ID is intentionally increased.

2. Blackhole Attack : A malicious node advertises
itself as having a valid route to a destination
node. For this purpose, after receiving a RREQ
packet via broadcast, it sends a forged RREP
packet back to the source node with a greater
sequence number. Therefore, the source node
imagines that the malicious node has a fresh
route to the destination node and drops other re-
ceived RREP packets. The malicious node takes
all the routes towards itself and does not allow
forwarding any packet anywhere (see Figure 1).

3. Neighbor Attack : A malicious node forwards
RREQ/RREP packets without adding its ID in
them. This causes two nodes that are not within
the communication range of each other imagine
that they are neighbors, resulting in a disrupted
route.

4. Rushing Attack : On-demand routing protocols
prevent the collisions of RREQ packets by using
a delay between receiving a RREQ packet and
forwarding it. A malicious node exploits this
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Figure 1. A Blackhole attack with forged RREP packets
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Figure 2. A Wormhole attack with two malicious nodes

property of these routing protocols by quickly
forwarding RREQ packets. Hence, the source
node cannot discover any valid route that does
not contain the malicious node.

5. Wormhole Attack : Two or more malicious col-
luding nodes first establish a private high-speed
link, referred to asWormhole link, between them-
selves in the network. They then record RREQ
packets at one location, tunnel them to other
location through the Wormhole link without in-
creasing the value of the hop count field, and
then rebroadcast them into the network [29].
This attack can cause serious damages to the
network and prevent the discovery of any route
other than through the Wormhole link [4] (see
Figure 2).

4 Problem Definition

A mobile ad hoc network (MANET) is a collection of
wireless mobile nodes that are capable of communi-
cating with each other without the use of any fixed
network infrastructure or centralized management.
During each time slot ∆ti, every mobile node collects
statistics from its own network traffic and represents
them as a p−dimensional feature vector xi:
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xi = (x1
i , x

2
i , ..., x

p
i ), (1)

where each xk
i ∈ [0.0, 1.0] is a measurable feature. A

set of contiguous time slots is referred to as a time
window.

The set of all possible feature vectors constitutes the
feature space S ⊆ [0.0, 1.0]p, where a feature vector
xi ∈ S is associated with an antigen in the biological
immune system and collected from the network traffic
by the antigen presenting cells (APCs). A feature
vector xi ∈ S in a time-window t is classified as normal
if it corresponds to the normal network state in this
time-window. The set of all normal feature vectors
in the current time-window t is denoted as Xself(t),
and the set of all normal feature vectors in the last m
time-windows is denoted as Nself(t):

Nself(t) =

t⋃
τ=t−m+1

Xself(τ). (2)

The normal feature vectors in Nself(t) are covered by
a set PA(t) of positive antigens. A positive antigen
pi ∈ PA(t) is defined as a hypersphere pi = (xi, rself)
centered at the normal feature vector xi ∈ Nself(t)
with a constant radius rself.

PA(t) = {(xi, rself)|xi ∈ Nself(t)}. (3)

Our aim is to generate a set ND(t) of negative detec-
tors that have the maximum coverage of the nonself
space S − PA(t) in the time-window t. Every nega-
tive detector dj ∈ ND(t) is defined as a hypersphere
dj = (cj , rj), where cj = (c1j , c

2
j , . . . , c

p
j ) is the center

of the hypersphere in the nonself space S−PA(t) and
rj is its radius.

A feature vector xi ∈ S in the time-window t is
classified as malicious if and only if it is covered by at
least a negative detector dj ∈ ND(t− 1). Otherwise,
it is classified as normal:{
cv(xi, dj) = true for some dj ∈ ND(t− 1) : Malicious,

cv(xi, dj) = false for all dj ∈ ND(t− 1) : Normal,

(4)
where cv(xi, dj) denotes whether the feature vector
xi is covered by the negative detector dj :

cv(xi, dj) =

{
true if dis(xi, cj) ≤ rj ,

false otherwise,
(5)

where dis(xi, cj) is the Euclidean distance between
feature vectors xi and cj . The positive antigen pi ∈
PA(t) overlaps with the negative detector dj if their
intersection in the feature space is not empty:

ovlp(pi, dj) =

{
true if dis(xi, cj) ≤ (rself + rj),

false otherwise.

(6)

5 BeeID Approach

In this section, we present a dynamic hybrid approach
based on the ABC and NS algorithms, called BeeID,
for intrusion detection in MANETs. The approach
consists of three phases: training, detection, and up-
dating. In the training phase, negative detectors are
generated in a protected environment using the nor-
mal network traffic; while in the updating phase, those
are generated in a non-protected environment, where
routing attacks may occur.

In the training phase, every node first collects a set
Nself(0) of feature vectors of its own normal network
traffic and assigns the initial weightw0 to them. It then
normalizes the values of each feature, and applies the
NicheNABC algorithm on the set PA(0) of positive
antigens to generate a set ND(0) of mature negative
detectors.

In the detection phase, during each time-window
t, every node collects a set X(t) of feature vectors of
its own network traffic, and normalizes the values of
each feature based on the minimum and maximum
values of that feature in Nself(t− 1). It then compares
the feature vectors with mature negative detectors in
ND(t− 1) to detect malicious network activities.

In the updating phase, at the end of the time-window
t, every node adds the set Xself(t) of normal feature
vectors to Nself(t− 1):

Nself(t) = Nself(t− 1) ∪Xself(t). (7)

It then updates the weight of each feature vector in
Nself(t) using a forgetting equation [5]:

wτ (t) =

{
w0e

−r(τ,t)∆T (t−τ) (t−m) < τ ≤ t,

0 otherwise,
(8)

where w0 is a parameter specified by the user. wτ (t)
is the current weight assigned to all normal feature
vectors collected in the time-window τ (τ ≤ t). r(τ, t)
is the rate of changing of network topology [5] between
time-windows τ and t. ∆T is the length of a time-
window. A feature vector is eliminated from Nself(t) if
its weight is less than a given threshold. Based on the
above equation, the weight of normal feature vectors
is decreased over each time-window. In other words,
the older the normal feature vector, the lower the
assigned weight.

It eventually updates the set ND(t− 1) of mature
negative detectors by one of two updating methods:
partial updating and total updating.
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5.1 Normalization Process

When calculating the distance between two feature
vectors, features with larger values will dominate those
with smaller values, and hence have a larger influence
on the calculated distance. To solve this problem, at
the end of each time-window t, we normalize the values
of each feature in Nself(t).

As mentioned before, the feature space S is a unit
hypercube. To generate an optimized set of negative
detectors, the values of features in Nself(t) should be
normalized such that positive antigens in PA(t) are
away from the sides of the unit hypercube S. For this
purpose, the minimum and maximum values of each
feature in Nself(t) are determined and then the value
of the kth feature for each feature vector xi ∈ Nself(t)
is scaled using the following equation:

x̂k
i =

xk
i − (xk

min − 0.2 ∗ xk
min)

(xk
max + 0.2 ∗ xk

max)− (xk
min − 0.2 ∗ xk

min)
,

(9)
where xk

min and xk
max are the minimum and maximum

values of the kth feature.

5.2 NicheNABC Algorithm

The NicheNABC algorithm is composed of a number
of sequential and dependent niches of the NABC al-
gorithm. The operation of the algorithm is similar to
that of the bone marrow and thymus in the biological
immune system.

Let t be the current time-window and PA(t) be the
set of positive antigens corresponding to the normal
feature vectors in Nself(t). The NicheNABC algorithm
takes PA(t) as input and generates a set ND(t) of
mature negative detectors as output to cover the non-
self space S − PA(t). In every niche i of the NABC
algorithm, an initial population F i = {f i

1, f
i
2, . . . , f

i
L}

of immature food sources is randomly generated. Each
immature food source f i

j ∈ F i consists of l immature

negative detectors dijs:

f i
j = (dij1, d

i
j2, . . . , d

i
jl), (10)

where dijs is defined as a hypersphere dijs = (cijs, r
i
js)

whose center is a p-dimensional feature vector cijs ∈
S−PA(t) and radius is rijs, calculated as the average

distance between cijs and its n nearest positive antigens

in PA(t). The position and size of f i
j are denoted

by pij = (cij1, c
i
j2, . . . , c

i
jl) and sij = (rij1, r

i
j2, . . . , r

i
jl),

respectively.

The immature food sources are generated so that
they have minimum overlap with positive antigens in
PA(t). Hence, each center cijs ∈ pij is initially chosen
randomly from S − PA(t).

From Section 3.1, we know that each employed bee
is assigned to only one of the food sources. In each
cycle of niche i, every employed bee j first produces a
modification on the position pij of its own food source

f i
j in its memory to discover a new food source f̂ i

j ,

and evaluates the nectar amount of f̂ i
j . To do this,

it modifies the center cijs of each negative detector

dijs ∈ f i
j with probability Pe:

ĉijs =

{
cijs + ϕjs(c

i
js − ciws) if U(0, 1) ≤ Pe,

cijs otherwise,
(11)

where ciws is the center of negative detector diws of a
randomly chosen food source f i

w and ϕjs is a random
value in the range [−1, 1].

The employed bee j then forgets f i
j and replaces

it with f̂ i
j , only if the nectar amount of f̂ i

j is equal

or more than that of f i
j . In other words, a greedy

strategy is applied to select between f i
j and f̂ i

j . The
nectar amount of each food source is evaluated by the
fitness function ϑ, as in (13).

After all employed bees complete the search process,
they share the information of the food sources in F i

with the onlooker bees on the dance area.

Each onlooker bee o first chooses a food source f i
k

using a selection method such as roulette wheel or
tournament selection, and then discovers a new food
source f̂ i

k in the neighborhood of f i
k. To this end, it

modifies the center ciks of each negative detector diks ∈
f i
k with probability Po:

ĉiks =

{
ciks + ϕks(c

i
ks − cizs) if U(0, 1) ≤ Po,

ciks otherwise,
(12)

where cizs is the center of negative detector dizs of a
randomly chosen food source f i

z, and ϕks is a random
value in the range [−1, 1]. It eventually applies a greedy

strategy to select between f i
k and f̂ i

k, similar to that
of employed bees.

If the fitness of a food source cannot be improved
further for a given number of cycles, that food source
is determined to be abandoned. Hence, the scout bee
chooses the abandoned food source with the lowest
nectar amount and replaces it with a randomly gener-
ated immature food source.

The above steps are repeated until a termination
condition (e.g., the maximum cycle number) is met.
At the end of every niche i, mature negative detectors
of the food source f i

M with the highest nectar amount
are added toND(t). If i is a multiple of ξ, the coverage
of the nonself space by mature negative detectors in
ND(t) is estimated using the Monte Carlo integration
[30, 31]. The sequential niches of the NABC algorithm
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are continued until a termination condition (e.g., the
maximum niche number or the target coverage of the
nonself space) is met. Algorithm 1 shows the pseudo-
code of NicheNABC. In the algorithm, Rmax is the
maximum number of niches, cvest is the estimated
coverage of the nonself space, and CRmin is the target
coverage of the nonself space.

Algorithm 1 NicheNABC

Input:
PA(t): Set of positive antigens
Rmax: Maximum number of niches
CRmin: Target coverage of the nonself space

Output:
ND(t): Set of mature negative detectors

1: i := 1, ND(t) := φ
2: repeat
3: Initialize a population of immature food

sources
4: repeat
5: for each employed bee j do
6: Produce a new food source f̂ i

j in the neigh-

borhood of f i
j using Equation 11

7: if ϑ(f̂ i
j , PA(t), ND(t)) > ϑ(f i

j , PA(t), ND(t))
then

8: f i
j := f̂ i

j
9: end if

10: end for
11: for each onlooker bee o do
12: Select a food source f i

k using tournament
selection and product a new food source
f̂ i
k in the neighborhood of f i

k using Equa-
tion 12

13: if ϑ(f̂ i
k, PA(t), ND(t)) > ϑ(f i

k, PA(t), ND(t))

then
14: f i

k := f̂ i
k

15: end if

16: end for
17: Determine an abandoned food source and re-

place it with a new immature food source for
the scout bee

18: Find the best food source f i
M

19: until a termination condition is met
20: ND(t) := ND(t) ∪ f i

M

21: i := i+ 1
22: if i is a multiple of ξ then
23: Calculate the nonself space coverage estima-

tion cvest using the Monte Carlo integration
24: end if
25: until i > Rmax or cvest > CRmin

5.2.1 Fitness Function

The NicheNABC algorithm attempts to generate a set
of mature food sources with high nectar amount, so
that they have the maximum coverage with the nonself

space, the minimum overlap with positive antigens,
and the minimum overlap among themselves.

In every niche of the NABC algorithm, the nectar
amount of a food source f is evaluated by the following
fitness function:

ϑ(f,A,D) = w1 · vol(f)− w2 · ovlpself(f,A)
−w3 · ovlpinner(f)− w4 · ovlpouter(f,D),

(13)

where A is the set of positive antigens, D is the set
of mature negative detectors generated in the pre-
vious niches of the algorithm, w1, . . . , w4 are con-
stants whose values are determined experimentally,
and vol(f) denotes the approximate amount of the
feature space S covered by negative detectors in f :

vol(f) =

l∑
s=1

rs√
p
, (14)

where l is the number of negative detectors in a food
source, p is the dimension of S, and rs is the radius of
sth negative detector in f . The larger the radius, the
larger the amount of S covered by the negative detec-
tor. Hence, the sum of the radii of negative detectors
in f is used to estimate the amount of S covered by it.

ovlpself(f,A) denotes the approximate amount of
overlap between negative detectors in f and positive
antigens in A:

ovlpself(f,A) =

∑l
s=1

∑|A|
k=1(e

δ(ds,pk) − 1)

l · |A|
, (15)

where ds is the sth negative detector in f , pk is the
kth positive antigen in A, and |A| is the number of
positive antigens in it.

ovlpinner(f) denotes the approximate amount of
overlap among negative detectors in f :

ovlpinner(f) =

∑l
s=1

∑l
k=s+1(e

δ(ds,pk) − 1)

l · (l + 1)
. (16)

ovlpouter(f,D) denotes the approximate amount of
overlap between negative detectors in f and mature
negative detectors in D:

ovlpouter(f,D) =




∑l
s=1

∑|D|
k=1(e

δ(ds,mk) − 1)

l · |D|
if D �= ∅,

0 otherwise,

(17)
where mk is the kth mature negative detector in D,
and |D| is the number of mature negative detectors
in it.

Notice that δ(sj , sk) denotes the approximate
amount of overlap between two hyperspheres sj =
(cj , rj) and sk = (ck, rk), and its value is always
bounded between 0 and 1:
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Figure 3. The partial updating of negative detectors in the

updating phase

δ(sj , sk) = 1− dis(cj , ck)

rj + rk
, (18)

where dis(cj , ck) is the Euclidean distance between
two centers cj and ck of hyperspheres sj and sk, re-
spectively. The maximum value of δ is reached when
dis(cj , ck) = 0 and its minimum value is reached when
dis(cj , ck) � rj + rk.

5.3 Partial Updating

Let t be the current time-window and AX(t) be the
set of positive antigens corresponding to the normal
feature vectors in Xself(t):

AX(t) = {(xi, rself)|xi ∈ Xself(t)}. (19)

If t is not a multiple of a given integer parameter ψ,
mature negative detectors in ND(t− 1) are updated
using the partial updating process.

If a mature negative detector dj ∈ ND(t− 1) over-
laps with at least one of positive antigens in AX(t), its
center is moved away from its nearest positive antigen,
but its radius remains unchanged [10]:



cnewj = coldj + α · dir

‖dir‖
,

dir = coldj − xi,
(20)

where coldj and cnewj are the center of dj before and after
moving it, respectively, xi is the center of the nearest
positive antigen to dj , α is a predefined parameter that
controls the amount of movement, and ‖·‖ denotes the
Euclidean norm. Figure 3 shows the partial updating
process.

5.4 Total Updating

Let t be the current time-window. If t is a multiple of
a parameter ψ, the coverage of the nonself space by
negative detectors in ND(t− 1), denoted as cvest, is
estimated using the Monte Carlo integration. If cvest
is less than a given threshold CUmin, the NicheNABC
algorithm is applied on the set PA(t) of positive anti-
gens to generate a set ND(t) of new mature negative
detectors. This process is called total updating. Algo-
rithm 2 shows the pseudo code of the detection and
updating phases.

Algorithm 2 Detection and Updating

Input:
ND(0): Set of mature negative detectors
Nself (0): Set of normal feature vectors
CUmin: Minimum coverage of the nonself space
ψ: Period of the total updating

1: t := 1
2: while true do
3: Xself(t) := φ
4: Collect the set of feature vectors X(t) from the

network traffic
5: Normalize the values of feature vectors in X(t)

using Equation 9
6: for each feature vector xi ∈ X(t) do
7: if cv(xi, dj) is true for some dj ∈ ND(t− 1)

then
8: Classify xi as malicious
9: else

10: Xself(t) := Xself(t) ∪ {xi}
11: end if
12: end for
13: Nself(t) := Nself(t− 1) ∪Xself(t)
14: Update the weights of feature vectors inNself(t)

15: if t is a multiple of ψ then
16: Calculate the nonself space coverage estima-

tion cvest using the Monte Carlo integration
17: if cvest < CUmin then
18: GenerateND(t) using the NicheNABC al-

gorithm
19: end if
20: else
21: AX(t) = {(xi, rself)|xi ∈ Xself(t)}
22: for each negative detector dj ∈ ND(t − 1)

do
23: if ovlp(pi, dj) is true for some pi ∈ AX(t)

then
24: Move dj using Equation 20
25: end if
26: end for
27: ND(t) := ND(t− 1)
28: end if
29: t := t+ 1
30: end while

6 Experiments

In order to evaluate the performance of BeeID, we
conducted some experiments using the data collected
from a series of simulations. We used two performance
measures: detection rate (DR) and false-alarm rate
(FAR). The experimental results are presented in this
section.
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Table 1. Simulation parameters in NS2

Parameter Name Parameter Value

Simulation Time 10, 000(s)

Number of Mobile Nodes 30

Simulation Area 1000(m)×1000(m)

MAC Layer Protocol MAC 802.11

Routing Protocol AODV

Traffic Model CBR

Pause Time 5(s)

Mobility Model RWP

Maximum Mobility 35(m/s)

Maximum Bandwidth 2(Mbps)

Packet Size 512(B)

6.1 Simulation Environment

The NS2 simulator version 2.29 [32] was used to sim-
ulate some routing attacks on MANETs. It provides
an excellent environment to simulate various wire-
less networks. The simulation was performed for a
30-node network with a square topology of dimensions
1000(m)∗1000(m). IEEE 802.11 and AODV were used
as the MAC layer and routing protocols, respectively.
The simulation time was set to 10, 000(s). One cer-
tain node was selected to launch Flooding, Blackhole,
Neighbor, and Rushing attacks, and two certain nodes
were selected to launch a Wormhole attack. The con-
stant bit rate (CBR) traffic with a packet size of 512
bytes was generated by running the cbrgen.tcl pro-
gram. The random waypoint (RWP) model was used
as the mobility model and generated by the setdest
program. It is a commonly used synthetic model for
node mobility in MANETs in which every node inde-
pendently and randomly chooses its destination and
speed. Table 1 summarizes the simulation parameters.
All the experiments were done on a computer with
a 1.8 GHz Intel Core 2 Duo processor and 512 MB
RAM.

At each time slot, every mobile node collected a
feature vector of its own network traffic. The length
of each time slot was set to 5(s). We used 22 features,
presented in [5, 24]. As can be seen in Table 2, the
features are classified into four categories:

• Three CBR traffic features (CBR),
• Ten route discovery features (RTD),
• Five path disrupting features (PTD),
• Four protocol specific features (PRT).

Table 2. List of features

Type # Feature

C
B
R

1 Number of sent CBR data packets

2 Number of received CBR data packets

3 Number of forwarded CBR data packets

R
T
D

4 Number of sent RREQ packets

5
Number of received RREQ packets with the

same source address as the node

6
Number of received RREQ packets with the
same destination address as the node

7

Number of received RREQ packets with the

different source and destination address of
the node

8 Number of forwarded RREQ packets

9
Number of sent RREP packets with the same
destination address as the node

10
Number of sent RREP packets with the

different destination address of the node

11
Number of received RREP packets with the
same source address as the node

12
Number of received RREP packets with the

different source address of the node

13 Number of forwarded RREP packets

P
T
D

14 Number of sent RERR packets

15 Number of received RERR packets

16 Number of forwarded RERR packets

17 Number of dropped RREQ packets

18 Number of dropped RREP packets

P
R
T

19

Average difference between the destination

sequence number of each received RREP
packet and its corresponding sequence num-

ber stored in the routing table

20

Maximum difference between the hop count

of each received RREQ packet and its cor-
responding hop count stored in the routing

table

21

Average difference between the hop count
of each received RREP packet and its cor-
responding hop count stored in the routing

table

22
Average sequence numbers of active entries
in the routing table

6.2 Results

The length of the training phase was set to 1500(s).
During this phase, we prohibited nodes from perform-
ing any malicious activities. Every node collected a
set of feature vectors (positive antigens) of its own
normal network traffic and generated a set of ma-
ture negative detectors. During the detection phase,
it used the mature negative detectors to discriminate
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Figure 4. Performance of BeeID for different values of rself

between normal and malicious network activities. Dur-
ing the updating phase, the node updated the mature
negative detectors by one of two methods of partial
updating or total updating. Through experiments, the
parameters m and ψ were set to 10. The parameter
rself was set to 0.1. In addition, the number of the
nearest positive antigens used to calculate the radius
of a negative detector was set to n = 3, and the length
of the time-window was set to ∆T = 100(s).

The malicious node(s) launched five different rout-
ing attacks, including Flooding, Blackhole, Neighbor,
Rushing, and Wormhole from 3500(s) to 6000(s). Ev-
ery node, except the malicious node(s), used its own
generated mature negative detectors to detect mali-
cious network activities.

Figure 4 compares the performance of BeeID to de-
tect the routing attacks for different values of rself,
ranging from 0.5 to 0.01. Based on the results shown
in the figure, rself = 0.1 is a better choice than other
values, because BeeID can better balance between
the detection and false-alarm rates. As mentioned be-
fore, rself is responsible for defining the boundaries
of space covered by positive antigens. An increase in
the value of rself leads to an increase in the amount
of space covered by positive antigens and a decrease
in the amount of the nonself space covered by nega-
tive detectors. Hence, the generated mature negative
detectors will not be able to cover all possible mali-
cious network activities and therefore the detection
rate will decrease (See Figure 5).

Figure 6 depicts the average detection and false-
alarm rates of BeeID for different values of ∆T , rang-
ing from 500(s) to 40(s). As shown in the figure, the
lower the length of time-window is, the higher the de-
tection and false-alarm rates are. This is because with

 

(a) with a large value of rself

 

(b) with a small value of rself

Figure 5. Performance of BeeID for different values of rself
in a 2-dimensional feature space. The blue and red points are

normal and malicious feature vectors, respectively. The circles
with dashed lines are negative detectors and the other circles
are positive antigens

decreasing the length of each time-window, the up-
dating period of negative detectors is shortened, and
the number of positive antigens decreases. According
to the results shown in the figure, a better choice for
∆T is 100(s).

Figure 7 shows the effect of the different values of
n, ranging from 1 to 8, on the performance of BeeID
to detect the routing attacks. An increase in the value
of n causes an increase in both detection and false-
alarm rates, because mature negative detectors further
violate the self space, but instead they can cover a
greater amount of the feature space. Therefore, they
will cover more normal and malicious feature vectors.
As can be seen in the figure, there is a better balance
between the detection rate and false-alarm rate in
n = 3.

Table 3 shows the effect of different values of ψ on
the average detection rate and average run time of
the updating phase in each time-window. It should
be noted that the lower the value of ψ is, the greater
the number of running the total updating and the less
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Figure 6. Performance of BeeID for different values of ∆T
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Figure 7. Performance of BeeID for different values of n

the number of running the partial updating in differ-
ent time-windows. Hence, since the total updating is
a time consuming process, the average run time of
the updating phase in each time-window will increase.
However, it generates mature negative detectors that
cover the nonself space better than those of the par-
tial updating. According to the results shown in the
table, ψ = 10 is a good choice to balance between the
detection rate and average run time.

In order to evaluate the effect of the partial updat-
ing on the amount of overlap between mature negative
detectors and positive antigens, we calculated the av-
erage number of collisions between them before and
after performing this process. As shown in Figure 8,
the partial updating reduces the average number of
collisions between mature negative detectors and posi-
tive antigens for the routing attacks. On average, there

Table 3. Effect of different values of ψ on the average detection
rate and average run time of the updating phase in each

time-window

ψ Average Detection
Rate (%)

Average Run Time
(ms)

1 96.64 2050.79

2 96.61 1478.61

5 96.04 709.54

10 95.92 368.35

20 94.53 227.58

30 92.12 165.64

40 91.51 152.81

50 89.42 75.67
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Figure 8. Effect of the partial updating on the amount of over-
lap between mature negative detectors and positive antigens

is a 69%, 35%, 72%, 32%, and 47% reduction in the
number of collisions for Flooding, Blackhole, Neigh-
bor, Rushing, and Wormhole attacks, respectively.

We implemented the NABC algorithm using differ-
ent selection methods, including roulette wheel selec-
tion and binary tournament selection. As shown in
Table 4, both of these methods have the same effect
on the performance of BeeID. However, binary tour-
nament selection has a lower time complexity than
roulette wheel selection. Hence, we used it as the se-
lection operator in the NABC algorithm.

As mentioned before, the NicheNABC algorithm is
composed of a number of sequential and dependent
niches of the NABC algorithm. Every niche of this
algorithm increases the coverage of the nonself space
by mature negative detectors. Figure 9 shows the es-
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Table 4. Effect of using different selection methods in the

NABC algorithm on the performance of BeeID

Attack Roulette Wheel Binary Tournament

DR FAR DR FAR

Flooding 97.80 2.04 97.83 1.81

Blackhole 96.32 1.77 96.46 1.62

Neighbor 96.81 2.55 97.10 2.60

Rushing 95.23 2.21 95.20 2.13

Wormhole 92.65 3.16 93.03 3.20

Average 95.76 2.35 95.92 2.27
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Figure 9. Estimated coverage of the nonself space at every
niche of the NABC algorithm for both the training and up-
dating phases

timated coverage of the nonself space at every niche
of the NABC algorithm during a complete running
of the NicheNABC algorithm for both the training
and updating phases. This estimation was calculated
using the Monte Carlo integration. The NicheNABC
algorithm will be stopped when the coverage of the
nonself space is equal or more than a target threshold.
As shown in the figure, in the updating phase, the
NicheNABC algorithm is able to reach a higher cover-
age of the nonself space with a less number of niches.
This is because the number of positive antigens in the
updating phase is less than that of the training phase.
Hence, the NABC algorithm in the updating phase
will be able to generate larger mature negative detec-
tors to cover the nonself space and faster reach to the
target coverage.

During two consecutive running of the total updat-
ing, due to the removal of old normal feature vectors
and the lack of generating new mature negative de-

Table 5. Comparison of the performance of three variants of

BeeID

Last Time Without With

Attack Window Updating Updating

DR FAR DR FAR DR FAR

Flooding 91.80 8.14 82.62 8.81 97.83 1.81

Blackhole 90.06 6.27 86.03 10.73 96.46 1.62

Neighbor 86.12 5.46 78.26 9.46 97.10 2.60

Rushing 86.53 8.83 56.33 15.58 95.20 2.13

Wormhole 81.45 10.30 56.51 14.62 93.03 3.20

Average 87.19 7.80 71.95 11.84 95.92 2.27
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Figure 10. Estimated coverage of the nonself space by mature
negative detectors during two consecutive running of the total
updating

tectors, the coverage of the nonself space by existing
mature negative detectors gradually decreases. Fig-
ure 10 shows the estimated coverage of the nonself
space at the end of each time-window.

We evaluated the performance of different variants
of BeeID: BeeID with updating, BeeID without updat-
ing, and BeeID with last time-window updating. The
results can be seen in Table 5. BeeID without updating
does not consist of the updating phase. Hence, mature
negative detectors are generated in the training phase
and are not updated during the next time-windows.
BeeID with last time-window updating only uses pos-
itive antigens of the last time-window to update ma-
ture negative detectors. As can be seen in the table,
BeeID with updating has the highest detection rate
and the lowest false-alarm rate. It increases the aver-
age detection rate by more than 23.97% and decreases
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Table 6. Comparison among the average run times of BeeID,

DCAD, and WPCA

Attack BeeID WPCA DCAD

Flooding 394.83 207.60 51.70

Blackhole 412.34 235.44 108.04

Neighbor 445.76 208.62 100.78

Rushing 342.34 217.43 55.55

Wormhole 394.53 221.36 103.96

Average 397.96 218.09 84.01

the average false-alarm rate by more than 9.57% of
the corresponding values of BeeID without updating.
These results illustrate the effect of the partial and
total updating on the performance of BeeID.

Figure 11 compares the performance of BeeID with
that of DCAD [5] and WPCA [24] for detection of
the routing attacks. As shown in the figure, BeeID
increases the average detection rate of DCAD and
WPCA by more than 0.85% and 8.71% and decreases
the average false-alarm rate of them by more than
6.48% and 3.61%, respectively.

Table 6 compares the average running time of the
detection and updating phases in each time-window for
BeeID, DCAD, andWPCA. As shown in the table, the
average running time of BeeID is 397.96(ms), which
is slightly more than that of the two other approaches.
Notice that the length of each time-window was set
to ∆T = 100(s) or 100000(ms). Hence, the average
running time of BeeID is negligible with respect to
∆T , and it is acceptable in MANETs.

7 Conclusion and Discussion

A traditional approach to detect malicious network
activities is to build a profile of the normal network
traffic and then identify an activity as suspicious if
it deviates from this profile. As the network topology
in MANETs constantly changes over time due to the
node mobility, the simple use of a static profile is not
efficient. In this paper, we presented a dynamic hy-
brid approach based on the ABC and NS algorithms,
called BeeID, for intrusion detection in AODV-based
MANETs, which is able to adapt itself to the rapid
changes of the network topology. The approach con-
sists of three phases: training, detection, and updating.
In the training phase, every node collects a set of fea-
ture vectors of its own normal network traffic and then
applies the NicheNABC algorithm on them to gen-
erate a set of mature negative detectors to cover the
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Figure 11. Comparison of the performance of BeeID with
that of DCAD [5] and WPCA [24]

nonself space. Each negative detector is a hypersphere
with a variable radius. The Monte Carlo integration
is used to estimate the coverage of the nonself space.
In the detection phase, the node uses mature negative
detectors to detect malicious network activities. In the
updating phase, it updates mature negative detectors
by one of two methods of partial updating or total
updating. The Monte Carlo integration is used to de-
termine when the partial updating or total updating
should be done.

We conducted MANET simulations using the NS2
simulator and considered scenarios for detection of
Flooding, Blackhole, Neighbor, Rushing, and Worm-
hole attacks. The performance of BeeID was measured
using detection rate (DR) and false-alarm rate (FAR).
We compared the performance of BeeID with that of
DCAD [5] and WPCA [24] for detection of the rout-
ing attacks. The experimental results demonstrated
that BeeID is able to make a better balance between
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the detection rate and false-alarm rate, so that it in-
creases the average detection rate by more than 0.85%
and 8.71% and decreases the average false-alarm rate
by more than 6.48% and 3.61% of the corresponding
values of DCAD and WPCA, respectively. However,
WPCA has a low detection rate for some routing at-
tacks, such as Wormhole attack.

We discussed the effect of different values of control
parameters, such as the radius of positive antigens, the
length of a time-window, and the period of the total
updating, on the performance of BeeID. The optimal
parameter values were then selected from parameter
values that made a better balance between the detec-
tion rate and false-alarm rate. In order to evaluate the
effect of the partial updating on the amount of overlap
between mature negative detectors and positive anti-
gens, we calculated the average number of collisions
between them before and after performing this pro-
cess. The experimental results demonstrated that the
partial updating reduces the average number of colli-
sions between mature negative detectors and positive
antigens for the routing attacks. On average, there
was a 69%, 35%, 72%, 32%, and 47% reduction in the
number of collisions for Flooding, Blackhole, Neigh-
bor, Rushing, and Wormhole attacks, respectively.

The removal of old normal feature vectors and the
lack of generating new mature negative detectors lead
to a gradual decrease in the coverage of the nonself
space by existing mature negative detectors. Hence,
in some time-windows, we need to perform the total
updating to generate new negative detectors and re-
place those with old negative detectors. The Monte
Carlo integration was used to estimate the coverage
of the nonself space and to determine when the total
updating should be done.
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