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A B S T R A C T

This paper proposes an efficient joint secret key encryption-channel coding

cryptosystem, based on regular Extended Difference Family Quasi-Cyclic

Low-Density Parity-Check codes. The key length of the proposed cryptosystem

decreases up to 85 percent using a new efficient compression algorithm.

Cryptanalytic methods show that the improved cryptosystem has a significant

security advantage over Rao-Nam cryptosystem against chosen plaintext

attacks, benefiting from an improvement on the structure of the Rao-Nam

cryptosystem and proper choices of code parameters. Moreover, the proposed

cryptosystem benefits from the highest code rate and a proper error

performance.

c© 2012 ISC. All rights reserved.

1 Introduction

Security, error performance, speed, energy efficiency
and implementation costs are the main challenges, fac-
ing present secure wireless communications in noisy
environments. These challenges can be reduced to
some extent using joint secret key encryption-channel
coding scheme appropriately [1], which forms the ba-
sis of our approach. These cryptosystems provide se-
curity and reliability in one process to guarantee the
confidentiality and the integrity of transmitted data.
Establishing a suitable trade-off between security and
efficiency is an important point in designing such cryp-
tosystems.

I This article is an extended/revised version of an ISCISC’11
paper.
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Hooshmand), teghlidos@sharif.edu (T. Eghlidos),
aref@sharif.edu (M. R. Aref).
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In 1984, Rao proposed the first Private-key
Algebraic-coded Cryptosystem (PRAC) based on
(1024,524) Goppa code [2]. The idea behind this cryp-
tosystem was based on the fact that the decoding of
an arbitrary linear code is an NP-complete problem.
In 1986, Rao-Nam (RN) modified Rao’s cryptosystem
to enable the use of simpler code and decrease the
key length by a significant increase in code rate [3].
However, this cryptosystem is insecure against chosen
plaintext attacks.

Some proposed modifications on RN cryptosystem
are based on adopting nonlinear or linear codes or
modifying the set of allowed perturbation vectors [4].
However, almost all of the proposed modification cryp-
tosystems are either insecure or inefficient.

In recent years, Low-Density Parity-Check
(LDPC) [5] codes gained considerable attention from
researchers because of their powerful channel coding
technique and proper error performance. So, it is
reasonable to consider a variant of RN secret key
cryptosystem based on a class of LDPC codes, namely
Extended Difference Family Quasi-Cyclic Low-Density
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Parity-Check (EDF-QC-LDPC) [6] codes.

The remainder of the paper is structured as follows:
section 2 recalls the construction of the RN secret key
cryptosystem. Section 3 describes QC-LDPC codes
based on Extended Difference Families. The modified
RN secret key cryptosystem based on regular EDF-
QC-LDPC codes is presented in section 4. Section 5
deals with cryptanalysis of the proposed cryptosys-
tem and provides insights into overcoming some of
the weaknesses found in the original RN cryptosys-
tem. Section 6 presents the key length, computational
complexity and error performance of the proposed
cryptosystem. Finally, section 7 concludes the paper.

2 The RN secret key cryptosystem

In the subsequent sections, we give a brief description
of the RN cryptosystem [3].

2.1 Secret Key

Let S be a k×k nonsingular matrix, named scrambling
matrix, G be a k × n generator matrix of Hamming
code and P be an n×n permutation matrix. Construct
a predetermined set of perturbation vectors (syndrome
error table) that are used by the authorized sender
and receiver.

2.2 Encryption

The sender encrypts plaintexts as follows,

c = MSGP + e (s)P
= (M ′G+ e (s))P,

where M is a plaintext of length k; c is the ciphertext
of length n and e(s) is an error vector that is selected
randomly from a syndrome error table, and has the
average Hamming weight equal approximately to n/2.
The goal of using e(s) is to prevent a chosen plaintext
attack by majority voting for each position of a row
of the encryption matrix G′ = SGP.

2.3 Decryption

The authorized receiver decrypts ciphertext c as fol-
lows:

(1) Obtains,

c′ = cPT = MSG+ e(s).

(2) Finds the perturbation vector using the syn-
drome error table, and computes:

c′HT = MSGHT + e (s)HT = e (s)HT .
Then recovers M ′ = MS by correcting for per-
turbation vectors.

(3) Finally recovers the plaintext M = M ′S−1.

In this work, we consider two problems associated
with RN cryptosystem; the first is how to reduce the
key length. The second is how to increase the security.
We solve the first problem using the new compres-
sion/decompression algorithm. Also, we deal with the
second problem by applying regular EDF-QC-LDPC
codes and improving the encryption/decryption algo-
rithm.

The security of the RN cryptosystem against chosen
plaintext attacks depends on the Hamming weight
and the number of perturbation vectors [3]. It also
appears that this approach requires long keys (S, P,
G, and the syndrome error table).

3 QC-LDPC codes based on
Extended Difference Families

QC-LDPC codes based on Extended Difference Fami-
lies are an important class of structured LDPC codes
that are able to join low complexity encoding of QC
codes, good error performance of LDPC codes and
proper characteristics of Extended Difference Fami-
lies.

3.1 LDPC Codes

The LDPC codes was first discovered by Gallager in
1963 [5] and then rediscovered by Mackay and Neal in
1995 [7]. The (n, k) LDPC codes are a class of linear
block code defined by a sparse parity check matrix
Hm×n , where n > m and m = n − k. The parity
check matrix has ρ ‘1’s in each row (row weight) and
γ ‘1’s in each column (column weight) such that the
number of ‘1’s in common between any two rows or
columns is at most one.

The parameters ρ and γ are small compared to n
and m respectively, therefore the parity check matrix
has a small number of ‘1’s compared to the dimension
of the matrix, so called Low-Density Parity-Check
matrix. The code specified by H is called an LDPC
code. LDPC codes can be either regular or irregular.
A regular LDPC code is one in which both ρ and γ
are constant, otherwise it is called irregular.

LDPC codes are represented effectively using a
bipartite graph that is also known as Tanner graph
[8]. The nodes in a bipartite graph can be separated
into two sets such that each node is connected to a
node in the other set by an edge. The two sets of nodes
in a Tanner graph are called variable (bit) nodes and
check nodes.

Rows and columns inH are represented by check and
variable nodes, respectively. A cycle in a Tanner graph
is defined as a sequence of associated non-iterative
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edges which begins from a node and ends at the same
node. The number of edges in a cycle is called the
length of the cycle. The minimum cycle length of the
graph is called the girth. All cycles in Tanner graph
have even lengths and their minimum is 4-length cycle.
It is required for any LDPC code to be free of 4-length
cycle in the parity check matrix or Tanner graph for
having efficient decoding [9].

Based on the methods of construction, LDPC codes
can be classified into two general categories: random
and structured codes. Random codes are constructed
by computer search based on certain design guidelines
and do not have any predefined row-column parity
check matrix interconnection. On the other hand,
structured codes are constructed based on algebraic
and combinatorial methods and have a known row-
column interconnection pattern [10].

3.2 QC codes

Cyclic codes are a type of linear block codes, where
shifting a codeword any number of symbol positions,
either to the right or to the left, results in another
codeword. Quasi Cyclic (QC) codes are another type
of linear block codes that have partial cyclic structure,
where shifting a codeword a fixed number n0 6= 1 (or
a multiple of n0) of symbol positions either to right
or to the left results in another codeword. It is clear
that for n0 = 1, a QC code is a cyclic code [11].

A C(mn0,mk0) QC code can be described by a
parity check matrix Hr0m×n0m that is formed by r0×
n0 array of circulant submatrices Hm×m, as follows,

H =


H1,1 H1,2 . . . H1,n0

H2,1 H2,2 . . . H2,n0

...
...

. . .
...

Hr0,1 Hr0,2 . . . Hr0,n0

 , (1)

where, r0 = n0−k0 and each Hi,j , i = 1, . . . , r0, j =
1, . . . , n0 is an m×m binary circulant submatrix over
GF (2) as below,

Hi,j =


h1 h2

hm h1

· · · hm

· · · hm−1
...

...

h2 h3

. . .
...

· · · h1

 . (2)

A circulant submatrix has the feature that its lth,
l = 1, · · · ,m row is obtained through a cyclic shift by
l positions of the elements of its first row. A circulant
submatrix Hi,j is completely described by the gen-
erator polynomial (3) with coefficients from its first
row [12]. A code C of the form (1) is completely char-

acterized by the generator polynomials hi,j(x), i =
1, . . . , r0, j = 1, . . . , n0.

hi,j(x) = h1 + h2x+ h3x
2 + · · ·+ hmx

m−1. (3)

The simplest QC code is a row circulant
C(mn0, m (n0 − 1)) code that is shown as follows,

H = [H1 H2 · · · Hn0
] . (4)

In this case, each Hi, i = 1, . . . , n0 is an m × m
binary circulant submatrix. If Hn0 is nonsingular, the
generator matrix G for such code can be constructed
in systematic form as below,

G =


(H−1n0

H1)
T

Im(n0−1)
...

(
H−1n0

H2

)T
...(

H−1n0
Hn0−1

)T

 . (5)

Encoding can be achieved with linear complexity
using an (n0 − 1)m-stage shift register in much the
same way as for cyclic codes [13].

3.3 QC-LDPC Codes

A C(mn0,mk0) QC code is a QC-LDPC code if each
m × m circulant Hi,j , i = 1, · · · , r0, j = 1, · · · , n0
submatrix of its parity check matrix is sparse. For
a QC-LDPC code, the property to have a Tanner
graph free of 4-length cycles can be ensured through
algebraic considerations, when the parity check matrix
is row circulant [13].

In this paper, QC-LDPC codes with row circulant
parity check matrices are used. However, applying
row circulant matrices yields lack of flexibility on
the code length [6]. Thus, to prevent such constraint,
we use regular QC-LDPC codes based on Extended
Difference Families.

3.3.1 DF-QC-LDPC codes

Definition 1. Let F = {D1, D2, . . . , Dn0
} be a fam-

ily of µ-subsets in an additive group of Zm. We say
that F with Di = {di,1, di,2, · · · , di,µ} is an (m,µ, λ)
Difference Family, or (m,µ, λ)-DF in short, if all in-
traset distances shown in (6) give each nonzero ele-
ment ofZm exactly λ times, wherem ≡ 1 (mod µ(µ−
1)) must be a prime power [14].

di,x−di,y, i = 1, . . . , n0; x, y = 1, . . . , µ; x 6= y. (6)

The members of a difference family are called base
blocks. Difference families can be used to construct
QC-LDPC codes. The generator polynomial of each
circulant submatrix, Hi, shown in (4), is produced as
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equation (7), if we consider the n0 subsets Di being
in (m, µ, 1) difference family F .

hi(x) =

µ∑
j=1

xdi,j = xdi,1 + · · ·+ xdi,µ , i = 1, . . . , n0,

(7)
where di,j is the jth element of Di whose dimension is
µ. With this choice, the parity check matrix is regular
with column Hamming weight µ and row Hamming
weight n0µ [13].

Using difference families with λ = 1, all the elements
are used once, so the parity check matrix is row circu-
lant and the resulting code has a Tanner graph free of
4-length cycles. Lower code rate DF-QC-LDPC codes
are constructed, if we select fewer blocks of Hi in (4).
It is always possible to design (n0m, (n0 − 1)m) reg-
ular DF-QC codes, where m is prime power as below.

m = n0.µ (µ− 1) + 1.

The codes based on DFs have low encoding com-
plexity and easy construction, but these codes are
rather inefficient due to the restriction on the number
of check equation (m = n − k) in (3). For example
consider a design with µ = 5, Then it is required that
m = 20n0 + 1 be a prime power. The only integers
within [100, 200] that satisfy this condition are 101,
121 and 181. So, it is not possible to design DF-QC-
LDPC codes with a different number of check equa-
tions than these integers [6].

3.3.2 EDF-QC-LDPC Codes

Definition 2. Let F = {D1, D2, . . . , Dn0
} be a fam-

ily of sets of µ nonnegative integers. F is a (µ, n0)
Extended Difference Family or (µ, n0)-EDF in short,
for µ = 3, 4, 5, if all intraset distances, shown in (6),
are distinct. The largest of all distances is denoted by
dmax [6].

The restrictions on the distances between nonnega-
tive integers used in extended difference families are
less compared with difference families. Here we ex-
press two lemmas that are proved in [6] to exhibit the
characteristics of EDF-QC-LDPC codes.
Lemma1. For a (µ, n0)-EDF, the following assertion
holds,

dmax ≥ n0µ(µ− 1)/2.

Lemma 2. An (m, µ, n0)-EDF-QC code has no 4-
length cycle, if m ≥ 2dmax + 1 = n0µ (µ− 1) + 1,
wherem is the number of row/column of each circulant
submatrix in the parity check matrix.

Parity check matrices of EDF-QC-LDPC codes may
also be constructed from EDFs in the form of (4) as
following algorithm [6], where the circulant submatri-
ces Hi are generated from the sets Di. In this case, the

number of check equations need not to be a certain
prime power as the case for DF-QC-LDPC codes.

Algorithm 1

Input:
• Nonnegative integers m, µ, n0.

Output:
• Row circulant parity check matrix Hm×mn0

of (mn0, m (n0 − 1)) regular EDF-QC-
LDPC code.

Algorithm:
1: Select nonnegative integers m, µ, n0 such that
µ = 3, 4, 5, µ� m, and Lemma 2 is satisfied.

2: Generate (µ, n0)-EDFs as large as needed.
3: Generate a full zero Hm×mn0

matrix which con-
sists of n0 submatrices Hm×m.

4: Randomly select non-iterative base blocks
Di, i = 1, 2, . . . , n0 from EDFs.

5: Construct generator polynomials hi (x) as equa-
tion (7), by using elements of the selected base
blocks Di.

6: Insert the coefficients of the polynomial hi (x) into
the first row of each m×m submatrix Hi.

7: for l = 1 to m− 1 do
8: Shift the first row ofHi, l positions to the right.
9: Insert the lth shift of the first row in the (l+1)th

row of Hi.
10: end for
11: return H, shown in(4).

The resulted code is an (mn0,m (n0 − 1)) regular
EDF-QC-LDPC code with characteristic vector chr =
(m,µ, n0) which has Tanner graph free of 4-length
cycle. Assuming that one of the His in parity check
matrix H (i.e. Hn0) is invertible, the generator ma-
trix can be constructed in a systematic form as (5).
EDF-QC-LDPC codes are one of the most efficient
linear block codes that can be applied in code based
cryptosystems with the following reasons,

(1) These codes can be designed to have a very large
class of equivalent codes with the same code
rate and length. If an attacker chooses a code
from this class at random, he can neither recover
the secret key, nor should be able to obtain
it through an exhaustive search attack. The
number of equivalent regular EDF-QC-LDPC
codes with chr = (m,µ, n0) is given below [12],

NEDF (m,µ, n0) =

Ç
m

µ

ån0

. (8)

It should be noted that NEDF (m,µ, n0)
grows exponentially with n0. So, the cardinality
of a family of equivalent (mn0,m (n0 − 1)) reg-
ular EDF-QC-LDPC codes increases with their
code rate, R = (n0 − 1)/n0.
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Table 1. Comparing the shortest EDF-QC-LDPC codes with

n0 = 10, µ = 3, 4, 5..

chr C (n, k) r =µ/m NEDF

(247, 5, 10) C1 (2470, 2223) ∼= 0.02 ∼= 2327

(139, 4, 10) C2(1390, 1251) ∼= 0.029 ∼= 2238

(63, 3, 10) C3(630, 567) ∼= 0.047 ∼= 2153

Table 1 compares the characteristic vector,
chr, density, r, and the number of the shortest
equivalent (n0m, (n0−1)m) regular EDF-QC-
LDPC codes [6] with µ = 3, 4, 5, n0 = 10 and
R = 0.9. It is clear that the code C1(2470, 2223)
has the lowest density, the largest NEDF and
the largest code length among them.

(2) As stated before, the security of the RN cryp-
tosystem against chosen plaintext attacks de-
pends on the number of perturbation vectors. Us-
ing regular DF-QC-LDPC codes in the RN cryp-
tosystem leads in a vulnerable system, because
of their restriction on the number of check equa-
tion, m, and the number of perturbation vectors,
Ne = 2m. Instead, we apply regular EDF-QC-
LDPC codes in the proposed cryptosystem to
utilize the advantages of such codes and improve
the security of the RN cryptosystem. In these
codes the restrictions on m and Ne are rather
loose compared with DF-QC-LDPC codes.

(3) Short/medium code lengths of high code rate
(R ≥ 0.9), low encoding/decoding complex-
ity, good error performance and easy construc-
tion are the other properties of EDF-QC-LDPC
codes [6].

4 Modified RN cryptosystem based
on regular EDF-QC-LDPC codes

To achieve high security and reliability in the RN secret
key cryptosystem, we use the regular EDF-QC-LDPC
equivalent codes with characteristic vector chr =
(247, 5, 10) and dimension (n, k) = (2470, 2223) in the
proposed cryptosystem. These parameters yield the
shortest code length, the highest code rate and the
largest NEDF among regular EDF-QC-LDPC codes
with µ = 3, 4, 5 and n0 = 10. Secret key and encryp-
tion/decryption algorithms of the modified cryptosys-
tem are described in the next sections.

4.1 Secret Key

Secret key composed of the set {H,S,P, I} which is
explained as follows.

(1) Let Hm×mn0 be a parity check matrix of regular
EDF-QC-LDPC codes with chr = (m,µ, n0)

that is formed by n0 binary circulant Hm×m
submatrices as (2), the Hamming weight of each
row/column of circulant submatrices is µ = 5.
Also, the density of the parity check matrix H is
r = µ/m ∼= 0.02� 1 which points its sparsity.

(2) Let Sk×k be a regular sparse nonsingular scram-
bling matrix formed by (n0 − 1)× (n0 − 1) bi-
nary circulant m × m submatrices Sj,k, j =
1, . . . , n0−1, k = 1, . . . , n0−1 with row/column
Hamming weight µS = 2 as follow,

S =


S1,1 S1,2 · · · S1,n0−1

S2,1 S2,2 · · · S2,n0−1
...

...
. . .

...

Sn0−1,1 Sn0−1,2 · · · Sn0−1,n0−1

 .

(3) LetPn×n be an n×n block diagonal permutation
matrix formed by n0 × n0 submatrices Pm×m
over GF (2) as below,

P =


P1,1 0 · · · 0

0 P2,2 · · · 0
...

...
. . .

...

0 0 · · · Pn0,n0

 .

The diagonal elements are permutation sub-
matrices and the other elements are zero sub-
matrices. The number of these matrices satisfies
the following equation,

NP = (m!)
n0 . (9)

(4) Let I be an initial state of a Linear Feedback
Shift Register, LFSR, to generate Ne = 2n−k

pseudorandom syndromes synchronously. The
required memory for using the syndrome er-
ror table in joint secret key cryptosystem is of
O
(
2n−k.n

)
[3]. This method is not applicable

for long length codes, therefore in the proposed
cryptosystem we use LFSRs instead of the syn-
drome error table. In this way, the size of the
secret key reduces, since the value of memory
required to save the initial state is considerably
less than the syndrome error table.

4.2 Encryption

(1) To encrypt a massage, first choose a
C(mn0, m(n0 − 1)) regular EDF-QC-LDPC
code with characteristic vector chr = (m,µ, n0)
randomly by selecting its parity-check matrix
H and produce a generator matrix G in reduced
echelon form shown in (5). Then select a block
diagonal permutation matrix P randomly.

(2) Generate (n− k)-bit pseudorandom syndrome
s ∈ Fn−k2 for each plaintext and compute an n-
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bit perturbation vector e (s) = s.(H−1)
T

, where
H−1 is a right inverse matrix of H. The number
of e(s) is given below,

Ne = 2n−k. (10)

(3) At last, divide the plaintext to k-bit blocks M
and encrypt them as follows,

c = ((M + e′)SG+ e′′)P (11)

= MSGP + (e′SG+ e′′)P
= MG′ + e′ (s)P,

where e′ is a k-bit vector that is obtained by
selecting k Least Significant Bits (LSBs) of
the perturbation vector e(s). The parameter
e′′ is an n-bit vector that is adaptively chosen
according to the n-bit vector e′SG such that
wH(e′(s)) ≈ n/2, where wH(e′(s)) denote the
Hamming weight of the vector e′(s). The value
e′(s) = (e′SG+ e′′)P is an n-bit combined per-
turbation vector that is used instead of e(s)
to withstand the cryptosystem against chosen
plaintext attack, namely Rao-Nam attack.

4.3 Decryption

The authorized receiver decrypts the received vector
r, influenced by channel error ech,

r = c+ ech = MSGP + (e′SG+ e′′)P + ech.

The decryption process is performed as below.

(1) Apply PT to vector r and compute r′,

r′ = rPT = (M + e′)SG+ e′′ + echPT .
In this case, matrix P is a permutation matrix.
So, echPT is a vector having the same Hamming
weight as ech. Then, eliminate echPT using iter-
ative decoding algorithm of LDPC codes based
on Belief Propagation [11] and obtain n-bit vec-
tor r′′,

r′′ = (M + e′)SG+ e′′.

(2) Use the syndrome s generated by sender and

compute e (s) = s.(H−1)
T

, then obtain n-bit
vector r′′′,

r′′′ = r′′ − e′′ = (M + e′)SG.
(3) Obtain M ′′ = (M + e′)S by choosing the k left

most bits of the vector r′′′, due to systematic
form of generator matrix G, also obtain k-bit
vector M ′,

M ′ = M + e′ = M ′′S−1.
(4) Obtain e′ by choosing the k right most bits of

e(s); subtract it fromM ′ and obtainM as below,

M = M ′ − e′.

5 Security

In this section, we consider two types of attacks. The
first type was developed for the original RN-like cryp-
tosystems such as Rao-Nam, Brute force and Struik-
Tilburg attacks. The second type, such as OTD at-
tacks, was proposed to threaten cryptosystems based
on QC-LDPC codes.

5.1 Brute force Attack

This attack would be possible, only if the size of key
space is not large enough, that is the key can be found
in polynomial time. The key, consisting the parameters
set {H, S, P, I}, of the proposed cryptosystem is
computed as follows.

(1) The number of equivalent regular EDF-QC-
LDPC codes with chr = (m,µ, n0) is given in
(8). In the proposed cryptosystem, we use chr =
(247, 5, 10), So the involved parameters produce
a family of (2470, 2223) equivalent regular EDF-
QC-LDPC codes, the number of which is ≈ 2327.
Nowadays, complexity of order 280 is considered
as the lower bound of security; hence, there are
large enough equivalent EDF-QC-LDPC codes
for the proposed cryptosystem to resist against
brute force attack.

(2) The number of perturbation vectors is equal to
2247 (see (10)), therefore finding the perturba-
tion vector is infeasible.

(3) The number of nonsingular scrambling matrices
Sk×k over GF (2), NS , is given below [3],

NS =
k−1∏
i=0

(2k − 2i) > 2k
2−k.

In our scheme, the number of nonsingular scram-
bling matrices with k = 2223 is huge, namely
NS > 2500 which indicates an impractical pre-
liminary work for an attacker.

(4) The number of block diagonal permutation

Pn×n matrices form = 247, isNP = (247!)
10 �

280 (see (9)). So, finding the permutation matrix
is infeasible in polynomial time.

5.2 Majority Voting Attack

The goal of Majority Voting (MV) attack [15]
against RN-like secret key cryptosystem is obtain-
ing the secret matrix G′ = SGP in an efficient
way. Let M(E) be a matrix representation of a set
E =

{
e′1(s), e′2 (s) , . . . , e′2n−k(s)

}
of distinct n-bit

combined perturbation vectors,

M (E) =
(
e′ij (s)

)
, 1 ≤ i ≤ 2n−k, 1 ≤ j ≤ n.

where e′ij(s) is jth bit of the ith vector inM (E). The
following two steps recover the secret matrix G′ =
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SGP [15].

(1) Choose an arbitrary k-bit vector x, and ob-
tain Ne = 2n−k distinct encryptions of x (i.e.,
ci = xG′ + e′i(s) with 1 ≤ i ≤ Ne). Let C =
{c1, c2, c3, . . . , c2n−k}be a set of ciphertexts,
such that,

M (C) =M (xG′) +M(E),

where M (xG′) denotes a 2n−k × n matrix in
which the n-bit vector xG′ iterates 2n−k times in
its rows.Then, majority voting on each column
of M (C) leads to an estimate xG′ of xSGP,
that is when the number of ‘1’s in each column
is greater than the number of its ‘0’s, set the
corresponding bit to ‘1’, otherwise to ‘0’.

(2) Repeat step 1 for k linearly independent vectors
x. Let the rows of a matrix Xk×k consist of these
k vectors and let the rows of (XG′)k×nconsist
of the corresponding k estimates. Then, an esti-
mate G′ for the matrix SGP follows from,

G′ = X−1(XG′).

These steps require k × 2n−k majority votes over
n columns ofM (C), so that, the computational com-
plexity of this attack is of O(kn2n−k) bit operations.
Therefore, the work factor of this attack is approx-
imately of O(2269.4) for the proposed cryptosystem.
Also, an MV attack is not successful when the average
Hamming weight of each perturbation vector equals
to n/2. In this case, an attacker can obtain a bit on an
arbitrary coordinate of xG′ with probability 1/2. In
other words, the n-bit vector xG′ is guessed randomly.
Therefore, we propose using a set E of predefined per-
turbation vectors with Hamming weight ≈ n/2 to
resist against MV attack.

5.3 Rao-Nam Attack

RN attack [3] is a chosen plaintext attack. Let M1 and
M2 be two plaintext vectors differing only in the ith

position i = 1, 2, . . . , k; c1 and c2 be the corresponding
ciphertext vectors as follows,

c1 = M1SGP + (e′1SG+ e′′1)P = M1G
′ + e′1 (s)P

c2 = M2SGP + (e′2SG+ e′′2)P = M2G
′ + e′2 (s)P,

whose difference is given below,

c1 − c2 = (M1 −M2)G′ + (e′1 (s)− e′2 (s))P
= g′i + (e′1 (s)− e′2 (s))P,

where g′i is the ith row vector of the matrix G′. If
wH(e′(s)) is much smaller than n, the majority voting
of the vector c1 − c2 corresponds directly to g′i. By
repeating this step several times, a number of estimates
of g′i can be obtained. Repeating this step for all i =
1, 2, . . . , k will give us G′, which can be used to break
the cryptosystem.

A work factor of chosen plaintext attack will be small
if wH(e′(s))/n is small and it will not if wH(e′(s)) ≈
n/2. In the proposed cryptosystem, the Hamming
weight of the difference between combined perturba-
tion vectors, (e′1(s)− e′2(s))P , is the same as e′1(s)−
e′2(s), since P is a permutation matrix. Also, the Ham-
ming weight of wH (e′1(s)− e′2(s)) is approximately
equal to n/2. Therefore c1 − c2 is not an estimate of
g′i and this attack is failed.

5.4 Struik-Tilburg Attack

The RN secret key cryptosystem is not optimally se-
cure for practical code lengths against a chosen plain-
text attack which was proposed by Struik and Tilburg
[16]. One of the weaknesses of the RN cryptosystem
they showed is as follows. The total number of pertur-
bation vectors based on the syndrome error table for
the RN recommended code parameters is restricted
in cardinality to 2n−k over GF (2). If the number of
different perturbation vectors is equal to Ne = 2n−k

for a binary code C(n, k), then an attacker has to
encrypt O(NelogNe) times the chosen plaintexts on
average to obtain all proper perturbation vectors.

Ne

Ne−1∑
i=0

1/(Ne−i)=O(NelogNe)

The work factor of this attack on the proposed cryp-
tosystem based on the (2470, 2223) regular EDF-QC-
LDPC code is given below.

WF = O
Ä
2247 log2247

2

ä
= O(2255)

Therefore, this attack is infeasible for the used code
parameters of the proposed cryptosystem. Note that,
the number of perturbation vectors in the RN cryp-
tosystem using the shortened (72, 64) Hamming code

is of
Ä
28 log2

8

2

ä
= O

(
211

)
. Thus, the proposed cryp-

tosystem is far more secure than RN cryptosystem by
the factor of O(2244).

5.5 OTD Attack

The cryptosystems based on QC-LDPC codes can be
vulnerable to some attacks because of sparse matrices
used in the structure of secret key.

Otmani, Tillich and Dallot (OTD) in 2008 developed
an attack [17] against Baldi’s public key cryptosystem
[18] based on QC-LDPC codes. They proved that
using QC (but not LDPC) codes for shortening the
public key of the McEliece cryptosystem is not secure,
if the block diagonal permutation matrix P is used
to hide the generator matrix G. In this attack, an
eavesdropper can obtain the generator matrix G, that
is part of the secret key, first by selecting the k left
most columns of the matrix G′ = SGP, because of
systematic form of the generator matrix G.
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In the secret key code based cryptosystems, the
encryption matrix G′ is secret. If the attacker can
obtain the matrix G′, the OTD attack is applicable. A
lower bound for work factor of chosen plaintext attack
on secret key code based cryptosystems to determine
the matrix G′ is obtained as follows [3],

WF ≥ 1/2(N2
e /2),

Considering Ne = 2247, the work factor for determin-
ing G′ is really dominant and the OTD attack is failed.

6 Efficiency

We consider the efficiency of the proposed cryptosys-
tem from three viewpoints: key length, computational
complexity and error performance.

6.1 Key length

In this section, we compute the key length of the
proposed cryptosystem before and after executing
key compression/decompression algorithms. These
algorithms are based on circulant block of submatrices
in the structure of S and H matrices.

6.1.1 Actual key length

Without executing compression algorithms, we re-
quire only the first rows of m × m submatrices
Hi, i = 1, 2, . . . , n0 to store the parity check matrix
H.Therefore, the required memory is given below,

MH = n0m.

Furthermore, we require only the first rows of m×m
submatrices Sj,k, j = 1, . . . , n0 − 1, k = 1, . . . , n0 − 1
to store the sparse nonsingular scrambling matrix
Sn×n. So, the required memory is given below,

MS = (n0 − 1)
2
m.

The number of permutation matrices Pk×k which
consists of Pm×m submatrices is (m!)

n
, so the lower

bound of the required memory, MP , for storing the

matrix Pk×k is MP = nlog
(m!)
2 bits. Storing the initial

vector, I, requires MIV = n− k = m bits of memory.
So, the actual key length of the proposed cryptosystem
is computed as follow,

MKactual = MH +MS +MP +MIV

= n0m+ (n0 − 1)
2
m+ n0mlog

(m!)
2 +m.

6.1.2 Key compression algorithms

In this section, we present two compression algorithms
2 and 3 for the sparse parity check matrix H and the
nonsingular matrix S respectively. Below we introduce
two compressed vectors Hc and Sc.

Algorithm 2

Input:
• Parity check matrix Hm×mn0 .

Output:
• Compressed vector Hc.

Algorithm:
1: Generate a full zero vector Hc consisting of µn0

coordinates.
2: for i = 1 to n0 do
3: Select nonzero positions in the first row of the

submatrix Hi from matrix H.
4: Insert the selected positions from left to right

in the vector Hc
5: end for
6: return Hc.

In the proposed cryptosystem, the Hamming weight
of each row/column of the submatrix Hi is µ. So,
the compressed vector Hc consists of µn0 nonzero
positions which involves at most 8µn0 bits of memory.

Algorithm 3

Input:
• Sparse scrambling nonsingular matrix S.

Output:
• Compressed vector Sc.

Algorithm:
1: Consider a full zero vector Sc consisting of
µS(n0 − 1)

2
coordinates.

2: for j = 1 to n0 − 1 do
3: for k = 1 to n0 − 1 do
4: Select nonzero positions in the first row of

the submatrix Sj,k from the matrix S.
5: Insert the selected positions from left to right

in the vector Sc.
6: end for
7: end for
8: return Sc.

In the proposed cryptosystem, the Hamming weight
of each row/column of Sj,k submatrices is µS . So, the

compressed vector Sc consists of µS(n0 − 1)
2

nonzero

positions which involves at most 8µS(n0 − 1)
2

bits
of memory. Using the compression algorithms, the
maximum required memory for storing secret key is
computed as follow,

MKcomp. = MHc +MSc +MP+MI

≤ 8µn0 + 8µS(n0 − 1)
2

+ n0m log
(m!)
2 +m.

The key lengths of various RN-like secret key cryp-
tosystems, using S and P in their structure, are com-
pared in Table 2. It is clear that the key length of
the proposed cryptosystem is decreased with a fac-
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Table 2. Comparing the key lengths of RN-like secret key

cryptosystems.

Cryptosystems (n, k) Key length

Rao [2] (1024, 524) 2Mbit

Rao-Nam [3] (72, 64) 18kbit

Struik-Tilburg [16] (72, 64) 18kbit

Barbero-Ytrehus [19] (30, 20) over

GF (28)

4.9kbit

Proposed

cryptosystem

(2470, 2223) Before Comp. =

24.4kbit

After Comp.=
3.55kbit

tor of 2−2.78 (85%) after applying the corresponding
compression algorithms to H and S.

6.1.3 Key decompression algorithms

After compressing S and H, the sender should send
a new characteristic vector CHR = (m,µ, n0, µS)
to the authorized receiver, where µ and µS are the
Hamming weights of each row/column of submatrices
in H and S, respectively.

The intended receiver can decompress the vectors
Hc and Sc to the matricesH and S, using the following
algorithms 4 and 5, respectively.

Algorithm 4

Input:
• Hc, CHR = (m,µ, n0, µS).

Output:
• H.

Algorithm:
1: Construct a full zero Hm×mn0

matrix consisting
of 1×n0 submatrices Hm×m.

2: for i = 1 to n0 do
3: Select, the ith µ coordinates of Hc, from left to

right.
4: Insert ‘1’s in the µ positions of the first row of

the Hi (the ith submatrix of H) corresponding
to the values of the selected µ coordinates.

5: for l = 1 to m− 1 do
6: Shift the first row of Hi, l positions to the

right.
7: Insert the lth shift of the first row in the (l+

1)th row of Hi.
8: end for
9: end for

10: return H.

6.2 Computational Complexity

Computational complexity of the proposed cryptosys-
tem can divide into two parts:

Algorithm 5

Input:
• Sc, CHR = (m, µ, n0, µS).

Output:
• S.

Algorithm:
1: Construct a full zero Sm(n0−1)×m(n0−1) matrix

consisting of (n0−1)×(n0−1) submatrices Sm×m.
2: let g ← 1.
3: for j = 1 to n0 − 1 do
4: for k = 1 to n0 − 1 do
5: Select, the gth µS coordinates of Sc, from left

to right.
6: Insert ‘1’s in the µS positions of the first

row of the Sj,k (the (j, k)th submatrix of S)
corresponding to the values of the selected
gth µS coordinates.

7: for l = 1 to m− 1 do
8: Shift the first row of Sj,k, l positions to the

right.
9: Insert lth shift of the first row in (l + 1)th

row of Sj,k.
10: end for
11: end for
12: let g ← g+1.
13: end for
14: return S.

(1) Encryption/Encoding complexity,
(2) Decoding/Decryption complexity.

6.2.1 Encryption/Encoding complexity

Consider the ciphertext vector c of the proposed cryp-
tosystem as follow,

c = ((M + e′)SG+ e′′)P = M ′G′ + e′′P.

The Encryption/Encoding complexity, CEnc, is com-
puted as given below,

CEnc = Cadd (M + e′) + Cmul (M ′G′) + Cmul (e′′P) .

(1) Cadd (M + e′) is the number of required binary
operations for adding k-bit vectors M and e′ as
follow,

Cadd (M + e′) =k.

(2) Cmul (M ′G′) is the number of required binary
operations for multiplying k-bit vector M ′ to
matrix G′ = SGP, consisting of k0 × n0 cir-
culant submatrices G′m×m. A lower bound for
Cmul (M ′G′) is given below,

Cmul (M ′G′) ≥ kµSm(n0 − 1)
2

[k +mk/2]n

= µSk
4(n0 + n/2).

(3) Cmul (e′′.P) is the number of required binary
operations for multiplying n-bit vector e′′ to
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permutation matrix P which is computed as
follow,

Cmul (e′′.P) = n.

Hence,

CEnc ≥ k + µSk
4(n0 + n/2) + n.

6.2.2 Decoding/Decryption complexity

The complexity of Decoding/Decryption algorithm is
obtained as follow,

CDec = Cmul
(
r.PT

)
+ CSPA + Csub (r′′ − e′′)

+ Cinv (S) + Cmul
(
M ′′S−1

)
+ Csub (M ′ − e′) .

(1) Cmul
(
r.PT

)
is the number of required binary

operations for multiplying n-bit received vector
r to the transposed permutation matrix P as
given below,

Cmul
(
r.PT

)
= n.

(2) CSPA is the complexity of Sum Product decoding
Algorithm [20] which is given as follow,

CSPA = Iave.n [q (8µ+ 12R− 11) + µ] .

where, Iave is the average number of decoding
iterations, q is the number of used quantization
bits in the decoder and R is the code rate.

(3) Csub (r′′ − e′′) is the number of required binary
operations for subtracting n-bit vector e′′ from
n- bit vector r′′ as given below,

Csub (r′′ − e′′) =n.

(4) Cinv (S) is the number of required binary oper-
ations for inverting the nonsingular matrix S
which is as given below,

Cinv (S) ≤ k3.

(5) Cmul(M ′′S−1) is the number of required binary
operations for multiplying the k-bit vector
M ′′ = (M + e′)S to the inverse matrix S−1
which is obtained as follows,

Cmul
(
M ′′S−1

)
≤ k2.

(6) Csub (M ′ − e′) is the number of required binary
operations for subtracting k-bit vector e′ from
the vector M ′which is computed as follows,

Csub (M ′ − e′) =k.

Hence,

CDec ≤ 2n+Iave.n [q (8µ+ 12R− 11) + µ]+k3+k2+k.

6.3 Error performance

The highest code rate for an (mn0,m(n0−1)) regular
LDPC code based on (m,µ, 1)-DF is (n0 − 1)/n0 [21].

According to Lemma 2 [6], this code rate is also achiev-
able for regular (m,µ, n0)-EDF-QC code if the num-
ber of rows, m, in the parity check matrixH, as shown
in (4), is greater than twice dmax of the (µ, n0)-EDF.

In this work, the used regular (247, 5, 10)-EDF-QC-
LDPC code satisfies Lemma 2, so the highest code rate
R = 0.9 can be achieved. As we have shown in Section
5, achieving this code rate doesn’t weaken the security
of the proposed cryptosystem. A comparison in terms
of code rates of RN-like secret key cryptosystems
with their originally recommended code parameters
is given in Table 3. We observe that the code rate of
the proposed cryptosystem is higher than the others.

Table 3. Comparing the code rates of RN-like secret key

cryptosystems.

Cryptosystem Code Code Rate

Rao [2] C(1024, 524) ≈ 0.51

Rao-Nam [3] C(72, 64) ≈ 0.89

Struik-Tilburg [16] C(72, 64) ≈ 0.89

Barbero-Ytrehus [19] C(30, 20) over

GF (28)

≈ 0.67

Cryptosystem based on
EG-QC-LDPC [4]

C(2044, 1024) ≈ 0.51

Proposed cryptosystem C(2470, 2223) 0.9

The upper bound of the minimum distance, dmin,
for (m, µ, n0)-QC code based on EDFs is determined
by the following Lemma [6].
Lemma 3. The minimum distance of a (m,µ, n0)-QC
code with column weight µ is upper bounded by 2µ.

On the other hand, the dmin of a regular (m,µ, n0)-
EDF-QC code free of 4-length cycle is lower bounded
by µ + 1. Therefore, dmin of EDF-QC-LDPC code
with chr = (m,µ, n0) is bounded by the inequality
µ+ 1 ≤ dmin ≤ 2µ. We require an exhaustive search
to determine the exact value of dmin [6]. In the pro-
posed cryptosystem, as we use regular EDF-QC-LDPC
code with chr = (m,µ, n0), the minimum distance is
bounded by 6 ≤ dmin ≤ 10.

The minimum distances of the shortest regular EDF-
QC-LDPC codes with µ = 3, 4, 5, n0 = 10 and short-
ened Hamming code used in RN cryptosystem are
compared in Table 4. It is observed that (247, 5, 10)-
EDF-QC-LDPC code, used in the proposed cryptosys-
tem, has the highest minimum distance among the
others.

Error performance curves for codesC1,C2 andC3 on
Additive White Gaussian Noise (AWGN) channel with
100 iterations of Massage-Passing decoding algorithm
are depicted in [6]. The Signal to Noise Ratio (SNR) of
these codes with error probability of bits, Pb = 10−7,
are equal to 4.8, 5.25 and 6 dBs, respectively. Also,
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Table 4. Comparing the minimum distances of three types of

EDF-QC-LDPC codes and shortened Hamming code.

Code (n, k) dmin

EDF-QC-LDPC C1 (2470, 2223)

proposed cryp-
tosystem

6 ≤ dmin ≤ 10

EDF-QC-LDPC C2(1390, 1251) 5 ≤ dmin ≤ 8

EDF-QC-LDPC C3(630, 567) 4 ≤ dmin ≤ 6

Shortened Ham-
ming code

C4(72, 64)
RN cryptosystem

[3]

dmin = 4

The Shannon limit of AWGN channel for R = 0.9 and
R = 0.5 are equal to 3.1 and 0.223 dBs, respectively.
Table 5 compares the distances of SNRs from Shannon
limit for three EDF-QC-LDPC codes C1, C2 and C3

and EG-QC-LDPC code C4 with Pb = 10−7 [4].

Table 5. Comparing the error performances of three types of
EDF-QC-LDPC codes and EG-QC-LDPC code.

C(n, k) SNR in
Pb = 10−7

R Distance
from Shan-
non limit

EDF-QC-LDPC

C1 (2470, 2223)
Used in proposed
cryptosystem

4.8 dB 0.9 1.7 dB

EDF-QC-LDPC
C2(1390, 1251)

5.25 dB 0.9 2.15 dB

EDF-QC-LDPC

C3(630, 567)

6 dB 0.9 2.9 dB

EG-QC-LDPC

C4(2044, 1024)
Used in code based

cryptosystem [4]

2.65 dB 0.51 2.327 dB

It is clear that the code C3 has the closest SNR
to Shannon limit, having the best error performance
among them.

7 Conclusion

This paper presents an RN-like cryptosystem, using
the regular EDF-QC-LDPC codes for combining secu-
rity with efficiency and gives comments on the original
RN and the previous RN-like cryptosystems. Apply-
ing EDF-QC-LDPC codes together with an improve-
ment of the structure of encryption/decryption algo-
rithms and developing compression/decompression
algorithms resulted in advantages in terms of secu-
rity and efficiency (i.e. the transmitted compressed
key up to 85%, computational complexity of encryp-
tion/decryption algorithms and error performance),
compared to the previous secret key code based cryp-
tosystems. Besides, using the proposed cryptosystem

implies that there is no trade-off between efficiency
and security.
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