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A B S T R A C T

Chi-square tests are generally used for distinguishing purposes; however when

they are combined to simultaneously test several independent variables, extra

notation is required. In this study, the chi-square statistics in some previous

works is revealed to be computed half of its real value. Therefore, the notion

of Multi–Chi-square tests is formulated to avoid possible future confusions.

In order to show the application of Multi–Chi-square tests, two new tests are

introduced and applied to reduced round Trivium as a special case. These tests

are modifications of the ANF monomial test, and when applied to Trivium

with the same number of rounds, the data complexity of them is roughly 24

times smaller than that of former ANF monomial test.

In a Multi–Chi-square test the critical degrees of freedom is defined to be

the minimum value of the degrees of freedom for which the test is successful at

distinguishing the samples set from random. This study investigates the relation

between this critical value and the chi-square statistic of a Multi–Chi-square

test. In the sequel, by exploiting this relation, a method to approximate the

data complexity of a distinguishing Multi–Chi-square test is introduced and

shown to perform properly in the special case of reduced round Trivium.

© 2012 ISC. All rights reserved.

1 Introduction

Pearson’s chi-square test is a widely used statistical
test which was exploited in distinguishing attacks on
stream ciphers for detecting nonrandom properties
[1–3]. The distribution of the keystream bits in recent
stream ciphers is hardly distinguishable from a random
binary sequence. This property leads the cryptanalysts
to investigate other ways of distinguishing a stream
cipher; an effort which led to the introduction of d-
monomial tests [3].
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In this study the notion of the Multi–Chi-square
test, which is a combination of several chi-square tests,
is introduced and exploited to improve the results
of former monomial tests. Furthermore, in order to
determine an approximation method for the data
complexity of the distinguishing Multi–Chi-square
test, a relation between the data complexity and the
test statistics is presented.

1.1 Previous Works

Testing the monomials of a Boolean function was
introduced as the name of d-monomial test by Filiol [3].
However, the stream ciphers tested in Filiol’s work did
not have IV, so Filiol considered the key/keystream
relations as Boolean functions. Saarinen improved
Filiol’s work and modified it by using the IV bits
instead of the key bits [2].
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After Saarinen, Englund et al. improved the d-
monomial tests by introducing three types of mono-
mial test [1]. They consider a subset of IV bits as the
input variables to Boolean functions, leaving all the
other IV bits and the key bits fixed. Consequently,
considering the first keystream bit as the Boolean
function’s output, they are able to perform a chosen
IV attack by querying the stream cipher for different
IVs, computing the ANF representation of the con-
sidered Boolean function and testing its monomial
distribution using chi-square test.

1.2 Our Contribution

In this study it is shown that the chi-square test in
a number of previous monomial tests lacks a factor
of two. The missing factor two in previous tests is
caused by considering the test as a single chi-square
test and not dividing the output space exhaustively.
In order to avoid future confusion the introduced test
is denoted by Multi–Chi-square test; since it is the
combination of multiple chi-square tests.

Furthermore, we will improve Englund et al’s mono-
mial tests on Trivium in two aspects. Firstly, in case of
monomial distribution test we will show that consid-
ering the missing factor of two will reduce nearly four
bits in analyzing Trivium with the same round. Sec-
ondly, in case of maximum degree monomial test we
will consider monomials with one degree less than the
maximum degree in addition to the maximum degree
monomial. Although our results are for reduced round
Trivium, the same scenario can be applied to other re-
duced round stream ciphers which were studied in [1].

Moreover, the notion of critical degrees of freedom
in a Multi–Chi-square test is defined and its relation
to the chi-square statistic of the test is formulated.
This relation is subsequently utilized to approximate
the data complexity for which the Multi–Chi-square
test is supposed to distinguish the samples set from
random.

1.3 Outline

The next section describes some preliminaries and the
notations needed for the successive sections. In section
3 we introduce and formalize the notion of Multi–Chi-
square test and explain the relation between degrees of
freedom and the statistics of these tests. Furthermore,
the definition of critical degrees of freedom alongside
its usage in the approximation of data complexity
is appeared in this section. Section 4 is devoted to
the description of the tests and their advantages to
their predecessors. Section 5 contains the experimental
results of performing the introduced tests on Trivium.
Finally, we will conclude this study in section 6.

2 Preliminaries and Notations

In this section, the chi-square distribution, Pearson’s
chi-square test and Boolean functions are briefly ex-
plained.

2.1 Chi-square Distribution and Pearson’s
Test

Assume that {zi}ki=1 are k independent standard nor-

mal random variables. Let x =
∑k
i=1 z

2
i , then the new

random variable x is said to have a chi-square distribu-
tion with k degrees of freedom. It is obvious from the
definition of chi-square distribution that chi-square
random variables are additive; if x1 and x2 are two
chi-square random variables with k1 and k2 degrees of
freedom, respectively, then x1 +x2 is also a chi-square
random variable with k1 + k2 degrees of freedom.

In an attempt for obtaining a criterion to reason-
ably suppose a correlated system of variables to have
a random distribution, Pearson was able to introduce
one of the currently most widely used statistical tests;
i.e. chi-square test [4]. Originally, the chi-square test
is used for testing the output samples of an experi-
ment E, to see whether they fulfill a certain condition,
expressed as the null hypothesis, or not. Suppose that
the output space of E is partitioned into M subspaces
(A1, . . . , AM ), for which the expected probability (re-
garding the null hypothesis) of a sample to occur in
Ai is pi for i = 1, . . . ,M . In a test, where from a to-
tal number of N samples, there are Oi samples in Ai,
Pearson proved that

χ2 =

M∑
i=1

(Oi −Npi)2/(NPi) (1)

will have a chi-square distribution with M − 1 de-
grees of freedom, if the null hypothesis holds. There-
fore, for χ2

α such that Pr(x > χ2
α) < α, where x is a

chi-square random variable, if χ2 > χ2
α, it can be said

that, with a confidence level of α, the null hypothesis
does not hold.

2.2 Boolean Functions

An n-variable Boolean function is a mapping from Fn2
to F2. The set of all n-variable Boolean functions is
shown in this paper by BFn. There are several ways
to uniquely represent a Boolean function. However,
in cryptography, the most widely used ones are truth
table (TT) representation and Algebraic Normal Form
(ANF). The ANF of a Boolean function f : Fn2 → F2

is defined as:

f(x1, . . . , xn) =
∑
u∈Fn

2

aux
u; au ∈ F2, (2)
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where u = (u1, . . . , un) and xu =
∏n
i=1 x

ui
i . The term

xu is called a monomial and for weight(u) = d it is
referred by a d-monomial. The ANF coefficients au
can be computed from the truth table from:

au =
⊕
u′≤u

f(u′), (3)

where u′ ≤ u means u′i ≤ ui, for all 1 ≤ i ≤ n.

It is worth clarifying two different cases about the
Boolean functions. When dealing with a specific n-
variable Boolean function, if n input bits are indepen-
dent and uniformly distributed variables, the maxi-
mum information of the function would be n bits. But,
this should not be mistaken with the case where n-
variable Boolean functions are considered as variables.
Since a Boolean function is characterized with its 2n

output bits, a random n-variable Boolean function,
selected uniformly from the set of all 22

n

n-variable
Boolean functions, has 2n bits of information.

3 The Notion of Multi–Chi-square
Test and Critical Degrees of
Freedom

The goal of Pearson’s chi-square test is to see whether
or not a set of an experiment’s output, categorized
in M exclusively and exhaustively selected states
A1, . . . , AM , can be reasonably supposed to be arisen
from random sampling [4].

In digital world’s cryptography, we are usually deal-
ing with bits. Particularly, in the case of stream ci-
phers, it is desirable to test a sequence of bits to see
whether they are distinguishable from a random se-
quence of bits; i.e., each bit becomes one, independent
of all the other bits, with a probability not far from
1/2.

Each bit can be interpreted as a two state random
variable. Thus, to test the indistinguishability of a
bit, one can use Pearson’s chi-square test with two
states. Note that by “bit” we do not necessarily mean
one output bit. It can be the ‘XOR’ sum or any other
combination of many output bits.

Sometimes, it is desired to test the indistinguisha-
bility of multiple independent bits. In that case, ac-
cording to the additive property of chi-square distri-
bution (see Section 2.1), one can combine the tests
on multiple bits to obtain a new test. The chi-square
statistics and the degrees of freedom of the new test
will be equal to the sum of its constituent chi-square
tests statistics and degrees of freedom, respectively.
In the following subsection, the Multi–Chi-square test
for distinguishing a real system generated sequence of
bits from a random one is described in more details.

3.1 Distinguishing Multiple Bits by
Multi–Chi-square Test

Assume that the set {x1, . . . , xn} is the samples of an
experiment derived from a population with a balanced
binomial distribution. The values of x1, . . . , xn can be
interpreted as the values of a bit b obtained from n
different experiments. We expect to have P (xi = 0) =
P (xi = 1) = 1/2 for i = 1, . . . , n. The output space
of the experiment is, therefore, partitioned into two
subspaces A0 and A1. To test the indistinguishability
of b from a random bit, using the Pearson’s chi-square
test, the null hypothesis assumes P (b = 0) = P (b =
1) = 1/2.

Then, the chi-square statistic is calculated from:

χ2 =
(O0 − E0)2

E0
+

(O1 − E1)2

E1
, (4)

where Ei and Oi are the expected and observed fre-
quencies of members of Ai, respectively. By definition
E0 = E1 = 1

2n, and O0 + O1 = n. Therefore, the
chi-square statistic becomes:

χ2 =
(O1 − 1

2n)2

( 1
4n)

. (5)

Due to the null hypothesis, χ2 is expected to be a
random variable with chi-square distribution with one
degree of freedom.

Now suppose that there are several bits for which we
are interested in distinguishing from random. Suppose
that these bits are represented by (b1, . . . , bv) and the
value of each bit is queried n times. By Oi (the first
index of O1,i is dropped for simplicity) we mean that
the number of times bi was equal to one, during n
queries.

Using chi-square test for each bit, the chi-square
statistic for the test on bit bi will be shown by

χ2
i =

(Oi − 1
2n)2

( 1
4n)

. (6)

If the null hypothesis is true for all the bits, each χ2
i

has the distribution of a chi-square with one degree
of freedom. Therefore, by the discussion in Section 2,

χ2 =

v∑
i=1

χ2
i (7)

has a chi-square distribution with v degrees of freedom.
Suppose that the cumulative distribution function of
a chi-square distribution with v degrees of freedom is
Cχ2

v
(x), w the critical value of a chi-square statistic

with v degrees of freedom, due to a level of confidence
α, is shown by χ2

v,α; i.e.

Cχ2
v
(χ2
v,α) = 1− α. (8)
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Whenever χ2 > χ2
v,α, it means that the probability

of χ2 to have a chi-square distribution with v degrees
of freedom is at most α. Since α is the probability
of false alarm, it is usually assigned negligible values
such as 2−10.

This kind of test was exploited in previous works,
e.g., in [1], for distinguishing purposes. In this sec-
tion, however, we showed that the chi-square statistics
should be computed by:

χ2
new =

v∑
i=1

(Oi − n
2 )2

n
4

, (9)

while in the former versions of this test, the chi-square
statistic was computed by:

χ2
old =

v∑
i=1

(Oi − n
2 )2

n
2

. (10)

More discriminately, we explained why the com-
putation of the chi-square statistics should be done
via χ2

new formula rather than χ2
old = χ2

new/2. In other
words, a factor of two should be multiplied to the
previous chi-square statistics.

The reason that in previous works the chi-square
statistic was computed by Equation 10 instead of
Equation 9 is that in [1], for example, the experiment
of querying v bits (b1, . . . , bv) for n times was consid-
ered as a single experiment with the output space cat-
egorized by A = A1, . . . , Av, where Ai is the event of
bi = 1. Remember from Section 2 that in a chi-square
test, for a single experiment, the categorization of the
output space should be done exclusively and exhaus-
tively. In the setting of [1], however, the categorization
is done exclusively, but not exhaustively. Note that,
the event bi = 0 is not considered for neither of bis
in the A. In the setting of our Multi–Chi-square test,
there are n different experiments, each of which is
categorized by {A0, A1}; giving a total of 2n different
categories. By this modification, the categorization
of the output space would be both exclusively and
exhaustively.

3.2 The Relation Between Chi-square
Statistic and Degrees of Freedom in A
Chi-square Test

In a Multi–Chi-square test, we are dealing with multi-
ple bits. Each component chi-square test is performed
on one bit, hence having one degree of freedom, thus,
the degrees of freedom for the overall Multi–Chi-square
test will be equal to the total number of bits involving
in the test. Therefore, performing the test on more
bits means a higher degree of freedom. In this sense,
one can speak of the relation between the degrees of
freedom (number of tested bits) and the chi-square

statistics in a Multi–Chi-square test. The following
lemma states such a relation when the degrees of free-
dom is free to be selected very large.
Lemma 1. For v ∈ N , if a chi-square cumulative
distribution function with v degrees of freedom is shown
by Cχ2

v
(x), then

lim
v→∞

Cχ2
v
(kv) =


0, k < 1;

1/2, k = 1;

1, k > 1.

(11)

Proof. During this proof, x is used to represent a
chi-square random variable with v degrees of freedom.
The following is a well known statement (see e.g. [5]):

v →∞⇒ (x− v)√
2v

→Dist N(0, 1), (12)

where→Dist means convergence in distribution. From
this, the case of k = 1 in relation Equation 11 would
be obvious. Here we only prove the k > 1 case (the
case k < 1 can be proved just the same).

If the mean and variance of x is shown by µ and
σ2, respectively. Since x has a chi-square distribution,
µ = v and σ2 = 2v. All we have to show is:

|kv − µ|
σ

→∞. (13)

Since Cχ2
v
(kv) = Pr(x < kv), the proof is complete.

However, the relation Equation 13 can be easily shown:

|kv − µ|
σ

=
(k − 1)v√

2v
=

√
(k − 1)2v

2
→∞, (14)

where the convergence follows from k 6= 1 and v →∞.

�

This lemma gives a somehow good perspective for
the results of Multi–Chi-square tests. The practical
restatement of the above lemma is as follows. In run-
ning a Multi–Chi-square test for several times, when
the statistics of the test, kv, becomes greater than the
degrees of freedom, v, for most of the times, one can
expect the test to distinguish the tested samples from
random, rejecting the null hypothesis, if the degrees
of freedom is selected sufficiently large.

According to Lemma 1, for a large v and χ2 = kv >
v, we have:

Cχ2
v
(x2)→ 1. (15)

Therefore, there exists a χ2
0 slightly smaller than

χ2 which satisfies:

Cχ2
v
(χ2

0) > 1− α. (16)

Therefore from χ2 > χ2
0 one can say, with a level of

confidence α, that χ2 is not a sample of a chi-square
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random variable with v degrees of freedom, hence
rejecting the null hypothesis.

We can deduce from this lemma that when a chi-
square test is performed on an indistinguishable sam-
ple set, its statistics is expected to fall near the de-
grees of freedom. Otherwise, increasing the degrees of
freedom, which is equal to the number of tested bits,
would result in a distinguisher. We will use this fact in
section 5 to show the inconsistency of the results of [1]
with the chi-square distribution properties discussed
in this section.

3.3 Critical Value for Degrees of Freedom in
a Multi–Chi-square Test

As was mentioned in Lemma 1, when k > 1, we have:

lim
v→∞

Cχ2
v
(kv) = 1. (17)

This equation means:

∀α, k > 1,∃vc : ∀v(v > vc ⇒ Cχ2
v
(kv) > 1−α). (18)

We call vc the critical value for the degrees of free-
dom. In order to find the vc corresponding to a specific
α and k, one should solve

Cχ2
v
(kvc) = 1− α, (19)

which leads to∫ kvc
0

tvc/2−1.e−t/2dt∫∞
0
tvc/2−1.e−t/2dt

= 1− α. (20)

However, one may think of estimating vc without
the need to solve this hard relation. In the following,
we will try to obtain an approximate formula for
computing vc as a function of k and α.

It is well known that for a large enough v, Cχ2
v
(Y )

can be approximated by Φ((Y − v)/
√

2v), where Φ(.)
represents the CDF of a standard normal random
variable. Using the notation of Q-function, which is
defined as:

Q(x) = 1− Φ(x), (21)

one can approximate Equation 19 to obtain the fol-
lowing.

Φ((Y − v)/
√

2v) |v=vc&Y=kvc= 1− α

⇒ Q(
kvc − vc√

(2vc)
) = Q(

(k − 1)√
2

√
vc) = α

⇒ (k − 1)√
2

√
vc = Q−1(α)

(22)

Since α is the level of confidence and it is usually as-
signed a value at the beginning of any process,Q−1(α)
can be computed, numerically, once at the beginning
of the process. Let

A , Q−1(α). (23)

The approximate formula for the critical degrees of
freedom would be

vc ≈
2A2

(k − 1)2
. (24)

One application of approximating vc is in perform-
ing Multi–Chi-square tests where the number of tested
bits is equal to the degrees of freedom. Hence, vc can
be interpreted as the minimum number of bits re-
quired for distinguishing the output of a PRBG. This
application is discussed in the next section.

3.4 Approximation of the Data Complexity

Assume a Multi–Chi-square test with v degrees of
freedom (i.e., v number of bits) is performed a large
number of times. According to Lemma 1, if the com-
puted chi-square statistics is greater than v in almost
all the tests, one can expect the tested bits to be dis-
tinguishable. Consequently, taking the average of all
the chi-square statistics Q2

average could be useful in
estimating the critical degrees of freedom vc (i.e., the
minimum number of bits required to distinguish the
output of PRBG). In this section, it is shown that vc
is approximated by:

vc ≈
2A2.v2

(Q2
average − v)2

. (25)

The generated bits in each run of PRBG are ex-
pected to be independent. Therefore, applying the
Multi–Chi-square test on v bits for t times and adding
all chi-square statistics is equivalent to applying the
test on v.t bits. If the chi-square statistic of each test
on v bits is near Q2

average then the chi-square statis-
tic of the test on vt bits is approximately t.Q2

average.
Therefore, the additive property of the chi-square
statistics causes the ratio of the chi-square statistics
to the degrees of freedom to be constant, i.e.,

t.χ2
average

tv
=
χ2
average

v
. (26)

In Lemma 1 this ratio was represented by k, since
the chi-square statistics was shown as kv.

To sum up, the minimum number of bits required
to distinguish the output of a PRBG can be approxi-
mated by:

vc ≈
2A2

(k − 1)2
, (27)

in which replacing k with (χ2
average)/v will result in

Equation 25.

An interesting observation in Equation 27 is its
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similarity to the data complexity formula in linear
attacks. The fact thatO( 1

ε2 ) bits are required to exploit
a linear relation with a bias equal to ε is somehow

similar to vc = O
(

1
(k−1)2

)
. It is worth noting that in

this setting k = 1 is the case where the tested bits are
indistinguishable, corresponding to the case of ε = 0
in linear attacks.

4 Testing ANF Representation
Monomials in Stream Ciphers

A random n-variable Boolean function can be thought
of as a random variable which takes as its values
members of BFn with a uniform distribution. This
interpretation of random Boolean function can be
shown to be the basic definition for random Boolean
functions, since all the other definitions of randomness
can be extracted from it.

The transformation that maps the TT vector to
the ANF vector is bijective, i.e., each TT vector corre-
sponds to a unique ANF vector. Therefore, the ANF
vector of a random n-variable Boolean function has all
the properties of its TT vector. This leads researchers
to test the ANF vector of a Boolean function in case
its TT vector does not reveal any distinguishing prop-
erties. Using the ANF vector of a Boolean function
has been exploited in other works, such as [1, 2, 6, 7].
In this section we will introduce two statistical tests
on stream ciphers, or any other cryptography primi-
tive. These tests are the modifications of tests in [1].
We will show in section 5 that they are more efficient
and more reality consistent than their predecessors.

4.1 ANF Coefficients Distribution Test, a
Modified Version

The most straight forward way of testing the ANF
vector of a Boolean function is to test whether or
not all its ANF coefficients are equiprobable, i.e., the
probability of a co-efficient being ‘1’ is equal to its
probability of being ‘0’. In case of stream ciphers,
Englund et al [1] proposed a way for testing. However,
there are two things which were left unnoticed in their
work. First, as we discussed in Section 3, the chi-square
statistics computed in their work lacks a ‘2’ factor. We
will show in Section 5, in case of Trivium, the result
of this missing factor is at least a division of O(24)
in the memory and computation complexities of the
test, although it may seem less effective.

Secondly, Englund et al considered two extreme
cases for testing the ANF coefficients: (a) testing all
the coefficients and (b) testing the coefficients of the
monomial with all the inputs in it (maximum degree
monomial). When these tests are performed on n-

variable Boolean functions, case (a) needs a memory
of 2n bits, while case (b) needs only one memory bit.
They noticed that, in an ANF representation, the co-
efficients of higher degree monomials are more vulner-
able to being distinguishable than lower degree mono-
mials. However, testing only the maximum degree
monomial is a waste of data. We suggest a medium
case in which the monomials with one degree less than
the maximum are tested. We denote the maximum
degree monomial test in [1] by “MD test” and the test
in this paper by “MD++ test”.

Subsequently, we mention two tests in this section:
the first one is the modification of ANF monomial
distribution test in [1], with only considering the miss-
ing factor. The second test is the MD++ test, which
considers the missing factor and tests more than one
monomial. We will compare these tests in Section 5,
for a special case of Trivium, and show the best result
is due to MD++ test.

In the following, the size of IV is represented by m.
For a stream cipher, since the IV bits are public, one
can obtain a Boolean function which is defined by the
mapping from a subset of IV bits to one keystream
bit. For concreteness, assume that by “a Boolean
function in a stream cipher” we mean the following.
For n < m, for which computations of order 2nare
are feasible, choose n bits from the IV bits and name
them as (x1, . . . , xn). Name the remaining IV bits as
(xn+1, . . . , xm). Since n is chosen such that O(2n) is
practical, one can compute the first keystream bit
(z0), 2n times, for 2n different values of (x1, . . . , xn).
Note that here the key bits, as well as (xn+1, . . . , xm),
are fixed during the generation of the first keystream
bit. After 2n computations of z0, a binary vector of
length 2n will be obtained. This 2n-bit vector is the
TT representation of the Boolean function which maps
(x1, . . . , xn) to z0. We denote this TT vector by Zn0 .

For every choice of key bits and (xn+1, . . . , xm)
the above process will give us a Boolean function.
Then, the distribution of the ANF coefficients of these
Boolean functions are tested using Multi–Chi-square
test. Description of the tests is shown in Figure 1.
Since the basics of the tests are the same, we write
them in one pseudo-code. For the “modified version of
ANF distribution test” let v = 2n and for the “MD++
test” let v = n+ 1.

It is worth noting that in previous tests, the terms
P−bi−P/22

(P/2) were not included in the summation, hence

making the chi-square statistics half its real value.
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Modified version of ANF distribution test and MD++ test:

(b1, . . . , bv)← (0, . . . , 0)

For P different values of (xn+l . . . , xm) while the key bits remain fixed

Construct Zn0 ;

Compute ANF coefficients from Zn0 ;

Save the coefficients corresponding to monomials:

/* in case of ANF distribution test */ with all degrees; or

/* in case of MD++ test */ with degrees n− 1 and n;

and put them in (av . . . , av);

(b1 . . . , bv)← (bl, . . . , bv) + (a1 . . . , av);

Compute the chi-square statistic: χ2 =
∑v
i=1

(
(bi−P/2)2

P/2 + (P−bi−P/2)2
P/2

)
= 2 ·

∑v
i=1

(bi−P/2)2
P/2 ;

If χ2 > χ2
v,α

return “cipher”;

Else

return “random”;

Figure 1. Pseudo-code for ANF monomial distribution test and MD++ test

5 Results on Trivium

In this section we present the results of our proposed
tests on Trivium.

5.1 Trivium

Trivium is one of eSTREAM candidates in Profile 2
(hardware) that was designed in 2005 by C. De Can-
nire and B. Preneel [8]. Due to its desired properties
including simplicity, speed, and high security, Triv-
ium became a part of the portfolio for Profile 2 in
eSTREAM project.

Trivium uses three nonlinear feedback shift registers
(NFSR) with different lengths and a total length of
288 state bits. Key and IV are 80 bits vectors and
are placed in the first 80 bits of the first and the
second register, respectively. The initialization phase
consists of 4288 = 1152 rounds in which no outputs
are generated. The keystream generating phase starts
after 1152 initialization rounds.

Despite the simple structure that led cryptanalysts
to try to attack it, the full version Trivium resisted
to all of those attacks. There were some key recovery
attacks on Trivium with 576 initialization rounds in
negligible time [9], and 672 initialization rounds with
complexity 255 [6]. The best key recovery attack on
Trivium, so far, is due to the cube attacks [7] that
could find the full key of a 735 round Trivium with

230 bit operations.

In case of distinguishing attacks, on the other hand,
we can mention the d-monomial test by Englund et al
[1] that detected non randomness in a 736 round Triv-
ium with time complexity of about 238. A better work
was done, as the name of cube testers, by Aumasson
et al [10], which could detect non random properties
of Trivium with 790 rounds in 230 time complexity.

5.1.1 A Note on Trivium Initialization

This section contains a discussion of Trivium initial-
ization phase, which is useful in chosen IV attacks on
Trivium.

The only nonlinear parts of Trivium are three AND
gates at which two adjacent state bits from each reg-
ister are multiplied during each round. Suppose we
want to choose n IV bits as variables, {x1, . . . , xn},
and fix the remaining IV bits at some constant value.
Since the first 80 bits of the second register is loaded
with IV bits (Figure 2), it is easy to see that if no two
adjacent IV bits are chosen as variables, after approx-
imately 80 rounds, no state bit will be a nonlinear
combination of the variables {x1, . . . , xn}. Therefore,
after a specific number of rounds, the state bits in
this scenario are a function of {x1, . . . , xn} with lower
nonlinearity, compared to the case when the variables
are chosen from consecutive IV bits.

Furthermore, since the second register’s feedback
has the term (s162 + s177 + s175 · s176), if the distance
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(s1, s2, . . . , s93)← (K1,K2, . . . ,K80, 0, . . . , 0)

(s94, s95, . . . , s177)← (IV1, IV2, . . . , IV80, 0, . . . , 0)

(s178, s179, . . . , s288)← (0, 0, . . . , 0, 1, 1, 1)

For i = 1 to 4 · 288 do

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s279, . . . , s288)← (t2, s178, . . . , s287)

Figure 2. Pseudo-code for full round Trivium initialization

phase

of any two chosen IV bits’ indexes is greater than two,
and not a multiple of 15, 14 or 13 , after approximately
80 rounds each state bit will be a function of at most
one variable from {x1, . . . , xn}.

Based on the above discussions, in a chosen IV at-
tack on Trivium, if the IV bits, to stand for the at-
tack’s variables, are chosen according to this section’s
observations, we expect that the results would not
be worse than the case when the variables are chosen
from consecutive IV bits. Therefore, in choosing the
IV bits in our simulations on Trivium, we take these
observations into account.

In the following subsections we show the results
of performing the tests introduced in section 4 on
Trivium. A comparison is also performed between our
tests and their predecessors. In all the tests the level
of confidence is considered to be α = 2−10.

5.2 Modified ANF Monomial and MD++
Tests on Trivium

The results of our tests in various rounds of Trivium
are listed in Table 1 for ANF monomial test, and
Table 2 for both MD and MD++ tests. The notations
are the same as Section 4.

It is worth to note that maximum degree monomial
test was also performed in [1] on reduced round Triv-
ium. However, we just mention the results that are
a little better than [1]. The reason may lie in the se-
lection of IV bits on which the test is performed. As
can be seen, the best results among these four tests
are due to MD++ test, especially when the test is

Table 1. Results of ANF Monomial Test on Trivium

ANF monomial
test in [1]

Modified ANF
monomial test

rounds P n P n

672 28 18 27 14

704 26 23 27 19

736 − − 28 25

Table 2. Results of MD And MD++ Tests on Trivium

MD test MD++ test

rounds P n P n

672 25 14 25 14

704 25 19 25 18

736 26 26 26 25

Table 3. Inconsistency Of χ2
old With What Is Expected

Degrees
of

freedom

χ2
new χ2

old n rounds

4096 4084 2041 12 672

65536 65502 32751 16 704

1048576 1048404 524202 20 736

performed on higher rounds of Trivium.

In addition to our theoretical discussion in Section 3,
the missing factor two in the ANF monomial test
of [1] can be observed through experimental results.
Remember the discussion in Section 3 which came
after Lemma 1. The chi-square statistics of a test,
when performed on indistinguishable samples set, is
expected to be near its degrees of freedom. In case
of ANF monomial test in [1], the first row of the
table, for example, means the 640 rounds Trivium
is indistinguishable for n < 13. Thus, for smaller n
values from the ones suggested in Table 2, the test on
Trivium is expected to have a statistics near 2n, the
degrees of freedom. However, Table 3 shows the test’s
statistic for the previous version of ANF monomial test
[1], which is near 2n−1, half of the degrees of freedom.

In the Table 3, χ2
old is the average of several chi-

square statistics without considering the missing factor
of two. Clearly, χ2

new is the double of χ2
old, and as can

be seen, χ2
new is almost as the degrees of freedom, as

expected.
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Table 4. Comparison between approximation and practical

results

Approximation
method

Modified ANF
monomial test

rounds log2 vc n

672 14.51 14

704 19.65 19

736 26.11 25

5.3 Verification of the Approximation
Formula for Data Complexity

In order to show the effectiveness of our introduced
method in approximating data complexity, we perform
this method on reduced round Trivium. The test for
which the approximation method is intended to be
verified in this section is the modified ANF monomial
test.

The modified ANF monomial test and its results
on several versions of reduced round Trivium were
presented in previous sections. Table 1 contains the
practical values of n for which the test can successfully
distinguish the 672, 704, and 736 rounds of Trivium.
As it was discussed in Section 4.1, the degrees of
freedom in an ANF monomial test is equal to 2n.
Table 4 depicts the comparison between the practical
results of Table 1 and the values which are resulted
from the approximation formula. In Table 4, the value
for the approximated critical degrees of freedom is
represented by vc.

As can be seen in Table 4, there is a slight difference
between the approximated and the practical values for
the critical degrees of freedom. One reason for such a
difference is the fact that our method of approximation
is a general method in which the structure of the under
test algorithm is not taken into account. However, in
case of Trivium, the more the IV bits are involved
in the test, the better the nonrandom properties are
detectable. Since the approximation is based on the
observations from lower values of n where some of the
weaknesses of Trivium are not revealed yet, the value
for the critical degrees of freedom is approximated
greater than its real value.

6 Conclusion

It was shown in this study how the chi-square test
on multiple bits should be performed to obtain a
more consistent result with chi-square distribution
properties. Furthermore, using the Multi–Chi-square
test decreases the data and computation complexities.
In case of Trivium, we showed this reduction to be

approximately four bits of data and a division ofO(24)
computations.

Two tests were introduced which could distinguish
reduced round Trivium (as a special case) with more
rounds and less complexities compared to previous
tests. Thus, considering the input/output relations in
a system as Boolean functions, and testing their ANF
monomials, is a useful cryptanalysis and there may
be lots of work in the future which are based on this
approach.

Additionally, the notion of critical degrees of free-
dom in a Multi–Chi-square test was defined. This
definition was exploited as a means to derive an ap-
proximation formula for the data complexity in a dis-
tinguishing Multi–Chi-square test. In the cases where
it is not feasible to practically determine the required
bits for which a Multi–Chi-square test is successful in
distinguishing, the approach introduced in this study
can be exploited to approximate the minimum re-
quired bits for a successful test.
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